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We theoretically investigate the elastic scattering of 50-MeV �− hyperons from 28Si and 208Pb in order to
clarify the radial distribution of �-nucleus (optical) potentials. The angular distributions of differential cross
sections are calculated using several potentials that can explain experimental data of the �− atomic x-ray and
(π−, K+) reaction spectra simultaneously. The magnitude and oscillation pattern of the angular distributions
are understood by the use of nearside/farside decompositions of their scattering amplitudes. It is shown that the
resultant angular distributions provide a clue to discriminating among the radial distributions of the potentials
that have a repulsion inside the nuclear surface and an attraction outside the nucleus with a sizable absorption.
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I. INTRODUCTION

One of the fundamental subjects in hypernuclear study is
to understand the properties of hyperon-nucleus interactions.
Thus it has been discussed that a study of a negatively charged
�− hyperon in nuclear medium would provide valuable
information concerning the maximal mass of neutron stars,
in which a baryon fraction is found to depend on properties of
hypernuclear potentials for neutron stars in astrophysics [1–4].

The systematic study of the �-nucleus (optical) potential
based on the �− atomic x-ray data was performed by Batty
and his collaborators [5–7]. The latest analyses of the �−
atomic x ray have suggested that the �-nucleus potential has
a repulsion inside the nuclear surface and a shallow attraction
outside the nucleus with a sizable absorption [6,8–11]. Noumi
and his collaborators [12,13] have performed measurements
of � hypernuclei by inclusive (π−, K+) reactions on C, Si,
Ni, In, and Bi targets at pπ = 1.20 GeV/c in KEK-E438
experiments. Their analyses of the �− quasifree (QF) spectra
with a distorted-wave impulse approximation found that the
�-nucleus potentials have a strong repulsion in the real
part and a sizable absorption in the imaginary part within a
Woods-Saxon (WS) form:

U�(r) = (
V �

0 + iW�
0

)
/[1 + exp ((r − R)/a)], (1)

where (V �
0 , W�

0 )=(+90 MeV, −40 MeV) with R = 1.1A
1/3
core

and a = 0.67 fm [13].
In previous papers [14,15], we have succeeded to explain

simultaneously the data of the �− atoms and the (π−, K+)
reactions on 28Si and 208Bi, using the �-nucleus potentials
that have a repulsion inside the nuclear surface and an
attraction outside the nucleus with a sizable absorption. This
repulsion originates from the �N T = 3/2, 3S1 channel
[16–18], whose state corresponds to a quark Pauli-forbidden
state in the baryon-baryon system [19–21], and it is a
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candidate for the appearance of quark degrees of freedom
in nuclear physics. Theoretical analyses of the (π−, K+)
reaction [14,15] distinguish partially among properties of
the �-nucleus potential that can reproduce the �− atomic
x-ray data sufficiently, whereas the radial distribution of the
�-nucleus potential inside the nucleus and its strength at the
center are hardly determined by fits to the �− QF spectrum.
Moreover, we have recognized that an energy dependence of
(dσ/d�)opt in elementary π− + p → K+ + �− processes in
nuclei is needed to explain the behavior of the (π−, K+)
spectrum [14]. Even if using near-recoilless (K−, π+) reac-
tions, the radial distribution of the �-nucleus potential cannot
clearly be determined for a suitable nuclear target such as
58Ni [22].

Recently, Miwa and his collaborators [23] have proposed
an experiment to measure scattering cross sections with high
statistics in �∓p elastic and �−p → �n inelastic scatterings
by 500-MeV/c �∓ beam at J-PARC. The purpose of this
experiment is to test baryon-baryon interactions based on the
flavor SU(3) symmetry and to directly confirm the existence
of the quark Pauli-forbidden state in baryon-baryon systems
[19,20].

