<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>ティアノバジウム吸収スチール粉末の調製方法についての研究</td>
</tr>
<tr>
<td>担当者</td>
<td>鈴木 宗佐男；松岡 洋利</td>
</tr>
<tr>
<td>引用</td>
<td>京都大学国際学術会議『持続可能なエネルギーと環境』Hua-Hin, Thailand, December 1-3, 2004: 167-170</td>
</tr>
<tr>
<td>発行年</td>
<td>2004</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>SEE2004_167-170.pdf</td>
</tr>
</tbody>
</table>

 Хохайдо университет
Abstract: A new method was developed to synthesize the hydrogen storage alloy powders directly from the oxide mixtures. Calcium co-reduction and the molten CaCl₂ was applied to reduce the oxides and to form the target alloy simultaneously. As the fundamental confirmation, the binary Ti-V solid solution and the intermetallic compound TiCr₂ were prepared. Their oxygen content was controlled below 0.5mass% and the compositional variation of metallic elements was within 5mol% from the desired compositions. These alloy powders could absorb hydrogen after the normal activation treatment.

Keywords: Hydrogen Storage, Material Synthesis, Molten Salt Chemistry, Reduction of Oxide, Intermetallic Compound.

1. INTRODUCTION

Metallic vanadium (V) is one of a few elements that can absorb hydrogen even at room temperature and near at an ambient pressure [1]. Many attempts focused on alloying in V in order to reduce the amount of precious V because of its poor abundance, to suppress the surface contamination and to enhance hydrogen absorption and evolution. Ti-V-Cr alloy is nominated at present as one of the interesting candidates [2-6].

One of the practical problems of V based alloys is its high cost. The cost reduction in preparation of the hydrogen storage alloys is one of key issues for practical application, because the conventional procedure needs many heat cycles from the raw materials, i.e., oxide ores, as shown in Fig. 1(a).

A new process is studied to synthesize the hydrogen storage alloy directly from its oxide mixture, as shown in Fig. 1(b). The binary alloy consisting of 30 mol%Ti-70 mol%V and the intermetallic compound of TiCr₂ were chosen as the examples, aiming at the ternary Ti-V-Cr alloy in future. The purpose of this work is to confirm the proposed process in the fundamental binary systems. These binary products are also known as hydrogen storage alloys [7-9].

2. PROPOSED METHOD

Here we propose a method using the co-reduction technique [10-16] that the oxide mixture is simultaneously reduced to the powder of a hydrogen storage alloy. Titanium oxide (TiO₂, 40 mass% oxygen) has the strongest affinity with oxygen among the related oxides. When calcium is applied as the reductant, even TiO₂ can be reduced in a single step to a metallic state. For example, the oxygen level in Ti is only 500 mass ppm oxygen when in equilibrium [17,18], and 2000 ppm experimentally [19,20]. The reaction temperature is enough low such as at 1073-1273 K. The co-reduction using calcium was reported as a successful method to synthesize Ti-Al [10-14] or intermetallic compounds such as SmCo₅ and Nb₃Sn [15,16].

However, the by-product CaO precipitates on the surface of the formed metallic powder and it disturbs the successive reduction, deoxidation and alloying, as shown in Fig. 2. The in situ elimination of CaO by dissolution into the molten CaCl₂ was successful in Ti powder formation from TiO₂ and Nb₂O₅ [21,22], and in deoxidation of Ti [18,23]. This is because about 20 mol%CaO can dissolve in the molten CaCl₂ [24-26]. A few mol%Ca can dissolve also in it [27-29] and react effectively with the oxides. CaCl₂ is thermodynamically stable in this strong reducing atmosphere, and the excess amounts of Ca and CaCl₂ after the reaction are easily soluble in water and environmentally friendly.

Based on these properties, Fig. 1(b) illustrates our proposal to synthesis the ternary alloy powder for hydrogen storage [30,31].

3. PREPARATION OF Ti-V BINARY ALLOY

3.1 Reduction using V₂O₅

The most stable oxide powder, V₂O₅ and TiO₂ (both <1μm in particle size) were mixed mechanically in the mortar, and reduced by liquid Ca in the sealed stainless vessel. When CaCl₂ was not used, a large amount of Ca was evaporated by a significant exothermic reaction, and a heterogeneous product was obtained in which CaTiO₃ and some complex oxides in the Ca-V-O ternary system were coexisted. When CaCl₂ was used, the co-reduction effectively progressed after the optimizations of the charging method, the molar fractions of Ca, CaCl₂ and oxide mixture, and the reaction conditions such as temperature and time. A large amount of metallic powder was successfully recovered by leaching.

