Cation–π-driven Fluorescence Signalling of Ammonium Cations by Naphthyl-substituted Zn_{10}S_{16} and Cd_{10}S_{16} Clusters

Konishi, Katsuaki; Hiratani, Takayuki

Chemistry Letters, 35(2): 184-185

2006-02-05

http://hdl.handle.net/2115/49893

article (author version)
Cation-π-driven Fluorescence Signalling of Ammonium Cations by Naphthyl-substituted $\text{Zn}_{10}\text{S}_{16}$ and $\text{Cd}_{10}\text{S}_{16}$ Clusters

Katsuaki Konishi and Takayuki Hiratani
Creative Research Initiative ‘Sosei’ (CRIS) and Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, North 21 West 10, Sapporo, 001-0021

(Received November 4, 2005; CL-051374; E-mail: konishi@ees.hokudai.ac.jp)

$\text{Zn}_{10}\text{S}_{16}$ and $\text{Cd}_{10}\text{S}_{16}$ clusters bearing twelve naphthalene units on the surface showed characteristic blue emission in response to the cation-π-mediated intercalative binding of quaternary ammonium cations that allows the formation of ground-state naphthalene aggregates.

Ensembles of several aromatic units arranged in a particular orientation have been of great interest because of the unique optical properties arising from the electronic interaction of the proximal π-chromophores. Molecular clusters of ZnS and CdS are attractive platforms for the construction of well-defined aromatic ensembles since they can accommodate multiple S-substituents on the surface. Herein we report that the naphthalene chromophores attached on $\text{M}_{10}\text{S}_{16}$ type anionic clusters ($\text{[Zn}_{10}\text{S}_{4}\text{(SNap)}_{2}\text{Br}_{4}]^{1-}$ (1), $\text{[CdS}_{6}\text{S}_{4}\text{(SNap)}_{2}\text{Br}_{4}]^{1-}$ (2)) form blue-emitting aggregates in response to the intercalative binding of unhindered quaternary ammonium cations.

Recently we have shown that cetyltrimethylammonium ion (CTA$^+$) interacts with the surface phenyl groups of $\text{[Cd}_{10}\text{S}_{4}\text{(SPh)}_{2}\text{Br}_{4}]^{1-}$ (3) via cation-π interaction to accumulate near the cluster core, while such interactive binding hardly occurred with sterically hindered tetraoctylammonium ion (TOA$^+$). A similar intercalative binding (Scheme 1) and preference for CTA$^+$ was observed in the case of naphthyl-substituted clusters (1, 2). For example, when the bromide salt of CTA$^+$ (CTAB) was added to 2(NO$_3$)$_4$ in CDCl$_3$, the 1H NMR spectrum exhibited notable upfield shifts of the CTA$^+$ signals, whereas the TOA$^+$ signals were observed at the nearly same positions as those of TOAB alone. However, with respect to the intercalation stoichiometry, 2 was evidently different from 3 for which the surface phenyl groups interact with cations in a 1:1 molar ratio. Job diagram for the complexation of 2(NO$_3$)$_4$ with CTAB, where the sum of [SNap]$_6$ ($=12 \times 2[2]_0$) and [CTAB]$_6$ was kept constant, gave a maximum at [SNap]$_6$ / ([SNap]$_6$ + [CTAB]$_6$) = 0.66, indicating the 2:1 interaction of the naphthalene units and CTA$^+$ cations. This stoichiometry indicates that the cation intercalation induces the formation of assemblies consisting of multiple, at least two, naphthalene units. The association constant, assuming that two naphthalene units provide a single binding site, was estimated to be 337 M$^{-1}$ from the titration data. The binding profile of the ZnS cluster (1) towards CTA$^+$ was virtually identical to that of 2.

Upon excitation at 340 nm in CHCl$_3$ at 25 °C under air, the non-intercalative form of the ZnS cluster [1(NO$_3$)$_4$]2 showed an emission band at 400 nm (Figure 1a). Since neither hexyl- nor phenyl-capped analogues of the ZnS cluster showed any photoluminescence, the Zn$_{10}$S$_{16}$ core itself is essentially non-luminescent so that the observed emission of 1(NO$_3$)$_4$ appears to be associated with the surface naphthalene chromophores. Actually, the excitation spectrum ($\lambda_{em} = 420$ nm) of 1(NO$_3$)$_4$ (d) was similar to that of 2-naphthalenethiol (I$^-$). On the other hand, such an emission was not observed for the CdS cluster 2(NO$_3$)$_4$, which however showed a broad band at ~600 nm assignable to the trap emission of the semiconductor CdS core (Figure 2a). The lack of the 400-nm emission in 2(NO$_3$)$_4$ suggests that the electron/energy transfer takes place from the excited states of the naphthalene chromophore to the CdS moiety.