In this paper, we theoretically investigate the elastic
scattering of �− hyperons from nuclei in order to clarify
the radial distribution of the �-nucleus (optical) potential.
We calculate the angular distributions of the differential cross
sections in the elastic scattering of �− hyperons from 28Si
and 208Pb at Elab = 50 MeV, and demonstrate the sensitivity
of the angular distribution to the radial distribution of several
potentials that have explained the �− atomic x-ray data and the
(π−, K+) spectra. It is well known that optical potential models
can describe the elastic scattering of protons or light ions
from nuclei, employing appropriate potential parameters phe-
nomenologically. The angular distribution provides specific
tests of the validity of the optical potential, in comparison with
the experimental data [24]. This is a standard and promising
approach for examining the radial distribution of the optical
potential in nuclear physics, whereas some ambiguities may
still be remained with their strong absorption. Therefore, we
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believe to examine the radial distribution of the �-nucleus
potentials with the elastic scattering of �− hyperons from
nuclei.

II. �-NUCLEUS POTENTIALS

Several theoretical attempts have been performed to con-
struct a �-nucleus potential, fitting systematically to strong-
interaction shifts and widths of �− atomic x-ray data [6,7] and
manifesting inclusive K+ spectra in the (π−, K+) reaction on
nuclear targets [12–15,25]. The recent status of understanding
of the �-nucleus potential has been reviewed in Ref. [26].
Here we briefly mention the �-nucleus potentials for 28Si and
208Pb that we used in this article. The detailed discussion on
properties of the potentials are shown in Refs. [14,15,22].

In previous papers [14,15], we have presented several
types of the �-nucleus potential obtained by fitting to strong-
interaction shifts and widths of �− atomic x-ray for various
nuclei. The �-nucleus potentials that we used are (a) the
density-dependent (DD) potential [6], (b) the relativistic mean-
field (RMF) potential [9], (c) the local-density approximation
potential (LDA-NF) based on YNG-NF interaction [11,27],
(d) the LDA potential (LDA-S3) based on phenomenological
two-body �N SAP-3 interaction [10], (e) the shallow potential
in the WS form (WS-sh) [28], and (f) the teffρ-type potential
(teffρ) [6]. In Fig. 1, we display the real and imaginary parts of
several �-nucleus potentials for 28Si, of which all reproduce
the experimental shifts and widths of the �− atomic 4f and
5g states sufficiently [14]. The potentials for DD, RMF, and
LDA-NF have a repulsion inside the nuclear surface and an
attraction outside the nucleus, which are considerably different
from each other in terms of the repulsion at r � R = 3.34 fm
and the attractive pocket outside there; the potentials for
LDA-S3, WS-sh and teffρ have an attraction at the nuclear
center. It was shown that the former potentials (a)–(c) were
favored by the analysis of the (π−, K+) reaction, rather than
the latter ones (d)–(f), as discussed in Ref. [14]. However, the
radial distribution of the potential inside the nucleus and its
strength at the center were hardly determined by fits to the
(π−, K+) spectrum [14].

It is important to investigate the �-nucleus potential for
neutron-excess nuclei like 208Pb, because one expects to obtain
valuable information on the isovector component U�

1 in the
potential, while the �-nucleus potential for 28Si gives us
information on the isoscalar component U�

0 . In Fig. 2, we
display the real and imaginary parts of several �-nucleus
potentials for 208Pb, which is determined by fits to the �−
atomic x-ray data. The potentials for DD-A′, DD-OBE, and
LDA-NF have a strong repulsion inside the nuclear surface
and an attraction outside the nucleus with a sizable absorption
[6,15], and the potentials for LDA-S3 and teffρ have an
attraction at the nuclear center. In a previous paper [15],
we have shown that the former potentials fully reproduce the
spectrum of the 209Bi(π−,K+) reaction, rather than the latter
ones. Thus we have concluded that they provide the ability to
explain the data of the (π−,K+) reactions as well as those of
the �− atoms; but it was impossible to discriminate among the
radial distributions of the potentials for DD-A′, DD-OBE, and
LDA-NF inside the nucleus, and it was difficult to clearly see

ρ

ρ

FIG. 1. Real (a) and imaginary (b) parts of the �-nucleus
potential U� for 28Si, as a function of the radial distance between
the �− and the nucleus 28Si. The Coulomb potential is not included
in the real part of each potential. Curves denote the potentials for
DD, RMF, LDA-NF, LDA-S3, WS-sh, and teffρ [14]. The arrows
at r = 1.1A1/3

core= 3.34 fm denote the nuclear radius of the �−-28Si
system.

the contributions of the isoscalar and isovector components in
this analysis [15].

