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Abstract

Large-scale structures typically observed at or above the logarithmic layer of fully

developed turbulent channel flows were numerically studied. The potential validity of

large eddy simulation (LES) to the large-scale analysis was focused on, and its

applicability was investigated for the first time by carrying out an intensive grid resolution

study to determine the minimum grid spacing necessary to properly capture such flows. It

was found that rather fine grid spacing sufficient to resolve the near-wall streaky motions

represented by λ�x �λ�z � 1000�100 is required to reproduce the typical spectral features

of large structures in the outer layer. Subsequently, the Reynolds-number scaling for such

structures and their interaction with buffer-layer turbulence were examined. It was

observed that the large structures in the outer layer remarkably appear only in the

streamwise velocity fluctuation, basically obeying the outer scaling, and their spanwise

size is approximately twice as large as the boundary-layer thickness, independent of the

Reynolds-number range tested here. It was also found that they penetrate deep into the
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buffer layer, where small streaky structures obey the inner scaling. These results clearly

demonstrate that mixed inner–outer scaling instead of simple inner scaling for the

streamwise velocity root mean square in the near-wall region is reasonable.

Key words: Wall turbulence, Large eddy simulation, Channel flow, Large-scale structure,

Organized structure

PACS:

1 Introduction

It has been widely acknowledged that in wall turbulence, large-scale structures of

a size at least comparable to the boundary layer thickness exist. In contrast to the

small-scale structures near the wall, less attention has been paid to the large

structures until recently. Del Álamo and Jiménez (2001) argued that one of the

reasons for this relative neglect originates from Townsend’s first prediction of the

large scales under the attached eddy hypothesis, in which he described them as

inactive, in the sense that they do not contain Reynolds stress. Later, however,

Jiménez (1998) showed from various existing experimental and numerical data

that they are rather active, containing substantial Reynolds stress as well as

turbulence energy, which has been verified by direct numerical simulation (DNS)

of plane channels (Del Álamo and Jiménez, 2001). In this context, interaction

between these large scales in the outer layer and the small scales near the wall

appears to be an important issue in understanding the Reynolds-number effect on

wall turbulence. In fact, the Reynolds-number dependence of streamwise velocity

fluctuations near the wall could be explained as a contribution of the outer motions

to the inner structures, and evidence of this idea has been shown, for example, by

de Graaff and Eaton (2000), who successfully demonstrated that the profile of the
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streamwise velocity root mean square (rms) collapses well in inner–outer mixed

scaling. Furthermore, Hunt and Morrison (2000) discussed the top-down

structures of wall turbulence, in which large-scale eddies in the middle layer

impinge at the wall, leading to the generation of small-scale turbulence and some

upscale transfer of energy at very high Reynolds numbers, such as those observed

in the atmospheric boundary layer.

The existence of large scales has been recognized in experimental results showing

an abnormal extent of temporal autocorrelation appearing only in the streamwise

velocity component, or of the low wavenumber peak of corresponding

premultiplied one-dimensional power spectra. In addition, Kim and Adrian (1999)

pointed out the presence of very large-scale motions, which are much larger than

those comparable to the boundary layer thickness, based on the power spectra of

the streamwise velocity measured in fully developed turbulent pipe flow. From

these experimental results, we can suppose that the large-scale structures are

streamwise-elongated anisotropic motions similar to the near-wall streaks, but of a

size comparable to or even much larger than the boundary layer thickness.

In spite of such importance and recent attention, only limited studies have so far

been carried out on large-scale structures. The practical difficulty lies in the fact

that a large experimental set-up or a computational domain at sufficiently high

Reynolds-number conditions is necessary to properly capture their entire motions.

This requirement has been the stumbling block to both experiments and DNS for

large-scale studies. Furthermore, the one-point measurements most frequently

used in experimental studies have fundamental difficulty in describing the spatial

characteristics of large-scale structures. The validity of a spectrum converted from

frequency to wavenumber using Taylor’s hypothesis for use in large-scale analysis

should also be carefully considered. Alternatively, large eddy simulation (LES)
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might be a promising method, in which large and coherent flow structures are

directly solved by three-dimensional time-marching numerical simulation, while

rather isotropic and universal eddies are only modeled.