The most stable oxide, V₂O₅, melts at 954 K [32]. Note that...
Ca reduction occurs effectively above melting point of Ca (1112 K [32]). Therefore, V2O5 is reduced from its liquid state (for example, at 1173 K). V2O5 is preferentially reduced to V metal prior to reduction of TiO2, because the oxygen potentials of vanadium oxides are thermodynamically higher than that of TiO2 [32,33]. The droplets of V sometimes covered spherically on the surface of TiO2 as shown in Fig. 3(a). CaTiO3 and Ti3O were detected by X-ray diffraction (XRD) with Ti-V BCC phase in a short reaction time, and these titanium oxides were reduced to α-Ti in a prolonged time. However, this Ti particles formed with delay did not combine completely with V, probably because of the morphology of V precipitation and of isolation by molten CaCl2.

The oxygen concentration in this powder was analyzed to be 1.18 mass%O, which was higher than the reported value (0.142 mass%O) in the Ti powder reduced from pure TiO2 in CaCl2 by Ca [21]. This high oxygen content reflects the facts that the V metal reduced preferentially covered the oxide mixture, especially TiO2, and that the deoxidation from the BCC solid solution was delayed. Fig. 4 illustrates the sequence of co-reduction starting from the oxide mixture of V2O5 and TiO2.

3.2 Reduction using V2O3

Instead of low melting V2O5, V2O3 with the same particle size was applied, because its melting point is 2340 K [32]. Note that V2O5 can be obtained by the weak reduction of V2O3, for example, in the hydrogen gas flow. The reduction of V2O3 by Ca is less exothermic than that of V2O5 [32].

When the oxide mixture of V2O3 and TiO2 was reduced by Ca in the molten CaCl2, a single phase of BCC structure was obtained as judged by XRD patterns, when the sample were reacted at 1173 K for 72 ks in the molten CaCl2. The oxygen concentration was as low as 0.5 mass%. The obtained powder looked like a coral and it has a wide surface area (See Fig.3(b)) that seems to be suitable for quick hydrogen absorption and evolution. Energy dispersive X-ray (EDX) analysis showed the homogeneous metallic concentration over all the particles. The metallic concentration profiles for many grains were analyzed as shown in Fig.5(b), where the target concentration was 30 mol%Ti. A slight coarsening of the reduced particles is needed to obtain the homogeneous metallic content. It is noteworthy that this homogeneity was better than that by the conventional arc melting, where the dendritic crystal growth occurs during cooling.

Fig. 5 Concentration distributions in the obtained Ti-V powders. (a) starting from V2O5 and TiO2, and (b) starting from V2O3 and TiO2.

3.3 Hydrogen storage capacity

The hydrogen storage curves were measured at 313 K for powders obtained from a mixture of V2O5 and TiO2, and from that of V2O3 and TiO2. The dissolution of the excessive Ca, CaO and CaCl2 in the aqueous solution was accompanied by an exothermic reaction, hydrogen gas evolution and increase at the pH of the solution. Although a small amount of hydrogen might be absorbed in this leaching process, the initial hydrogen in the powder was neglected in the analysis. Assuming that the powders consisted of the BCC single phase of 30mol%-70mol%V, the absorbed hydrogen (H/M) was evaluated as shown in Fig. 7.

When the powders were freshly exposed to the purified hydrogen gas atmosphere of 3.5 MPa at 313 K, the hydrogen absorption remains at a very low level. An activation treatment was needed prior to the measurements of the hydrogen storage curves, which was taken as a standard procedure for hydrogen absorption. It is because an oxide or
organic layer generally contaminates the sample surface. The surface of the powder might be contaminated during the handling. Therefore, the samples were activated by three cycles of evacuation at 723 K and hydridation at 313 K [7-9]. The rate of hydrogen absorption was slow at 313 K even after the activation. As shown in Fig. 7, the pressure increment at H/M=1.0 reflects the hydride formation. The total amount of the charged hydrogen was larger in the sample produced from V2O3 than in that produced from V2O5. Its larger hydrogen absorption capacity is due to the compositional homogeneity. Because some differences in the isotherm of these samples were observed compared to the arc-melted V-20mol%Ti alloy [2,3,7], we may need a more precise study, considering the optimized activation process and measuring conditions.