III. THEORY

We calculate the differential cross sections by solving the
radial part of the nonrelativistic Schrödinger equation as a
scattering problem:[

h̄2

2μ

(
− d2

dr2
+ L(L + 1)

r2

)
+ U�(r) + UCoul(r)

]
RL(r)

= ERL(r), (2)

where RL is a radial wave function with angular momentum L,
U� is the �-nucleus potential, UCoul is the Coulomb potential
with a uniform distribution of charge for RC = 1.2A1/3, μ

is the �− nucleus reduced mass, and E = h̄2k2/(2μ) is the
incident energy of the center-of-mass frame. It is noted that the
potentials of U� seem to include effects of a nuclear spin-orbit
potential because they can reproduce the data of the �− atomic
(n�) states and (π−, K+) reactions. However, as far as the
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ρ

ρ

FIG. 2. Real (a) and imaginary (b) parts of the �-nucleus
potentials U� for 208Pb, as a function of the radial distance between
the �− and the nucleus 208Pb. The Coulomb potential is not included
in the real part of each potential. Curves denote the potentials for
DD-A′, DD-OBE, LDA-NF, LDA-S3, and teffρ [15]. The arrows at
r = 1.1A1/3

core= 6.52 fm denote the nuclear radius of the �−-208Pb
system.

elastic scattering of �− hyperons at the low-energy like Elab =
50 MeV is concerned, the effects of the spin-orbit potential on
the differential cross section are negligible, as we will discuss
later.

The angular distribution of the differential cross section in
the elastic scattering is written as

σel(θ ) = |f (θ )|2 = |fN(θ ) + fF(θ )|2, (3)

where f (θ ) is the elastic scattering amplitude, which is
often decomposed into traveling-waves decomposition of the
nearside (N) and farside (F) components, fN(θ ) and fF(θ )
[29,30]. They denote the sum of the Coulomb and nuclear
parts as

fN,F(θ ) = f
(Coul)
N,F (θ ) + f

(Nucl)
N,F (θ ) (4)

with

f
(Nucl)
N,F (θ ) = i

2k

∑
L

(2L + 1)e2iσ
(C)
L (1 − SL)Q̃(∓)

L (cos θ ),

(5)

where σ
(C)
L and SL are the Coulomb phase shift and the

S-matrix element in the elastic scattering, respectively. The
traveling-wave function Q̃

(−)
L (Q̃(+)

L ) corresponds to the near-
side (farside) component, and it is defined in terms of the
Legendre functions [29]:

Q̃
(±)
L (cos θ ) = 1

2

[
PL(cos θ ) ∓ i

2

π
QL(cos θ )

]
. (6)

In the semiclassical limit, they can be associated with
trajectories that pass the near side and the far side of the
scattering center. Therefore, this decomposition gives a good
understanding of the behavior of the angular distribution
depending on the nuclear potential that has an attraction and/or
a repulsion with a strong absorption [29,30]. The angular
distributions for the nearside and farside contributions denote
σN(θ ) = |fN(θ )|2 and σF(θ ) = |fF(θ )|2, respectively. Because
the �-nucleus potential has a sizable absorption, the angular
distribution of �− hyperons from nuclei may behave similar
to that of light composite nuclei rather than that of protons.