The first objective of this study was to investigate the applicability of LES to the

study of such large-scale structures in wall turbulence. Section 2 provides the

details of our numerical methods, including analysis models, governing equations,

discretization, and turbulence modeling, which is validated in detail in Section 3,

in which grid resolution studies are performed to determine the minimum

resolution required for the reproduction of large scales in fully developed

incompressible turbulent plane channels. Section 3 mainly considers the numerical

issues, but also sheds light on the physical question as to whether or not the outer

large motions are independent of the organized small motions in the inner layer. In

fact, it is demonstrated in Section 3 that excessively fine grid resolution compared

with the spatial scales of the large structures is required. This result unexpectedly

reveals that the small scales near the wall play an important role in the process of

producing the large scales in the outer layer, at least within the moderate

Reynolds-number range tested here. Section 4 contributes to the second objective

of this study: to investigate the Reynolds-number similarity of the large scales,

which will be helpful in estimating the self-similarity of velocity fluctuations.

Finally, in Section 5 our results are summarized and some conclusions are drawn.
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2 Numerical methods

2.1 Analysis models

The analysis models adopted in the present work consist of simple flows between

two plane surfaces. An open channel flow between solid and free surfaces is

considered in Section 4, while a plane channel flow between two solid walls is

used in Section 3, where intensive numerical tests are conducted by comparing our

LES results with existing careful DNS data (Del Álamo and Jiménez, 2003). The

open channels are supposed to more accurately represent typical wall turbulence

than the solid plane channels, in the sense that the former avoids the possible

effect of the opposite solid wall on the outer motions. The effect becomes more

apparent at lower Reynolds numbers and may cause a particular feature appearing

only in limited low-Reynolds-number flows (Wei and Willmarth, 1989).

Hereafter, streamwise, normal-wall, and spanwise directions are given as x, y, and

z, respectively. The flow fields are periodic for the streamwise and spanwise

directions, and are driven by the uniform pressure gradient force acting in the

streamwise direction to obtain a fully developed turbulent state. The no-slip

velocity condition is imposed on the solid wall, in which all velocity components

are zero on the surface, while the free-slip condition is imposed on the free

surface, in which the velocity component normal to the boundary vanishes, along

with the zero normal derivative of the tangential velocity. Thus, the grid spacings

in the horizontal directions are uniform, while non-uniform grids with a

hyperbolic tangent-type stretching function are used in the normal-wall direction.

The important point to note regarding the normal-wall grid resolution is that at
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least five grid points are allocated through the viscous sublayer to capture the rapid

growth of the mean velocity in the vicinity of the wall. This means that no artificial

boundary conditions, such as those based on some physical scaling laws usually

used to save computer memory consumed for the near-wall grids, were adopted in

the present work and any asymptotic behavior of the reproduced organized eddies

(typically attached eddies) near the wall is supposed to be well captured.

Domain size and grid number are important parameters in the study of large

scales. Because we have adopted periodic conditions for both the streamwise and

spanwise directions, the largest scales captured by LES are restricted to half of the

domain size, which ideally should be greater than the large scales appearing in the

real wall turbulence. The domain sizes and grid numbers used in Section 4 are

shown in Table 1. It is noteworthy that unexpectedly fine grids of h�x � 30 and

h�z � 20 are adopted in the present work. The determination of the grid resolution

for the large scales is mentioned in Section 3.

2.2 Governing equations

The filtered continuity and momentum equations are given by:

∂ūi

∂xi
� 0� (1)

∂ūi

∂t
�

∂ūiū j

∂x j
��

∂p̄
∂xi

�
1

Reτ

∂2ūi

∂x j∂x j
�

∂
∂x j

τi j �δi1� (2)

where an overbar denotes the grid filtering operation, and indices i � 1�2� and 3

represent the directions for x�y� and z, respectively. Here, ūi is the grid-scale (GS)

velocity and p̄ is the GS pressure divided by constant density. The second equation

includes an important numerical parameter: The friction Reynolds number
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Reτ � uτδ�ν, in which uτ, ν, and δ are the friction velocity on the lower wall, the

kinetic viscosity, and channel height, respectively. These non-dimensional

equations were obtained by adopting the reference length δ, and velocity uτ, to

make the external force appearing in the last terms of Eq. (2) a unit value of 1.

Hereafter, values normalized by a velocity scale uτ and a length scale ν�uτ are

denoted by superscript +, which is called inner scaling.

The subgrid-scale (SGS) stress in Eq. (2) is expressed as:

τi j � uiu j� ūiū j� (3)

This term is unknown and must be modeled.

