Attenuated total reflection Fourier transform infrared spectroscopy study of the adsorption of organic contaminants on a hydrogen-terminated Si(111) surface in air
Shen Ye, Taro Ichihara, and Kohei Uosaki

Citation: Appl. Phys. Lett. 75, 1562 (1999); doi: 10.1063/1.124755
View online: http://dx.doi.org/10.1063/1.124755
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v75/i11
Published by the American Institute of Physics.

Related Articles
The sticking probability of D2O-water on ice: Isotope effects and the influence of vibrational excitation
Directional motion of evaporating droplets on gradient surfaces
Scaling analysis: Equivalence of convective and radiative heating of levitated droplet
Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: Renormalized local functional theory
Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Attenuated total reflection Fourier transform infrared spectroscopy study of the adsorption of organic contaminants on a hydrogen-terminated Si(111) surface in air

Shen Ye, Taro Ichihara, and Kohei Uosaki

Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060, Japan

(Received 13 May 1999; accepted for publication 14 July 1999)

The adsorption of organic contaminants on a hydrogen-terminated Si(111) surface was investigated using attenuated total reflection Fourier transform infrared spectroscopy. When the hydrogen-terminated Si(111) surface was exposed to dry air, the sharp Si–H monohydride peak became weaker and a broad component became visible in the lower wave-number region. Furthermore, a number of bands within the C–H stretching region were observed. The intensity of the sharp Si–H band was recovered to a certain extent and those of the broad component and the C–H bands decreased after the sample was rinsed in hexane. These results suggest that the contamination by organic adsorbates is not accompanied by a chemical bond formation. © 1999 American Institute of Physics. [S0003-6951(99)01337-6]

Contamination of Si surfaces by organic species significantly deteriorates the reliability of semiconductor device performance in ultra-large-scale integrated circuits (ULSIs). It has been reported that a trace amount of organic contaminants still exists on the Si surface even after Si wafers were cleaned using the RCA cleaning procedure. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy has been widely applied to investigate the vibration state of organic adsorbates on Si surfaces, especially on the Si(100) surface. Although the study of the structure of adsorbates on Si(100) is important in view of practical application, quantitative investigation on this surface is difficult since there is no established technique to prepare an atomically flat Si(100) surface. Recently, the preparation of a well-defined Si(111)-(1×1) surface terminated by a monohydride was realized by etching in a concentrated NH₄F solution. This ideal H–Si(111)-(1×1) surface provides an excellent model to study the chemical reaction process on a well-defined Si surface. Furthermore, although it is known that hydrogen termination (Si–H) protects the Si surface from contamination and oxidation, no quantitative study has yet been carried out to clarify its role.

In the present study, ATR-FTIR spectroscopy was employed to monitor the surface contamination process by organic contaminants on a well-defined H–Si(111) surface during exposure to a dry air environment in real time. The nature of the adsorption state of the airborne organic contaminants was discussed based on the intensity and band shape of the bands of the Si–H and C–H stretching vibrations.

Parallelogram ATR prisms (26×20×0.38 mm, 45° bevel angle) were prepared from floating-zone-grown Si(111) wafers (Shin-Etsu Semiconductor, n-type, 50–500 Ω cm, both sides polished) by polishing the side portions of the wafers with alumina powder (final size, 0.3 µm). The internal reflection number within the Si prism was ~70.

A Si(111) ATR prism was cleaned in a sonication bath of acetone and then with Milli-Q water (resistivity > 18 M Ω cm), oxidized in a boiling solution of concentrated HCl:H₂O₂:H₂O (1:1:4) for 20 min, etched in 40% NH₄F solution (Morita Chemical Industries, EL grade) for 5 min, sonicated in Milli-Q water for 5 s, and finally, dried in flowing purified nitrogen gas. The sample was mounted on an ATR accessory (Pike Technology) immediately after the preparation process.