IV. RESULTS AND DISCUSSION

Let us consider the elastic scattering of �− hyperons
from 28Si [9,31]. We calculate the angular distributions of the
differential cross section in this elastic scattering, using several
types of the �-nucleus potential (see Fig. 1). Here we assume
the �− incident energy of Elab = 50 MeV in the laboratory
frame.

In Fig. 3, we show the calculated angular distribution of
the cross section σel from 28Si, together with the nearside σN

and farside σF components. It is clearly seen that the angular
distributions for DD, RMF, and LDA-NF differ from those for
LDA-S3, WS-sh, and teffρ. This implies that the potentials of
the former are fully distinguishable from those of the latter,
and it supports our previous results on the analysis of the (π−,
K+) reaction [14,15].

In the angular distributions for DD, RMF, and LDA-NF, the
diffraction oscillations arise from the Fraunhofer interference
between the nearside fN and farside fF amplitudes, and reach
their maximum amplitude at θ � θ̄ , where the angle θ̄ for
σN(θ̄) = σF(θ̄) is called a “Fraunhofer crossover” and hence
θ̄ = 40◦−50◦ in the cases of these potentials. Forward of the
crossover, the farside is dominant, while for angles somewhat
larger than θ̄ , the nearside dominates. This oscillations is
damped with increasing θ because of the falloff of the farside
components σF. The dominance of σF at small angles is
caused by the Coulomb attraction for �− hyperons that have a
negative charge, and by the attraction pocket of the �-nucleus
potentials at the nuclear surface; the dominance of σN at
large angles is due to the strong repulsive components in the
potentials for DD, RMF, and LDA-NF. It is very interesting
because this situation is completely opposite to that of the
normal nucleus-nucleus scattering where σN dominates at
small angles owing to the Coulomb repulsion, and σF becomes
dominant with increasing θ owing to the strong attraction
in nucleus-nucleus potentials [29,30]. The behavior of the
angular distribution in the nucleus-nucleus elastic scattering
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FIG. 3. Calculated angular distributions for the 50-MeV elastic scattering of �− hyperons from 28Si. Curves draw the absolute values
obtained with the �-28Si potentials (a) for DD, RMF, and LDA-NF, and (b) for LDA-S3, WS-sh, and teffρ. Solid, dashed and dotted curves
denote the values for total, nearside and farside components in the cross sections, respectively.

has been studied in the case of the repulsive nucleus-nucleus
potential at high incident energies of E/A � 300 MeV [32].

In the cases of the potential for teffρ, WS-sh, and LDA-S3,
the slope and oscillation pattern of their angular distributions
differ appreciably. For teffρ, we find that σF is dominant over all
angles because the �-nucleus potential is attractive, in addition
to the Coulomb attraction. For LDA-S3, the oscillations are
clearly observed owing to the Fraunhofer crossover between σF

and σN at θ � 90◦ and the magnitude of σN is something large
at θ � 90◦ because the real part of the potential is repulsive
at r � 1.8−2.6 fm, as seen in Fig. 1. The situation for WS-sh
seems to be on the way from LDA-S3 to teffρ.

Therefore, we show that the angular distribution of the �−
elastic-scattering differential cross section from 28Si provides
a classification for properties of the �-nucleus potentials.

In Fig. 4, we compare the cross sections for DD, RMF,
and LDA-NF in order to evaluate the detailed discrimination
of properties of the potential inside the nucleus. We notice
that the magnitudes of their angular distributions (σel) differ
appreciably at angles θ � 60◦, where the magnitude and shape
of σel are affected by the radial distribution of the potential
inside the nuclear surface. Indeed, a notch test suggests that
the magnitude and shape of σel at angles θ � 90◦ are sensitive
to the radial distribution of the potential at r � 2.6 fm, which
corresponds to the region of the inner repulsion of the potential,
depending on the strength of the imaginary parts.

