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We propose a generic scaling theory for critical phenomena that includes power-law and essential

singularities in finite and infinite dimensional systems. In addition, we clarify its validity by analyzing the

Potts model in a simple hierarchical network, where a saddle-node bifurcation of the renormalization-

group fixed point governs the essential singularity.
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The scaling theory for the power-law singularity (PLS)
of second-order transitions is among the most significant
achievements in theoretical physics [1], and provides a
comprehensive understanding of critical phenomena with
minimal assumptions. The key concept of this theory is an
invariance of the singular part of free energy, gd, which is

scaled by a factor b̂ as

gdðt; h; L�1Þ ¼ b̂�dgdðtb̂yt ; hb̂yh ; L�1b̂Þ: (1)

Here, d is the dimension of space, L is the linear dimension
of the system, and t and h are deviations of model parame-
ters from their critical values (such as reduced temperature
t ¼ T � Tc and magnetic field h ¼ H). For the character-
ization of the criticality, yt and yh are the most fundamental
quantities, which lead to critical exponents for the PLS of
physical quantities, e.g., � ¼ 1=yt and � ¼ ðd� yhÞ=yt,
corresponding to the correlation length as �̂ / t�� and the
order parameter as m / t�. The scaling theory is based on
the self-similarity owing to the divergence of the correla-
tion length.

There is a kind of continuous transition on which stan-
dard scaling theory does not work. The most famous
example is the Berezinskii-Kosterlitz-Thouless (BKT)
transition in the two-dimensional XY model [2–4], which
exhibits an essential singularity (ES) around the transition
point in the disordered phase, where the correlation length

diverges as �̂ / exp½ðt=t0Þ�1=2� instead of the power law.

Below the transition temperature, ~� remains divergent and
there appears quasi-long-range order with zero magnetiza-
tion as if the system stays in criticality. In this sense we
hereafter call this phase the critical phase.

A similar singularity has been recently found in infinite
dimensional systems. The ES for the infinite dimensional
system appears in the ordered phase; the order parameter

behaves as m / exp½�ðt=t0Þ�1=2� toward the transition

point, above which the critical phase emerges. This is in
contrast to the ordinary BKT transition, and is called the
inverted BKT singularity [5]. Here we use the words
‘‘infinite dimensional’’ for the property that the typical
path length L increases with system volume N as L /
logN instead of N1=d. This property is realized in trees,
random graphs [6], hierarchical lattices [5], hyperbolic
lattices [7], and small-world networks [8] among others.
Such systems have been extensively studied in the context
of complex networks; the heterogeneous and hierarchical
structure has unexpectedly revealed important concepts in
physics [9] other than the mean-field behaviors for simpler
infinite dimensional systems such as the complete graph. In
particular, the ES is found rather often in various models on
various infinite dimensional graphs [5,10–17]. Therefore,
the ES is considered to be a basic concept of the dynamics
in infinite dimensional systems rather than an exotic topic
as the BKT transition in finite dimensions. Since inverted
BKT singularity is observed in percolation [10–16] and
Ising models [5,17], we do not expect its mechanism to be
common to that of the ordinary BKT transition, such as
vortex-pair condensation [2,3]. Universal understanding of
the ES in infinite dimensional systems is still missing.
In this Letter, we propose a generic scaling theory for

critical phenomena with ES in infinite dimensional graphs.
We also perform renormalization group (RG) analysis of
the Potts model in a simple hierarchical network, which
confirms the validity of the scaling law.
Now, we consider a scaling formula for infinite dimen-

sional graphs as

gð�ðtÞ�1; h; N�1Þ ¼ bgð�ðtÞ�1b; hbyh ; N�1bÞ: (2)

Here, b is a scaling factor for the total volume (mass) N
and the correlation volume � of the system. The length-
based expression is obtained by replacing N ! Ld,
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b ! b̂d, and �ðtÞ ! �̂ðtÞd. The volume-based expression
can be used for the system where distance is not well
defined, which is usual in infinite dimensional systems.
Equation (2) can be applied to various singularities by
choosing a proper function form of �ðtÞ. A similar idea is
seen in the finite size scaling method proposed by Kim

[18,19] [it uses correlation length �̂ðtÞ directly observed in

advance]. If we assume � is a power function as t�1=yt ,
Eq. (2) leads to

gðt; h; N�1Þ ¼ bgðtbyt ; hbyh ; N�1bÞ; (3)

which is essentially the same as Eq. (1). On the other hand,
by assuming an exponential function as �ðtÞ ¼
exp½ðt=t0Þ�xt�, we obtain

gðt; h; N�1Þ ¼ b�1ĝðe�ðt=t0Þ�xt
b; hbyh ; N�1bÞ: (4)

Note that the present formula is applicable to normal
phases, i.e., ordered or disordered phases, but not to critical
phases where the correlation volume diverges.

