Source model of the great 2011 Tohoku earthquake estimated from
tsunami waveforms and crustal deformation data

Aditya Riadi Gusman1, Yuichiro Tanioka1, Shinichi Sakai2, and Hiroaki Tsushima3.
\textsuperscript{1)Institute of Seismology and Volcanology, Hokkaido University
\textsuperscript{2)Earthquake Research Institute, University of Tokyo
\textsuperscript{3)Meteorological Research Institute, Japan Meteorological Agency

Abstract

The slip distribution of the 11 March 2011 Tohoku earthquake is inferred from tsunami waveforms, GPS data, and seafloor crustal deformation data. The major slip region extends all the way to the trench, and the large slip area extends 300 km long and 160 km wide. The largest slip of 44 m is located up-dip of the hypocenter. The large slip amount, about 41 m, ruptured the plate interface near the trench. The seismic moment calculated from the estimated slip distribution is 5.5×10^{22} N m (Mw 9.1). The large tsunami due to the 2011 Tohoku earthquake is generated from those large slip areas near the trench. The additional uplift at the sedimentary wedge as suggested for the 1896 Sanriku earthquake may have occurred during the 2011 Tohoku earthquake, too.

Keywords: tsunami waveforms, GPS data, seafloor crustal deformation data, the 2011 Tohoku earthquake

1. Introduction

The great 2011 Tohoku earthquake occurred on 11 March 2011 at 5:46:18 UTC with epicenter at 38.104° N and 142.861° E off the east coast of Tohoku and about 130 km from Sendai, Japan, according to the Japan Meteorological Agency (JMA). The largest foreshock
occurred at 2:45:13 UTC on 9 March 2011 with Mw 7.3 (JMA) at 38.328° N and 143.28° E. The largest aftershock with Mw 7.7 occurred approximately 28 min after the mainshock (6:15:34 UTC) at 36.108° N and 141.265° E (JMA). Approximately 39 min after the mainshock (6:25:44 UTC) a large extensional faulting (Mw 7.5) occurred in the outer-rise at 37.837° N and 144.894° E (JMA). Fig. 1 is a map showing the location of the mainshock, foreshocks and aftershocks.

The Global Centroid Moment Tensor (GCMT) solution estimated that the 2011 Tohoku earthquake released seismic moment of 5.3×10^{22} N m (Mw 9.1). The dip angle at the centroid is ranging from 10° to 14° (GCMT, WCMT, and USGS). Seismic reflection and refraction images suggest that the dip angle near the trench is about 3° (Tsuji et al., 2011; Ito et al., 2011). A rupture model of the 2011 earthquake by Ammon et al. (2011) included a low initial rupture speed (1.5 km/s) near the hypocenter and an increase in speed (2.5 km/s) at distances larger than 100 km from the hypocenter. Lay et al. (2011) explored the possibility of large near-trench slip during the great 2011 Tohoku earthquake by teleseismic P-waves inversion and estimated large slip (60 m) at shallow depth near the trench. Large slip near the trench was estimated using tsunami waveforms by previous studies (Fujii et al., 2011; Maeda et al., 2011; Saito et al., 2011). Total seismic moment estimates for the 2011 earthquake from previous studies using W-phase, teleseismic waveform, strong motion, and tsunami waveform are 3.9×10^{22} N m (Mw 9.0) (Ammon et al., 2011), 4.3×10^{22} N m (Mw 9.1) (Yoshida et al., 2011), 3.4×10^{22} N m (Mw 9.0) (Yoshida et al., 2011), and 3.8×10^{22} N m (Mw 9.0) (Fujii et al., 2011), respectively.

The 2011 Tohoku earthquake occurred within the Japan Trench subduction zone where the Pacific plate subducts beneath the Okhotsk plate. A large tsunami was generated by the 2011 Tohoku megathrust earthquake and devastated the coastal area along the north east coast of Honshu. The National Police Agency of Japan has confirmed casualties of about
16,000 deaths, 3,000 people missing, and 6,000 injured (http://www.npa.go.jp/archive/keibi/biki/higaijokyo_e.pdf). The tsunami was observed by tide gauges, pressure gauges, GPS buoys, and Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys that are located offshore and across the Pacific Ocean. The 2011 Tohoku Earthquake Tsunami Joint Survey Group measured tsunami run-up at more than 5200 locations along the east coast of Tohoku area, maximum run-up heights greater than 10 m are distributed along 500 km of coast (Mori et al., 2012). Tsunami height exceeds 20 m at heads of V-shaped bays and apexes of peninsulas, and exceptional tsunami heights of over 35 m was measured at a small valley, Aneyoshi, on Omoe peninsula (Shimozono et al., 2012). Fritz et al., (2012) measured a maximum tsunami outflow currents of 11 m/s and an average water level increase of 1 m/minute within 12 minutes of flooding from survivor videos at Kesennuma Bay using LiDAR.