For DD, RMF, or LDA-NF, moreover, the attractive pocket
of the potential at the nuclear surface with the Coulomb
attraction plays an important role in making a diffraction
structure of the angular distribution, so that it leads the nearside
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FIG. 4. A comparison with the calculated angular distributions
for the 50-MeV �− hyperon elastic scattering from 28Si. Solid,
dashed, and dotted curves denote the values obtained with the poten-
tials for DD, RMF, and LDA-NF in �−-28Si systems, respectively.

component to be large, and causes a strong oscillation of the
angular distribution. To clarify this effect, we study behavior
of the angular distribution σel using the WS potential that has
only the repulsion in the real part and a sizable absorption
in the imaginary part, for example, WS30 defined as (V �

0 ,
W�

0 )=(+30 MeV, −40 MeV) in Eq. (1). In Fig. 5, we show the
calculated angular distribution for WS30, as compared with
that for RMF. We find that the magnitude of σF for WS30
falls off rapidly on its steep slope with increasing θ from the
forward angle. Thus this diffraction oscillations are shifted
toward the forward angle and their magnitude becomes small.
This is caused by the lack of the attraction at the nuclear surface
in the repulsive WS30 potential.

Consequently, it is shown that the angular distribution
for the elastic scattering of 50-MeV �− hyperons from
28Si gives additional information to discriminate among the
radial distributions of the potentials inside the nucleus, e.g.,
inner repulsion and attractive pocket, which were not able
to be identified by the analysis of the �− atomic x-ray and
(π−,K+) reaction. It implies that the elastic scattering of �−
hyperons from nuclei is a powerful tool for identifying the
radial distribution of the potential by the use of the diffraction
pattern influenced by the nuclear repulsion and the Coulomb
attraction, rather than �+ hyperons acting on the nuclear
repulsion with the Coulomb repulsion.

We consider the elastic scattering of �− hyperons from
208Pb, which has a large attraction of the Coulomb interaction.
We calculate the angular distributions of the differential cross
section (σel) at Elab = 50 MeV, using several types of the �-
nucleus potential (see Fig. 2). In Fig. 6, we show the calculated
angular distribution of σel, together with the nearside σN and
farside σF components, respectively.

In the cases of DD-A′, DD-OBE, and LDA-NF, we find
the similar behavior of their results in the angular distribution,

FIG. 5. Calculated angular distributions for the 50-MeV �−

hyperon elastic scattering from 28Si, in comparison between RMF and
WS30. Solid, dashed, and dotted curves denote the values for total,
nearside, and farside components in the cross sections, respectively.

where a difference between the �-nucleus potentials for 208Pb
is not so enhanced, in comparison with that for 28Si. This
recalls the fact that the effect on the �-nucleus potential
is rather masked by the strong Coulomb potential in 208Pb,
as discussed in Ref. [22]. However, we recognize that the
diffraction pattern in 208Pb differs from that in 28Si as follows:
As increasing θ the former σF falls off on a steep slope more
rapidly than the latter σF, and hence the former σN dominates
at θ � 30◦. Thus the Fraunhofer crossover is slightly shifted
toward the forward angle. Moreover, a lot of Fraunhofer
oscillations in 208Pb appear, which may correspond to the
grazing angular momentum Lg � 13 (Lg � 6 in 28Si) for
LDA-NF if Lg is defined as a value at the transmission
TL = 1/2 [30]. The oscillation spacing between maxima 
θ

is also reduced in 208Pb.
In the case of teffρ, we find that σF is dominant in all

angles and σN is negligible, so that the oscillations in σel

are indistinctive. This originates from the fact that both the
�-nucleus potential and the Coulomb potential are strongly
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FIG. 6. Calculated angular distributions for the 50-MeV elastic scattering of �− hyperons from 208Pb. Curves draw the absolute values
obtained with the �-208Pb potentials (a) for DD-A′, DD-OBE, and LDA-NF, and (b) for LDA-S3 and teffρ. See also the caption to Fig. 3.

attractive. For LDA-S3, we also find that σF is dominant as well
as that of teffρ, but σN is not negligible because the potential
for LDA-S3 has a weaker attraction than that for teffρ. The
oscillations in σel are clearly shown at angles θ > 120◦ by the
appearance of the crossover.