2.3 Discretization

Governing equations are discretized on the staggered grid system based on the

fully conservative finite difference (FD) scheme (Morinishi et al., 1998). The

accuracy is fourth order in space, except for the SGS terms, which is determined

by a compromise between higher-order requirements for SGS stress not dominated

by numerical errors and lower orders for the non-linear term not contaminated by

the aliasing error (e.g., Ghosal, 1996). The third-order Runge–Kutta method is

primarily adopted for the time marching, and only the second derivative for the

normal-wall direction included in the viscous term is treated semi-implicitly using

the Crank–Nicolson method for tolerance of the time increment in the numerical

simulation. The fractional step method (Dukowicz and Dvinsky, 1992) is used for

the velocity–pressure coupling, and the corresponding pressure Poisson equation

is solved by the discrete fast Fourier transform (FFT) method for the periodic

directions, while the septa-diagonal method is adopted for the normal-wall
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direction. For details of the discretization method, refer to Morinishi et al. (1998).

2.4 Subgrid-scale modeling

An isotropic eddy viscosity model developed previously (Tsubokura, 2001) for a

dynamic procedure (Germano et al., 1991) using the FD method is adopted in this

study, in which the SGS stress and the corresponding subtest-scale (STS) stress,

Ti j ��uiu j��ūi�ū j, are modeled as follows:

τi j�
1
3

δi jτkk ��2C
k

3�S̄�
S̄i j� (4)

Ti j�
1
3

δi jTkk ��2C
K

3� ˜̄S�
˜̄Si j� (5)

where Si j is the strain rate tensor, S is its magnitude given as S � �2Si jSi j�
1�2, and

an over-tilde denotes the test filtering operation. The k and K in Eqs. (4) and (5)

are the SGS and STS turbulence energy, and are modeled by a scale similarity

concept (Bardina et al., 1983) as:

k � ūkūk� ¯̄uk ¯̄uk� (6)

K ��ūkūk� ˜̄̄uk
˜̄̄uk� (7)

which have been obtained by considering the consistency of the numerical error in

a dynamic procedure. The model coefficient C in Eqs. (4) and (5) is identical and

is determined by the dynamic procedure with the least-square method (Lilly,

1992). To avoid any instability induced by possible negative eddy viscosity

through negative C, an averaging technique proposed in the original procedure is

adopted in the homogeneous directions.

A filtering operation such as grid and test filtering must be conducted explicitly to

obtain the SGS eddy viscosity. The one-dimensional grid filtering operation
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discretized by the second-order FD method is given as:

ū�XI� � u�XI��
∆̄2

24
u�XI�1��2u�XI��u�XI�1�

h2 � (8)

where XI indicates the location of the discretized velocity on the numerical grid

and I is its index, ∆̄ is the grid-filter width, and h is the grid width, given as

XI�XI�1. The discretized test filtering operation is obtained by replacing ∆̄ with

∆̃. In this study, this explicit spatial filtering is conducted only in the homogeneous

directions. Here, we should bear in mind that the ratio of the filter to the grid

width, given as ∆̄�h, is the parameter to be determined a priori. For the explicit

grid and test filtering operations, we have adopted �∆̄�h�2 � 4�3 and �∆̃�h�2 � 4,

except for the coarsest case of (I) in Table 2, in which a slightly smaller value of

�∆̄�h�2 � 1 is adopted. The grid filter parameter for each case is optimized so as to

agree closely with the DNS results or the empirical law at the logarithmic layer of

the mean velocity profile, as indicated in Figs. 1a and 4a. However, a previous

work (Tsubokura, 2001) showed that this optimization is not compulsory, and

fairly close agreement with the log-law can be achieved by using the value

�∆̄�h�2 � 1� 2. The most remarkable feature of the SGS model adopted here is its

insensitivity to the test filter parameter ∆̃�h. For details of the derivation of the

models and their excellent performance on wall turbulence, refer to Yoshizawa et

al. (1996), Tsubokura et al. (2001), and Tsubokura (2001).

3 Determination of grid resolution

In contrast to DNS, which requires resolution down to the Kolmogorov length

scale to capture the finest turbulence motion, in LES we can determine the

minimum scale of the directly resolved turbulence by choosing proper grid
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resolution. In other words, in LES we are required to confirm in detail as to

whether the numerical methods adopted properly resolve the target fluid motion.

Thus, grid resolution studies in LES are crucial for the numerical issue.

There is another significant reason for performing grid resolution tests in the

present work. Considering the fact that the size of the large scales in the outer

layer is at least comparable to the boundary layer thickness, and assuming that

their outer motions are detached from the wall and self-organized, it is expected

that relatively coarse grids will be sufficient to resolve their motions. On the other

hand, if they originate from the small organized structures in the vicinity of the

wall, such as proposed in the physical model of Adrian et al. (2000), the grids

required for large scales will be unexpectedly fine enough to reproduce the

near-wall dominant motions. Accordingly, in this section, we try to determine the

appropriate grid resolution for the large-scale structures in LES from both physical

and numerical points of view.