ATR-FTIR measurements were performed using a Bio-RAD FTS-30 spectrometer equipped with a HgCdTe (MCT) detector cooled with liquid nitrogen. The dry air was continuously provided to the FTIR chamber by a BioRAD air dryer (type II, dew-point-50 °C) in which a heatless drier (HD-0.5, CKD) containing a molecular sieve 13× and an oil-free compressor (Hitachi 0.4-OP-7S, 45 l/min) were used. The ATR-FTIR spectra were recorded in p-polarization with respect to a spectrum of an oxidized Si(111) surface as a function of the time exposed in a dry air environment. All spectra were obtained by integrating 128 interferograms with a resolution of 0.5 cm⁻¹. Deconvolution of the band was carried out using WIN-IR software (version 4.14, Galactic Industries Corporation) with a Lorentz function.

Figure 1(a) shows the ATR-FTIR spectra of a Si(111) surface in the regions of 2300–2000 and 3000–2800 cm⁻¹ after etching in 40% NH₄F solution. A very sharp peak was observed at 2084 cm⁻¹ [full width at half maximum (FWHM) ~1 cm⁻¹]. This peak is attributed to the stretching vibration of the monohydride on the Si(111)-(1×1) surface, whereas no bands related to the dihydride or trihydride were observed. This result is in good agreement with that reported by Higashi et al., demonstrating that an atomically flat Si(111) surface terminated by an extremely homogeneous monolayer of hydrogen was obtained. No band was found in the region of 3000–2800 cm⁻¹.

Figures 1(b)–1(e) show the ATR-FTIR spectra obtained after various exposure times. As the exposure time increased,
the peak height of the sharp Si–H band became smaller and
and a broad component became visible at the bottom of the Si–H
peak. At the same time, a number of bands grew in the C–H
stretching region of 3000–2800 cm$^{-1}$. Three pronounced
peaks at 2852, 2923, and 2960 cm$^{-1}$ and a small shoulder at
2931 cm$^{-1}$ were observed in this region. These peaks can be
assigned to the symmetric (2852 cm$^{-1}$) and asymmetric
(2923 cm$^{-1}$) stretching of methylene group and asymmetric
stretching (2960 cm$^{-1}$) and Fermi resonance (2931 cm$^{-1}$)
of the methyl group of hydrocarbon species adsorbed on the
Si surface. The appearance of these bands shows the ad-
sorption of organic contaminants. Similar bands were previ-
ously reported and were attributed to organic contami-
nants introduced during the wafer cleaning process. In the
present case, however, since no bands were observed in the
C–H region immediately after etching, no peak was observed around 2250
$\tilde{\nu}$ after etching the Si111 surface. The authors concluded that the bands observed in this region were not related to the introduction of organic contaminants.

The more likely reason is the adsorption of organic con-
taminants because there is a good correlation between the
intensities of deconvoluted sharp, broad, and total Si–H bands, respectively. The black square shows the intensity of the band due to the C–H asymmetric stretch of the methylene group at 2923 cm$^{-1}$.

The total intensity of these bands also decreased with
time. It is clear that the increase in the C–H band is
strongly correlated with the decrease and increase in the
sharp and broad Si–H bands, respectively.

The intensities of these bands after the sonication in hex-
ane are also presented in Fig. 2. The recovery of the sharp
Si–H band after the sonication seems to be correlated with the
decrease in the C–H and broad Si–H bands.

Two possibilities can be considered for the intensity
change of the Si–H bands. One is the oxidation of the Si111 surface during the exposure to air. Niwano et al. actually reported the observation of a new band around 2250
$\tilde{\nu}$, which was attributed to the formation of SiH$_2$O$_3$ as a result of air exposure. This band was not observed in the present study, however, no peak was observed around 2250
$\tilde{\nu}$ even after a 5 day exposure, showing that SiH$_2$O$_3$ was not formed on the surface.