We can calculate various physical quantities by differ-
entiating the above free energy. Hereafter, we focus on the
case of Eq. (4) for the ES in the ordered phase. The order
parameter is given by

mðt; h; N�1Þ ¼ ghðt; h; N�1Þ � @gðt; h; N�1Þ=@h
¼ b�ð1�yhÞĝhðe�ðt=t0Þ�xt

b; hbyh ; N�1bÞ: (5)

First, we consider the thermodynamic limit, N ¼ 1. By

setting b ¼ eðt=t0Þ�xt
, we have

m ¼ e�ð1�yhÞðt=t0Þ�xt
ĝhð1; heyhðt=t0Þ�xt

; 0Þ: (6)

Sincem is independent of h for h ! 0 and independent of t
for t ! 0, the scaling function ghð1; x; 0Þ should have
asymptotic forms as

ĝhð1; x; 0Þ ¼
�
const for x � 1

xy
�1
h

�1 for x � 1
; (7)

to reproduce

m /
(
e�ð1�yhÞðt=t0Þ�xt

for heyhðt=t0Þ�xt � 1

hy
�1
h

�1 for heyhðt=t0Þ�xt � 1
: (8)

At t ¼ 0, it reads as m / h1=� with 1=� ¼ y�1
h � 1.

Second, we consider the case of h ¼ 0 with N finite,
where

m ¼ e�ð1�yhÞðt=t0Þ�xt
ĝhð1; 0; N�1eðt=t0Þ�xt Þ: (9)

The scaling function should be

ĝhð1; 0; xÞ ¼
�
const for x � 1

x1�yh for x � 1
; (10)

in a similar manner as Eq. (7) to reproduce

m /
(
e�ð1�yhÞðt=t0Þ�xt

for N�1eðt=t0Þ�xt � 1

N�ð1�yhÞ for N�1eðt=t0Þ�xt � 1
: (11)

Similarly, susceptibility behaves as

� /
(
eð2yh�1Þðt=t0Þ�xt

for N�1eðt=t0Þ�xt � 1

N2yh�1 for N�1eðt=t0Þ�xt � 1
: (12)

The m-th derivative of the free energy with h, which is

proportional to �ðtÞðmyh�1Þ, diverges at t ¼ 0 for m> y�1
h .

On the other hand, the derivative with t, such as specific
heat, never diverges. Free energy for h ¼ 0 and N ¼ 1 is
proportional to �ðtÞ�1, and the dominant term of its m-th

derivative, t�mðxtþ1Þ�ðtÞ�1, goes to zero for t ! 0.
Finally, we consider the case of t ¼ 0. By setting b ¼ N

in Eq. (5), we have

m ¼ N�ð1�yhÞĝhð0; hNyh ; 1Þ: (13)

The scaling function should be

ĝhð0; x; 1Þ ¼
�
x for x � 1

xy
�1
h

�1 for x � 1
; (14)

to reproduce

m /
(
hN2yh�1 for hNyh � 1

hy
�1
h

�1 for hNyh � 1
; (15)

where we assumed linear susceptibility for a finite size
system. This form is the same as that of the conventional
PLS.
Next, we examine the validity of the present scaling

ansatz by considering a hierarchical small-world network
that is constructed in a recursive manner as shown in Fig. 1.
The graph with n generations has N ¼ 2n�1 nodes and
3� 2n�1 � 2 edges. The degree distribution function is

exponentially decaying as Pk / 2�k=2. We note the edges
represented by the vertical lines in Fig. 1 as backbone
edges (BBEs) and arcs as shortcut edges (SCEs).
The energy function of the q-state Potts model on the

network under magnetic field H is

FIG. 1. Recursive construction of a shortcut network. The
number of generation, n, equals 1, 2, 3, and 4 from left to right.
The vertical lines and solid arcs indicate backbone edges and
shortcut edges, respectively. A periodic boundary condition is
imposed in the vertical direction. The graph with n ¼ 1 is a
single node with a self-connecting edge.
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�E=kBT ¼ X
hi;ji2BBE