A moderate friction Reynolds number of 590 is adopted, at which reliable DNS

data are provided by Del Álamo and Jiménez (2003) (Reτ � 550). This DNS is

known as the first simulation using a domain size large enough to study the large

scales. It was acknowledged in their DNS that the large scales in the outer layer

are described as streamwise elongated anisotropic structures with substantial

energy only in the streamwise velocity component. In this respect, we focus on the

ability of LES with regard to how properly it can reproduce the premultiplied

power spectra of the streamwise velocity fluctuations at various grid resolutions,

indicated as (I)–(V) in Table 2. Special attention is paid to a low-wavenumber

feature of the spectra in the outer layer, where, remarkably, the large scales appear.

In all cases, the adopted domain size is the same as that of the DNS, and the only

difference between each LES is the grid resolution for the streamwise and
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spanwise directions. No-slip velocity condition is imposed on both walls, and δ

indicates the channel-half width in this section. It should be mentioned that the

wall-normal grid spacing of h�y � 1�6� 44�9, with a hyperbolic-tangent type

stretching function, is coarser than those used in DNS. We determined the

resolution so that the obtained mean velocity, turbulent intensity, and

one-dimensional spectra shown in Figs. 1 � 3 were relatively independent on that

at the specific horizontal grid resolution adopted. In other words, the finer

horizontal grid spacings than those shown in Table 2 may increase the wall-normal

resolution required.

Figure 1 shows the GS turbulence statistics obtained by LES, along with a

comparison with those of DNS. The mean velocity profiles show excellent

agreement with the results of DNS, even at the coarsest grid spacing of (I), while

GS turbulence intensity shows a slight dependence on grid resolution, especially

in the buffer layer (10 � y� � 20). Overestimation of the peak of the streamwise

rms worsens for the coarser grids, which contradicts the theoretical expectation

that the ratio of GS to total turbulence intensity decreases for coarser grids.

This rather poor estimation of LES using coarser grids is widely known as one of

the drawbacks of isotropic eddy viscosity models at coarser grid resolutions.

These results clearly suggest that the coarser grid of (I) only partly resolves the

near-wall dominant anisotropic motions, even if its estimation of mean velocity is

satisfactory. On the other hand, there is less dependence on grid resolution in the

outer layer (y� � 100) and good correlation with the DNS result can be observed.

However, this close agreement with DNS does not necessarily mean that the large

scales in the outer region are well reproduced, regardless of the grid resolutions

tested here.
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The one-dimensional premultiplied power spectra of the streamwise velocity

component are shown in Figs. 2 and 3. Before focusing on the outer-layer spectra,

where large scales are remarkably observed, let us first discuss the near-wall

spectra at y� � 15, where the well-known buffer-layer streaks appear and the

maximum rms of the streamwise velocity tends to be located. The premultiplied

spectra obtained by DNS peak at kxδ � 4�25 and kzδ � 27�5, as observed in Fig.

2a,b. These values are equivalent to λ�x � 810 and λ�z � 130 in the inner scaling,

which represents the streamwise and spanwise scales of the buffer-layer streaks,

respectively, (e.g., Kim et al., 1987). Unfortunately, the actual LES of coarser

grids such as (I) and (II) fails to reproduce the spectral feature of DNS in the

resolved range and cut-off SGS energy seems to pile up on the resolved scale. One

of the reasons for the appearance of such false spectra at coarse grid resolutions,

which are unexpected from an accurate estimation of mean velocity and

acceptable turbulence intensity, could be that they are a result of the relatively low

accuracy of the estimated SGS stress by the isotropic eddy viscosity, and fine grid

spacing sufficient to directly capture the near-wall small-scale motions [namely at

least ∆�x � 30 and ∆�z � 20 used in (V)] is necessary to reproduce the near-wall

spectral feature. Considering the characteristic scales of the near-wall structures

represented as a peak in the spectra, λ�x � 810 and λ�z � 130, the required grid

spacing is indeed reasonable.

We now look at the outer-layer spectra (y�δ� 0�5) relating to reproduction of the

large scales. As shown in Fig. 3, the DNS spectra peak at kxδ � 2�3 and

kzδ � 3�5�4�5, which amount to λx � 2�8δ and λz � 1�8δ�1�4δ in outer scaling.