An x-ray photoelectron spectroscopy measurement also confirmed the absence
of silicon oxide after the same exposure time. Thus, the
decrease in the Si–H band should not be due to the oxide
formation. Oxide did not grow in the present study possibly
because the Si111 surface was exposed to only dry air. The
hydrogen-terminated Si111 seemed to effectively passivate
the surface from oxidation in dry air.

The more likely reason is the adsorption of organic con-
taminants because there is a good correlation between the
changes in the intensities of the Si–H and C–H bands. The
effects of organic species on the Si–H band have been
investigated by various groups. Linford et al. reported that the
Si–H bands disappeared irreversibly after a chemically
bonded organic monolayer was formed on the Si111
surface. Since a significant portion of the sharp Si–H band,
which was lost during air exposure, was recovered by soni-
cation in hexane, the loss of the Si–H band was not irrevers-
ible in the present case. Dumas et al. observed that when C$_{60}$
was deposited on a Si111 surface, the Si–H band was
shifted to a lower wave number (2062 cm$^{-1}$) and became
broader (FWHM: ~10 cm$^{-1}$) while the total intensity of the

![Fig. 1. ATR-FTIR spectra of a hydrogen-terminated Si(111) surface in the regions of 2300–2000 cm$^{-1}$ and 3000–2800 cm$^{-1}$ after the sample was exposed to dry air for (a) 0, (b) 8, (c) 24, (d) 48, and (e) 120 h and (f) was sonicated in hexane after (e).](image1)

![Fig. 2. Intensities of Si–H and C–H bands as a function of time and after the sonication in hexane. White, dotted, and black circles correspond to intensities of deconvoluted sharp, broad, and total Si–H bands, respectively. The black square shows the intensity of the band due to the C–H asymmetric stretch of the methylene group at 2923 cm$^{-1}$.](image2)
contaminants are poorly soluble in hexane. The formation of reasons for this observation may be that the adsorbed organic were still observed after the sonication in hexane. One of the increased.

As a result, the intensities of the broad component decreased and increased, respectively, by the sonication in hexane, all suggest that the broad component is due to Si–H interacting with some species and these two components are reversibly converted into each other. C–H bands were also observed in the higher wave-number region than those of the chemically bonded monolayer, indicating a lower order of the organic adsorbate layer than that of the chemically bonded monolayer. Furthermore, the broad component increased in parallel to the increase in the C–H bands. Thus, one can conclude that the broad component is due to the stretching vibration of Si–H that has a strong interaction with physisorbed organic contaminants.

Based on the above results, one can explain the present results as follows. When a hydrogen-terminated Si(111) surface is exposed to air, organic contaminants are adsorbed on the surface because of the strong hydrophobic nature of the hydrogen-terminated Si(111) surface. As a result, the intensities of the C–H bands increase. The organic contaminants seemed to form islands leaving other portions of the hydrogen-terminated surface clean because the position and the width of the sharp Si–H band were not affected by the adsorption of the organic contaminants. Sonication in hexane removed most of the contaminants, leading to the increase in the free Si–H area. As a result, the intensities of the broad and sharp components of the Si–H band decrease and increase, respectively, and that of the C–H related bands decreased.

One should note that the intensity of the sharp Si–H bands did not recovered its original value and C–H bands were still observed after the sonication in hexane. One of the reasons for this observation may be that the adsorbed organic contaminants are poorly soluble in hexane. The formation of a small amount of chemically bonded organic species and/or polymerized species may also contribute to the irreversible behavior of Si–H on the Si(111) surface. Detailed investigations are now in progress.

The ATR-FTIR measurements clearly showed that the hydrogen-terminated Si(111) surface was not oxidized even after 5 days as long as the surface was exposed to only dry air. However, the surface was contaminated with the hydrocarbon impurities contained in dry air. Most of the contaminants can be removed by sonication in hexane.

This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Area of ‘‘Electrochemistry of Ordered Interfaces’’ (No. 09237101) from the Ministry of Education, Science, Sports and Culture, Japan. Kitazawa of Shin-Etsu Semiconductor is acknowledged for the donation of the Si wafers.