½K þD��i0���i�j
þ X

hi;ji2SCE

J��i�j

þX
i

H��i0; (16)

where �ab is the Kronecker delta and�i is a spin variable at
i-th site taking one of the values, 0; 1; � � � ; q� 1. The first
summation is over BBEs and the second one is over SCEs.
We consider only the case D ¼ 0, but D becomes finite in
the real space RG performed below. In the following, we
consider the case with q � 3 [20].

We can calculate the partition function of this system in
a stepwise manner, decimating the spins in the youngest
generation, which is the inverse procedure to grow the
graph. The partial sum of the partition function preserves
the function form by replacing the parameters of the energy
function as

Cnþ1e
ðKnþ1þDnþ1��i0

Þ��i�j
þðHnþ1=2Þð��i0

þ��j0
Þ

¼ C2
ne

ðHn=2Þð��i0
þ��j0

Þ

� Xq
�k¼1

e
ðKnþDn��k0

þJÞð��k�i
þ��k�j

ÞþHn��k0 ; (17)

where �i and �j are nearest spins that are older than �k

by one generation. This gives us the following recursion
relations:

gnþ1 ¼ gn þ Að4Þ
n =2nþ1; (18)

Knþ1 ¼ Að2Þ
n � Að4Þ

n ; (19)

Hnþ1 ¼ Hn þ 2ðAð3Þ
n � Að4Þ

n Þ; (20)

Dnþ1 ¼ Að1Þ
n � Að2Þ

n � 2ðAð3Þ
n � Að4Þ

n Þ; (21)

with g0 ¼ 0, K0 ¼ K, H0 ¼ H, and D0 ¼ 0. Here

eA
ð1Þ
n � e2ðKnþDnþJÞþHn þ q1; (22)

eA
ð2Þ
n � e2ðKnþJÞ þ eHn þ q2; (23)

eA
ð3Þ
n � eKnþDnþHnþJ þ eKnþJ þ q2; (24)

eA
ð4Þ
n � 2eKnþJ þ eHn þ q3; (25)

and qm ¼ q�m. The quantity gn � 2�n lnCn is regarded
as the free energy per spin of the system with n genera-
tions. Note that J does not change in this procedure.

In the case of no magnetic field,H ¼ 0, bothHn andDn

remain zero and Eq. (19) is rewritten as

knþ1 ¼ jknðq2jkn þ 2Þ
q1j

2k2n þ 1
; (26)

where we put kn � e�Kn and j � e�J. The fixed point (FP)
is obtained from knþ1 ¼ kn ¼ k	 as

k	 � 0;
q2
2q1

�
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q1

q22

2j� 1

j2

s �
: (27)

Figure 2 shows the RG fixed point and the phase boundary
in k vs j space for q ¼ 8. This system exhibits a phase
transition from the ferromagnetic phase corresponding to
the FPs with K ¼ 1 to the phase corresponding to the FPs
with finite K by increasing j at fixed k. We call the latter
‘‘critical phase’’ in the sense that the RG flow goes to
neither K ¼ 0 nor K ¼ 1 but to nontrivial fixed points.
The FP exhibits a saddle-node bifurcation (SNB) located

at ðjsn; ksnÞ � ð4q1
q2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

2

4q1

r
; q2
2q1

Þ. For k < ksn, the phase

boundary is given by a line consisting of the unstable
FPs, each of which leads to a PLS. On the other hand, a
transition with ES occurs at j ¼ jsn for k � ksn and its
singularity is governed by the SNB point. In the following,
we consider the phase transition for k ¼ ksn in increasing j
(decreasing J).
First, we perform linear instability analysis around the