These low-wavenumber energetic modes represent the characteristic sizes of the

large scales. Contrary to the optimistic expectation that rather coarser grids such

as (I) and (II), which failed to capture the small scales near the wall, might be
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sufficient to reproduce the large scales in this region, they again fail to reproduce

the GS spectra and overestimate the peak wavenumber. That is, (I) and (II)

underestimate the characteristic size of the large structures observed in DNS.

Reproduction of the steep peak in DNS data in the spanwise spectrum is also

unsatisfactory and only the moderate peak can be identified at wavenumbers

higher than the DNS value. As we see in the next section (see Figs. 11 and 12),

both the streamwise and spanwise scales represented by the peak of the

premultiplied spectra increase as we move away from the wall. Figs. 2a and 3a

show that coarse LES of (I) and (II) cannot even qualitatively estimate this trend,

and the spectral peak location at y� � 15 shifts to a higher wavenumber at

y�δ� 0�5. This poor performance of the coarse LES was improved by increasing

the grid resolution, and (IV) and (V) are both qualitatively and quantitatively

accurate enough to reproduce the DNS spectra.

According to the results in the context of reproduction of the peak spectra shown

above, we can say that at least grid resolution corresponding to (V) is necessary

for analysis of the large scales in LES. The requirement for surprisingly fine grid

resolution compared with the characteristic sizes of the large scales reflects the

fact that the large scales originate from the near-wall motions related to sublayer

streaks. Practically speaking, this grid resolution is relatively fine considering

engineering or geophysical applications of LES. However, the total grid number

for LES is still approximately one-fiftieth of that used in the referenced spectral

DNS, and the advantage of LES for studying the large scales is still maintained.

Finally we would like to note that the comparison between LES and DNS would

be more proper if DNS data were filtered onto the specific LES grids. However,

the shape of the low-pass filter function cannot be estimated theoretically, owing

to the contribution of numerical errors included in the finite difference scheme and
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the SGS model itself (Tsubokura, 2006). To avoid this ambiguity, we compared

LES results directly with those of DNS. This treatment does not affect the result

mentioned above, because the explicit low pass filtering does not change the

spectral peak wavenumber.

4 Reynolds-number effects

In accordance with the minimum grid resolution determined in Section 3, we

conducted open-channel LES at three Reynolds numbers ranging from low to

moderate cases to investigate the Reynolds-number scaling of the large-scale

motions. The friction Reynolds number Reτ as an input parameter and the

corresponding bulk Reynolds number ReC �UCδ�ν based on velocity on the slip

wall are summarized in Table 3.

4.1 Turbulence statistics

Before turning to a closer examination of the large scales and their corresponding

energy spectra, a few remarks should be made about basic turbulence statistics,

such as the mean velocity and the turbulent intensity, with focus on their Reynolds

number scaling. As the most notable feature of wall turbulence, there is general

agreement that the streamwise mean velocity shows a logarithmic profile around

the overlap region between the inner and outer layers, which collapse in inner

scaling. The streamwise mean velocity profiles at three different Reτ of 395, 590,

and 1180 obtained by our LES are illustrated in Fig. 4a. They all show logarithmic

profiles and agree very closely with the laws of the wall: U� � y� below y� � 5

and U� � 2�5lny��5�0 above y� � 40.
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Unfortunately, in contrast to the successful mean-velocity scaling, there is no

general agreement on the scaling of the turbulence intensity in the near-wall

region. This is particularly difficult in the streamwise velocity fluctuations, for

which it is widely accepted that the simple classical inner scaling is not effective.

A relatively successful scaling method was proposed by de Graaff and Eaton

(2000), with mixed scaling of the inner and outer layers, and the effect of the

inactive motion represented by the outer unit (uτ as a velocity scale and δ as a

length scale) on the inner-layer turbulence was considered.

Figure 4b shows the GS velocity rms of all three components obtained by LES.

For reference, experimental results at similar Reynolds number by Wei and

Willmarth (1989) (solid plane channels) and by de Graaff and Eaton (2000)

(flat-plate boundary layer) are presented by symbols. Fairly close agreement is

observed between LES at Reτ � 1180 and experimental data at Reτ � 993, which

indicates the validity of our LES.