4. PREPARATION OF TiCr2

The V-Ti alloy shows the complete solubility, however, the solubility of the intermetallic compound TiCr2 is only 2mol% [33], and it was difficult to synthesis the homogeneous TiCr2 by conventional arc melting. The long heat treatments were needed for compositional homogenization. This study attempted to prepare TiCr2 by the proposed route in Fig. 1 from the mixture of TiO2 and Cr2O3. Note that Cr2O3 is only one stable oxide in the Cr-O binary system.

The in-situ dissolution of CaO in the molten CaCl2 was required to reduce the oxide mixture effectively, as found in Ti-V binary system. In all the other experiments, CaCl2 was charged to enhance the co-reduction and leaching.

The powder obtained at 1173 K was fine powder of α-TiCr2. The oxygen content decreased to a level of 0.3-0.6 mass%O in a short time as shown in Fig. 8, and the residual or intermitting oxides were not detected by XRD as shown in Fig. 9. According to the equilibrium phase diagram of Ti-Cr binary system [33], two phases of high temperature form α-TiCr2 and low temperature form β-TiCr2 coexists at our reaction temperatures, 1073 and 1173 K. β-TiCr2 in our samples could be transformed to α-TiCr2 during cooling. A faint amount of α-Ti and Cr remained even after the long reaction time or by a small adjustment of starting composition (Fig.9). This is because the stable concentration range of α-TiCr2 is very narrow [33]. Fig.10 shows the sequence of phase formation in the Ti-Cr binary system. It is important to mix the starting oxide powder more precisely in a microscopic level, however, the precipitation during cooling can not be avoided because of slow cooling in the solidified salt.

Fig. 7 Pressure-composition isotherms for the samples (a) from the oxide mixture of V2O5 and TiO2 and (b) from that of V2O3 and TiO2.

Fig. 8 Oxygen content in the obtained α-TiCr2 powder.

Fig. 9 XRD patterns for TiCr2 samples reduced at 1173 K.

Fig. 10 Illustration of homogeneous co-reduction mechanism when V2O3 is used as one of starting oxides.

Hydrogen absorption property of the reduced samples was measured after the normal activation treatment as shown in Fig.11. This PCT curve was similar with that of the α-TiCr2 sample that was arc melted and annealed for a long time below 1073 K [1,34]. The arc-melted sample without annealing contained β-TiCr2, and its hydrogen absorption property was affected by the coexistence of β-TiCr2. (Note that both α-TiCr2 and β-TiCr2 can absorb hydrogen.) The reduced samples did not show such behavior due to two phase-mixture. Although the reduced sample contained a small amount of Ti and Cr, its hydrogen absorption was operated only by α-TiCr2 phase.

4. CONCLUSIONS

We proposed a new method consisting of calcium co-reduction and in situ separation of CaO. The oxide mixture
is reduced by metallic Ca to form a Ti-V alloy or α-TiCr₂ powder directly. The by-product CaO is removed into the molten CaCl₂ simultaneously. The usage of CaCl₂ for synthesis was efficient for CaO elimination, and hindered the formation of intermediate phases such as CaTiO₃.

Because V₂O₅ melts at a lower temperature than the temperatures where the reaction occurs, and because V₂O₅ was reduced preferentially, metallic V covered the TiO₂ particles and the reduction became heterogeneous. The existence of V film hindered the successive reduction of TiO₂ and the formation of a homogeneous alloy. When the refractive V₂O₃ film hindered the successive reduction of TiO₂ and the formation of a homogeneous alloy. When the refractive V₂O₃ was mixed with TiO₂ as the starting mixture, a single BCC phase was successfully obtained when Ca and CaCl₂ were used. The deviation of the Ti concentration was within 5 mol%Ti, and the oxygen content decreased to 0.5 mass%. The activated powder showed capability of hydrogen absorption.

For synthesis of TiCr₂, this proposal was also effective when the reduction was conducted in the molten CaCl₂. A fine α-TiCr₂ powder was acceptably deoxidized to a level of 0.5%O, although a faint amount of Ti and Cr remained. This powder showed the similar hydrogen absorption capacity with that of the reported α-TiCr₂.

ACKNOWLEDGMENTS

The authors thank Mr. K. Tate moto and H. Kitagawa at Kyoto Univ., Dr. H. Takeshita at Kansai Univ. and Prof. Dr. J. Sestak at Czech Academy of Science for their useful suggestions. They thank Mr. Unesaki for his experimental assistance of SEM observation and EDX analysis. This work was financially supported in part by the Kyoto Univ. 21st Century Core of Excellence (21COE) Program and by the Grants-in-Aid for Scientific Research under Contract No. 14205109.

REFERENCES