SNB point. Equations (19)–(21) are approximated as

Knþ1

Dnþ1

Hnþ1

0
BB@

1
CCA ¼ M

Kn

Dn

Hn

0
BB@

1
CCA; (28)

M �
1 0 yðP1y� P2Þ
0 2ðP1 � P2Þ ð1� yÞ½P1ð1þ yÞ � 2P2�
0 2P2 2P2ð1� yÞ þ 1

0
BB@

1
CCA;
(29)

with P3 � P1 � P2y� 1=2. The largest eigenvalue is �þ,
and thus Hn grows as enyh with yh ¼ ln�þ.
ForH ¼ 0, only � ¼ 1 is the relevant eigenvalue, which

means that the instability is marginal as expected at the
SNB point. Equation (26) is rewritten as

FIG. 2 (color online). Phase diagram for q ¼ 8. The shaded
region indicates the critical phase. The (blue) solid line and the
(red) dashed line denote the stable and unstable fixed lines,
respectively. The circle symbol denotes the SNB point, ðjsn; ksnÞ.
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snþ1 � sn ¼ Aðs2n þ BtÞ (30)

in the lowest order of sn and t, where sn ¼ ksn � kn, t ¼
jsn � j, A � q1j

2
snksn

q1j
2
snk

2
snþ1

, and B ¼ 2ð1�jsnÞ
q1j

3
sn

.

Equation (30) can be approximated to the so-called
Kosterlitz equation [4], ds=dn ¼ A½s2 þ Bt�, which is

solved with snðtÞ ¼
ffiffiffiffiffi
Bt

p
tan½An ffiffiffiffiffi

Bt
p � for the initial condi-

tion s0 ¼ 0. In this expression [valid until sn becomes
Oð1Þ], sn divergently grows as

snðtÞ ¼ 1=Aðn0ðtÞ � nÞ with n0ðtÞ � �=2A
ffiffiffiffiffi
Bt

p
: (31)

Now let us consider the scaling behavior of the present
model. From the aforementioned analysis, the free energy
behaves as

gðs ¼ 0; t; H;N�1Þ ¼ 2�ngðn0ðtÞ � n; t; Heyhn; N�12nÞ:

When we assume that the second argument t does not yield
any singularity, we obtain Eq. (4) by considering that

b ¼ 2n; yh ¼ ln�þ;

xt ¼ 1

2
and t0 ¼ 1

B

�
� ln2

2A

�
2
;

where we use 2n0ðtÞ�n ¼ �ðtÞb�1. The value xt ¼ 1=2must
have certain universality, because it is directly derived
from the simplest nonlinear RG equation, ds=dn / s2 þ
Bt. This equation is a consequence of the SNB at the edge
of the stable fixed line. We consider that this structure of
the RG flow is the essence of the ES. In fact, it has been
found in some systems [5,15–17].
Finally we confirm the scaling ansatz by calculating the

order parameter, mn ¼ ð ~mn � q�1Þ=ð1� q�1Þ, where

~mn ¼ @½gn�1 þ Zn�1�=@H and Zn ¼ e2ðKnþJþDnþHnÞ þ
q1½e2ðKnþJÞ þ 2eHn þ q2�. For this aim, we additionally
calculate the derivatives of gn,Kn,Dn, andHn with respect
to H, whose recursion equations for these quantities are
obtained by differentiating Eqs. (18)–(21).
Similarly, we calculate the susceptibility by using the

second derivatives.
Figure 3(a) shows the scaling plot at N ! 1 corre-

sponding to Eqs. (7) and (8). Although we found a little
correction to scaling that tends to disappear for H ! 0, a
good collapse of data is obtained without any fitting pa-
rameter. In Fig. 3(b), we can see excellent scaling behavior
for t ¼ j� jsn ¼ 0 corresponding to Eqs. (14) and (15). In
both cases, the asymptotic form agrees with the prediction.
In conclusion, we have proposed a new scaling theory

for the ES in infinite dimensional systems, and clarified its
validity by analyzing a simple model. We believe that the
present scaling formulas can be applied to various other
models, and will clarify the existence of the universal
mechanism for them. We have already confirmed that the
scaling law holds in the bond percolation model on the
decorated (2,2)-flower [15,16] (not shown here) and ran-
dom growing network [22]. The finite size scaling formula
included in the present theory will be useful in analyzing
real-world data or numerical simulations, in which we can
treat only small generations, n� logN.
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