4.2 Spectral properties of the velocity fluctuations

Figure 5 indicates the 1-D streamwise and spanwise premultiplied power spectra

of the streamwise velocity fluctuations (hereafter called ‘u-spectra’) near the wall

(y� � 20) against the normalized wavelength in inner scaling. It should be recalled

here that the power spectrum multiplied by the wave number kφuu in the

logarithmic plot indicates that the area under the profile is proportional to the

power or energy included in the corresponding wavenumber range, and thus the

total area over the entire wavenumber (or wavelength) is equivalent to the

turbulence energy of the corresponding velocity component. The peaks of the

streamwise and spanwise spectra are located at λ�x � 1200�1000�950 and
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λ�z � 120�130�120 at Reτ � 395�590�1180, respectively, which represent the

characteristic sizes of the low-speed streaks observed at this height. Roughly

speaking, their sizes at different Reynolds numbers are nearly constant in inner

scaling, even though the streamwise size is slightly large at Reτ � 395.

The main key to explain the near-wall Reynolds-number dependence of the

streamwise velocity fluctuations appears in the longer wavelength region of the

u-spectra, which is typically recognized in the spanwise spectra in Fig. 5b at λ�z

above 1000. We can observe that more energy piles up at higher Reynolds

numbers, and steep peaks appear at λ�z � 1000 and 2000 at Reτ � 590 and 1180,

respectively. It is obvious that these low-wavelength peaks comparable to the

channel height and their related energy rise increase the streamwise turbulent

intensity at higher Reynolds-number flow, and thus contribute to the

Reynolds-number dependence of the streamwise peak intensity. It is also

noteworthy that the spanwise peak wavelengths at y� � 20 are equivalent to

λz � 1�8δ in outer scaling, and we can observe an intense peak in the outer layer

(y�δ� 0�5) at the corresponding wavelength independent of the Reynolds number,

as shown in Fig. 6b. Considering the fact that this spanwise peak in the outer layer

represents the spanwise size of the large-scale structures existing there, we can

explain the peak wavelengths of λ�z � 1000 and 2000 in the near-wall region

(y� � 20) as the influence of the outer-layer structures on the inner-layer

turbulence. These results clearly suggest that adopting mixed scaling of the inner

and outer units for the streamwise turbulence intensity near the wall is reasonable.

Del Álamo and Jiménez (2003) recently investigated the premultiplied 2-D

spectral autocorrelation function of the streamwise velocity between y� � 15 and

y�δ � 0�5 from DNS data at Reτ � 180 and 550, and indicated that the outer-layer

structures can be decomposed into two types of modes, one of which is located
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around λx � 5δ and λz � 2δ, which penetrates deep into the buffer region. Our

results shown here support their suggestion, and we can state from Fig. 5b that at

the higher Reynolds number of 1180, the existence of large scales in the outer

layer and their penetration into the inner layer become more obvious and

enhanced, which appears as the remarkable energy rise at Reτ � 1180 in the

long-wavelength region.

It should be noted here that the normal-wall and spanwise velocity components do

not show such a large-scale sign in their premultiplied spectra near the wall (data

not shown), and in this context we can say that the large-scale effect of the outer

layer on the inner layer is a particular feature of the streamwise velocity, which

also confirms the experimental observation of the Reynolds-number dependence

of the peak of the turbulence intensity appearing particularly in the streamwise

velocity.

4.3 Visualization of the velocity field

To better understand the large-scale structures of wall turbulence found in the

u-spectra and suggesting deep motion in the normal-wall direction, instantaneous

velocity fields obtained by the LES were visualized. Figure 7 shows gray-scale

coded contours of instantaneous velocity fluctuations u��uτ�v��uτ�w��uτ ranging

from �6 to 6 on an x� z plane at y�δ � 0�5 at Reτ � 1180. The horizontal box in

the figure covers the whole numerical region, the streamwise span of which is

almost 40-fold (12πδ) as large as the channel height. We can observe in Fig. 7a

coherent streaky structures similar to the low-speed streaks in the near-wall

region. However, the spanwise spacing is equivalent in order to the channel height

and the streamwise structure spans almost half of the domain, while such large
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organized structures are not obviously evident in the other two velocity

components. It is interesting that their structures apparently resemble the

well-known large structures in the plane turbulent Couette flow, such as observed

by Komminaho et al. (1996).

Instantaneous streamwise velocity fields at two different cross-sections [y� z

plane, illustrated in Fig. 7a as �A� and �B�] are visualized in Fig. 8. The figure

shows that approximately three or four large lower-velocity zones align in the

spanwise direction. Compared with the low-speed streaks evident as very small

black dots in the vicinity of the wall, their sizes are remarkably large. It seems that

their spanwise interval is approximately twice the channel height, which is

identified as a peak in the 1-D premultiplied power spectra shown in Fig. 6b.