In Fig. 7, we show the angular distributions of the cross
sections for DD-A′, DD-OBE, and LDA-NF in order to
evaluate the repulsive components and radial distributions of
their potentials inside the nucleus. We compare the results
on DD-A′ with those on DD-OBE, because the former has
the inner repulsion of ∼80 MeV at the nuclear center and
the latter has that of ∼30 MeV in the similar potential form,
depending on the imaginary part of individual potentials. Thus
we realize that the magnitudes of their σel are sufficiently
discriminable at θ � 60◦. Moreover, let us compare the results
on LDA-NF with those on DD-OBE, because the radial

distributions of their potentials differ markedly whereas the
inner repulsions at the nuclear center are almost the same.
Thus we can see that the oscillation patterns of their σel

are slightly different. Consequently, we recognize that the
angular distribution of the �− elastic-scattering differential
cross section from 208Pb provides the ability to discriminate
among the radial distributions of the potentials inside the
nucleus.

As mentioned in Sec. III, the potentials of U� seem to
include the effects of the nuclear spin-orbit potential because
they can reproduce the data of the �− atomic (n�) states
and (π−, K+) reactions, though our calculations do not deal
with the spin-orbit term explicitly. However, it is one of
the important subjects to study the spin-orbit potential for
a � hyperon [16], whereas the experimental information is
extremely limited. According to several theoretical predictions
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FIG. 7. A comparison with the calculated angular distribu-
tions for the 50-MeV �− hyperon elastic scattering from 208Pb.
Solid, dashed, and dotted curves denote the values for the po-
tentials for DD-A′, LDA-NF, and DD-OBE in �−-208Pb systems,
respectively.

[33–36], here, we consider the spin-orbit potential for � with
the strength of V �

so � 1
2V N

so , where V N
so for a nucleon. When

we use the potential for RMF including artificially a spin-orbit
term of V �

so (1/r)[df (r)/dr]σ ·L which is often used, we show
that the calculated angular distributions are almost the same as
those for the original RMF in the elastic scattering of 50-MeV
�− hyperons from 28Si, e.g., σel(θ ) at the first maximum for
θ � 50◦ is increased by only about 6%. This small difference
originates from the fact that the �− elastic scattering at Elab =
50 MeV is regarded as a low-energy one, in comparison with
high-energy scatterings of Elab � 100−300 MeV, where the
spin-orbit effects could fairly act because the contribution of

large L’s to the differential cross section is important. For
208Pb the situation is the same as that for 28Si.

V. CONCLUSION

We have theoretically investigated the elastic scattering
of 50-MeV �− hyperons from 28Si and 208Pb in order to
clarify the radial distribution of the �-nucleus potentials.
The angular distributions of their differential cross sections
have been calculated using several potentials that can explain
the experimental data of the �− atomic x-ray and (π−, K+)
spectra simultaneously. We have discussed the behavior of the
magnitude and oscillation pattern in the angular distribution
by the use of the nearside/farside decomposition of the elastic
scattering amplitude, and we have examined a competition
between the attraction of the Coulomb interaction and the
repulsion/attraction in the �-nucleus potentials. As far as the
low-energy elastic scattering like Elab = 50 MeV is concerned,
the effects of the spin-orbit potential on the angular distribution
are very small.

In conclusion, the angular distribution of the differential
cross sections in the 50-MeV �− elastic scattering from 28Si
and 208Pb provides additional information to discriminate the
nature of the repulsion/attraction inside the nuclear surface in
the �-nucleus potentials where it was not uniquely determined
by the �− atomic x-ray data and the (π−, K+) and (K−, π+)
spectra. We expect that the elastic scattering experiments of
�− hyperons from nuclear targets are curried out at J-PARC
facilities in the future, in spite of some experimental difficul-
ties. More theoretical investigations of the �− scattering for
several incident energies and targets are required.
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