The intercalative binding of CTA$^+$ caused notable changes of the fluorescence profiles of 1 and 2. For example, when 1(NO$_3$)$_4$ was mixed with CTAB, the 400-nm emission band was enhanced with a shift to 420 nm (Figure 1b). On the other hand, with 2(NO$_3$)$_4$, the cluster emission at 600 nm was quenched but a new band at 420 nm was emerged and developed as the progress of the intercalation (Figure 2b), where the final spectrum was similar to that observed for the ZnS cluster system (Figure 1b). Accordingly, the emission color changed from weak orange to blue. Titration

Scheme 1. Schematic illustration of the intercalative complexation of CTA$^+$ with 1 and 2.

![Scheme 1](image1.png)

Figure 1. Photoluminescence (right, $\lambda_{em} = 340$ nm) and excitation (left, $\lambda_{em} = 420$ nm) spectra of 1(NO$_3$)$_4$ (a, d) and 1(NO$_3$)$_4$ / CTAB (6.7 µM / 20 mM) (b, e), and 2-naphthalenethiol (80 µM) (c, f) in CHCl$_3$, at 25 °C under air.
the guest cation sizes. Actually, the emission intensities of responses towards ammonium cations are expected to reflect emission at 420 nm.

Adjacent naphthalene units (3b), thereby showing the dimer sandwich type, promotes electronic interactions between two facing aromatic systems of the possible candidates, but recent theoretical studies on Ph \footnote{11} formed at the ground state by the cation intercalation. As the emission is not due to the excimer from the excited excitation of the CdS moiety (Figure 2d) is different from that of the cluster and naphthalene chromophores are isolated from other with two bands at 300–400 nm, they showed similar profiles to each (Ref. 3). The growth of the 420-nm band showed an almost identical profile, while the cluster emission (600 nm) was contrary enhanced similarly to the phenyl-capped cluster 3 (Ref. 3).

The absorption spectral changes upon CTA\footnote{10}– intercalation were, though little, very similar to the excitation spectra.

As we have seen, the evolution of the 420-nm emission is firmly associated with the cation penetration into the sterically restricted aromatic concave. Therefore, the fluorescence responses towards ammonium cations are expected to reflect the guest cation sizes. Actually, the emission intensities of 2(TOA)\footnote{11}_2 (6.7 \mu M) in the presence of a given amount of CTAB, NEt$_4$Br, NBu$_4$Br and TOAB (6.7 mM) gave a clear correlation with the steric bulks of the cations, where the emission intensities relative to the 2/TOAB system were 5.7, 4.8, and 3.3 for the 2/CTAB, 2/NEt$_4$Br, and 2/NBu$_4$Br systems, respectively. The observed selectivity is only moderate, but may be enhanced by the elaborate design of the surface units. The cation-\pi interaction is a general and important non-bonding force,\footnote{10} but there have been limited examples of the utilization of cations as mediators for the construction of aromatic ensembles.\footnote{11} In the present paper, we have demonstrated fluorescence signalling of quaternary ammonium cations driven by cation-\pi interaction, where the guest cations promote the aggregation of the naphthalene chromophores on the cluster surface, allowing unique optical response. This work was partly supported by a Grant-in-Aid for basic research (B) from MEXT, JST PRESTO, and Nagase Science and Technology Foundation.

References and Notes

4. In contrast to 3, 1 and 2 showed some degree of intercalation activities towards TOA\footnote{10} in the absence of CTA\footnote{10} but its affinity was very low. At the low concentration used for the fluorescence study, the cations in the TOA salts should be located mostly outside the cluster periphery, and therefore they are regarded as ‘nonintercalative’ complexes.
5. Since the excitation of 1(TOA), with a higher-energy light resulted in a blue shift of the fluorescence (e.g., \lambda_{em} = 385 nm with \lambda_{ex} = 310 nm), the excitation spectrum (Figure 1d) appears to be binary consisting of naphthalene monomer and dimer components. Considering also the emission spectrum of 2-naphthalenethiol monomer (Figure 1c), the 400-nm band of Figure 1a is likely to be a mixture of monomer/excimer and dimer emissions. No such dependency on the excitation wavelength was observed after the cation intercalation.
6. Under anaerobic conditions (argon), the growth of the 420-nm band showed an almost identical profile, while the cluster emission (600 nm) was contrary enhanced similarly to the phenyl-capped cluster 3 (Ref. 3).
7. The absorption spectral changes upon CTA\footnote{10} intercalation were, though little, very similar to the excitation spectra.
NOTE: The diagram is acceptable in a colored form. Publication of the colored G.A. is free of charge.
For publication, electronic data of the colored G.A. should be submitted. Preferred data format is EPS, PS, CDX, PPT, and TIFF. If the data of your G.A. is "bit-mapped image" data (not "vector data"), note that its print-resolution should be 300 dpi.

<table>
<thead>
<tr>
<th>Graphical Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textual Information</td>
</tr>
<tr>
<td>Description (if any)</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Authors’ Names</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graphical Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><Please insert your Graphical Abstract></td>
</tr>
</tbody>
</table>