Another important feature is that the flow field is dominated by only the two

typical separate characteristics, the large-scale structures comparable to the

boundary-layer thickness and the small scales in the vicinity of the wall, while the

hierarchical structures between these two isolated scales are ambiguous. It is also

evident that the large scales in the outer layer penetrate deep into the near-wall

region, which probably affect the characteristics of the near-wall turbulence.

Similar large motions of uniform lower momentum have also been found by

Meinhart and Adrian (1995) in a zero-pressure-gradient turbulent boundary layer.

They stated that this was induced by packets of hairpin vortices aligning in the

streamwise direction (Adrian et al., 2000).

To study the effect of large scales on the buffer-layer structures and the

Reynolds-number dependence, the distribution of instantaneous streamwise

velocity fluctuations on the simultaneous horizontal plane at y� � 20 and

y�δ� 0�5 at three different Reynolds numbers is shown in Figs. 9 and 10,

respectively. Because both figures are illustrated for outer scaling, the streak
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structures indicated in Fig. 9 appear to be finer at higher Reynolds numbers. The

most interesting feature is the large darker spots (a typical example is indicated as

a dotted oval for reference in Fig. 9c), which are closely correlated with the

large-scale structures in the outer layer shown in Fig. 10c. As a result of the

distinct difference in scale between the small and large structures at higher

Reynolds numbers, this feature is most apparent in Fig. 9c, which also clearly

suggests that the large scales in the outer layer are one of the main reasons for the

dependence of the near-wall turbulence on the Reynolds number.

Contrary to the near-wall structures, the outer-layer structures generally do not

show a definite dependence on the Reynolds number, and we cannot identify a

notable difference in Fig. 10 among three different Reynolds numbers.

4.4 Reynolds-number scaling of the peak wavelength

The most energetic streamwise wavelengths at which the peak of the premultiplied

u-spectra are located are plotted in Fig. 11 against distance from the wall. Here we

do not count the mode at the longest and second-longest resolvable wavelengths,

such as shown in Fig. 6a, and only the first distinct maximum identified in the

shorter wavelengths is considered to be the peak of the premultiplied spectra.

These streamwise energetic peak wavelengths collapse relatively well by inner

scaling near the wall, as observed in Fig. 11a, decaying asymptotically to

λ�x � 1000. They are constant in the buffer layer, then increase rapidly from

y� � 100 to 200 until they reach λx of approximately 3�4δ, but their collapse in

the outer layer by outer units is only moderate, as indicated in Fig. 11b.

The spanwise peak wavelengths show better collapse in both inner and outer
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layers than the streamwise ones, as indicated in Fig. 12. In the near-wall region,

they decay asymptotically to λ�z � 100. It is acknowledged that this wavelength is

the space between each sublayer streak, suggesting that the characteristic scale of

streaks resulting from near-wall coherent eddy structures is a universal

phenomenon, even though the long-wavelength motions of the near-wall

structures are Reynolds-number-dependent, as observed in Fig. 5b. They grow in

the buffer layer, with good collapse in inner scaling, and reach constant values of

λz � 1�8δ around y� � 100, which then collapse very well in outer scaling.

5 Conclusion

We performed LES of turbulent channel flows using a large numerical box to

investigate large outer structures. An unexpectedly fine grid spacing of h�x � 30

and h�z � 20 in the streamwise and spanwise directions was required to properly

reproduce the 1-D premultiplied power spectra and their peak at the lower

wavenumber in the outer layer, where large scales remarkably appear. This result

suggests a strong relation between the near-wall small scales and the large scales

in the outer layer, and supports the physical models of Adrian et al. (2000), in

which large-scale motions are induced by subsequent motion down to the

near-wall turbulence. Del Álamo and Jiménez (2006) also mentioned the existence

of vortex clusters which links the small scales near the wall to the larger ones far

from it, using their DNS data of plane channels at the friction Reynolds number up

to 1900. The clusters are self-similar reaching from the logarithmic layer to the

near wall region as attached eddies with their length scale proportional to the wall

distance of their centers. The result also validates the strong inner-outer

interaction suggested in this study.
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The streamwise and spanwise peak wavelength of the premultiplied spectra

collapsed very well near the wall in inner scaling, while at or above the

logarithmic layer, their peak wavelengths reached maxima of λx � 3δ and λz � 2δ,

independent of the Reynolds numbers tested here.

The reasonable description of near-wall turbulence suggested by our results is that

near-wall turbulence consists of low-speed streaks characterized as

λ�x �λ�z � 1000�100, which is fundamentally independent of the Reynolds

number, but is perturbed by large outer-scale turbulence motions at higher

Reynolds numbers. These large outer-scale motions appear as large elongated

spots of lower momentum zones, which is one of the important features of

high-Reynolds-number wall turbulence.
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FIGURE CAPTIONS

Figure 1. Turbulence statistics at Reτ � 550 (DNS) and 590 (LES): symbol, DNS;

line, LES; (a) mean velocity; and (b) RMS of velocity fluctuations.

Figure 2. 1-D premultiplied power spectra of the streamwise velocity component at

y� � 15: (a) streamwise; and (b) spanwise.

Figure 3. 1-D premultiplied power spectra of the streamwise velocity component at

y�δ� 0�5: (a) streamwise; and (b) spanwise.

Figure 4. GS turbulence statistics of the open channel flows: (a) mean streamwise

velocity; and (b) RMS velocity profiles in the inner scaling.

Figure 5. 1-D premultiplied power spectra of the streamwise velocity of the open

channel flow at y� � 20 against (a) streamwise and (b) spanwise wavelengths in

the inner scaling.

Figure 6. 1-D premultiplied power spectra of the streamwise velocity of the open

channel flows at y�δ� 0�5 against (a) streamwise and (b) spanwise wavelengths in

the outer scaling.

Figure 7. Instantaneous velocity-fluctuation fields of (a) streamwise, (b) normal-

wall, and (c) spanwise components of the open channel flows on an x� z plane at

y�δ� 0�5 at Reτ � 1180.
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Figure 8. Instantaneous streamwise velocity fluctuations of the open channel flows

on a y� z plane at Reτ � 1180 (positions on an x� z plane are indicated in Fig. 7a).

Figure 9. Instantaneous streamwise velocity fluctuations of the open channel flows

on an x�z plane at y�� 20 at Reτ of (a) 395��b� 590, and (c) 1180. The dotted oval

in (c) indicates an example of the large darker spots that correlate closely with the

large-scale structures observed in the outer layer (see Fig. 10c for the corresponding

large scale).

Figure 10. Instantaneous streamwise velocity fluctuations of the open channel flows

on an x� z plane at y�δ � 0�5 at Reτ of (a) 395, (b) 590, and (c) 1180.

Figure 11. Streamwise peak wavelength of the 1-D premultiplied power spectra of

the open channel flows against distance from the wall: (a) inner scaling; and (b)

outer scaling.

Figure 12. Spanwise peak wavelength of the 1-D premultiplied power spectra of

the open channel flows against distance from the wall: (a) inner scaling; and (b)

outer scaling.
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Table 1

Numerical conditions for the open channels

Reτ Domain size Grid number Grid spacing

Lx�Ly�Lz Nx�Ny�Nz h�x h�y h�z

395 576�32�144 25.9 0.9� 29.6 19.4

590 12πδ�δ�2�25πδ 768�48�216 29.0 0.8 � 29.6 19.3

1180 1536�64�432 29.0 1.1� 46.2 19.3
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Table 2

Numerical conditions for the solid plane channels in the grid resolution test

Reτ Domain size Grid number Grid spacing

� uτδ�ν Lx�Ly�Lz Nx�Ny�Nz h�x h�y h�z

(I) 590 8πδ�2δ�4πδ 192�65�192 77�2 1�6� 44�9 38�6

(II) 590 8πδ�2δ�4πδ 256�65�256 57�9 1�6� 44�9 29�0

(III) 590 8πδ�2δ�4πδ 384�65�384 38�6 1�6� 44�9 19�3

(IV) 590 8πδ�2δ�4πδ 512�65�512 29�0 1�6� 44�9 14�5

(V) 590 8πδ�2δ�4πδ 512�65�384 29�0 1�6� 44�9 19�3

DNS 550 8πδ�2δ�4πδ 1536�257�1536 8�9 0�04� 6�7 4�5
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Table 3

Reynolds numbers for the open channel flows.

Reτ � uτδ�ν 395 590 1180

ReC �UCδ�ν 8�1�103 1�3�104 2�7�104
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Fig. 1 Tsubokura

Symbol:DNS
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Fig. 2 Tsubokura

Symbol:DNS
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Fig. 3 Tsubokura

Symbol:DNS
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Fig. 4 Tsubokura
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Fig. 5 Tsubokura
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Fig. 6 Tsubokura
35



Fig. 7 Tsubokura
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Fig. 8 Tsubokura
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Fig. 9 Tsubokura
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Fig. 10 Tsubokura
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Fig. 11 Tsubokura
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Fig. 12 Tsubokura
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