Old documents show that a large earthquake occurred off the coast of Sendai on 13 July 869. Tsunami deposit studies revealed the tsunami generated by the 869 Jogan earthquake inundated and damaged entire Sendai plain up to more than 4 km inland (Minoura et al., 2001; Namegaya et al., 2010). According to historical records, the 1611 Keicho Sanriku earthquake also generated large tsunami and inundated Sendai plain up to 4 km inland (Tsuji, 2003). To the north of the 2011 rupture area, two great earthquakes occurred off the coast of Sanriku; a thrust earthquake (Mw 8.5) that is identified as a tsunami earthquake event occurred in 1896 (Kanamori, 1972; Tanioka and Satake, 1996a); and an outer-rise earthquake (Mw 8.4) that occurred within the oceanic plate near the Japan Trench in 1933 (Kanamori, 1971). Both of the Sanriku earthquakes generated large tsunamis that devastated the Sanriku coastal area (Kanamori, 1972; Tanioka and Satake, 1996a). The 1978 (Mw 7.6) and the 2005 (Mw 7.2) Off-Miyagi earthquakes occurred within the rupture area of the 2011 earthquake (Yamanaka and Kikuchi, 2004; Miura et al., 2006).
A dense Global Positioning System (GPS) network of the Earth Observation Network (GEONET) on main islands of Japan that is maintained by Geospatial Information Authority of Japan (GSI) (Sagiya et al., 2000) detected coseismic and postseismic displacements due to the 2011 earthquake (Ozawa et al., 2011). Crustal movement monitoring at underwater reference stations off the east coast of Tohoku reveals that coseismic displacement there due to the earthquake is large up to 24 m of horizontal motion (Sato et al., 2011).

Previous studies indicated that large slip beneath a sedimentary wedge near the trench caused large horizontal movement of backstop and that generated large additional uplift of the sediment (Seno, 2000; Tanioka and Seno, 2001; Seno and Hirata, 2007). Those studies indicated that this additional uplift of sediment near a trench has large effect on tsunami generation. The uplift of sediments near the trench can be calculated from the horizontal movement of the backstop (Tanioka and Seno, 2001). Another tsunami generation mechanism that is associated with horizontal displacement of the sloping bathymetry near the trench was suggested by Tanioka and Satake (1996b).

The slip distribution of the 2011 earthquake inferred from GPS data at inland stations has a major slip region that is centered near the epicenter (Ozawa et al., 2011), whereas the slip distributions of the 2011 earthquake inferred from tsunami waveforms have the largest slip amounts at shallow depth near the trench (Fujii et al., 2011; Maeda et al., 2011; Saito et al., 2011). The tsunami waveforms and GPS data at these stations are important for developing a deeper understanding of the generation of a tsunami by a megathrust earthquake. The data at offshore stations provide strong constraints on the slip distribution of the earthquake. The tsunami waveforms observed at stations surrounding the source area and GPS data observed across Japan constrain the overall rupture area. In this paper we estimate the source model of the 2011 tsunami using tsunami waveforms, GPS data on main islands of Japan and seafloor crustal deformation data.
2. Observation data

2.1. Tsunami waveform data

To estimate slip distribution of the earthquake we use tsunami waveforms at 17 stations. These stations include 5 DART buoys in the Pacific Ocean (DART21401, DART21413, DART21418, DART21419 and DART52402), 2 tide gauges in Hokkaido Prefecture (Erimo and Mori), 1 tide gauge in Katsuura, Chiba Prefecture, 1 tide gauge in Ito, Shizuoka Prefecture, 2 bottom-pressure gauges off the coast of Tokachi (KPG1 and KPG2), 2 bottom-pressure gauges off the coast of Iwate Prefecture (TM1 and TM2), and 4 GPS buoys off the coast of Iwate, Miyagi, and Fukushima Prefectures (GPSB802, GPSB803, GPSB804 and GPSB806).

The National Oceanic and Atmospheric Administration (NOAA) operates the DART buoys. The Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) operates the tide gauges in Mori, Hokkaido. The JMA operates the tide gauge in Erimo, Hokkaido. The GSI operates the tide gauges in Katsuura and Ito. The bottom pressure gauges of TM1 and TM2 are operated by University of Tokyo and Tohoku University, KPG1 and KPG2 are operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). MLIT and the Port and Airport Research Institute (PARI) operate the GPS buoys. The details of the stations are listed in Table S1 and plotted on the map in Fig. 2.

These records include ocean tides, which should be removed to get the tsunami waveforms. The ocean tides are approximated by fitting a polynomial function, and are removed from the original records. The records from the 4 bottom-pressure sensors (KPG1, KPG2, TM1 and TM2) also contain high frequency waves; hence the tsunami waveforms are approximated by calculating the moving average of the record.
2.2. Crustal deformation data

Crustal deformation due to the 2011 Tohoku earthquake was observed by the GPS GEONET that is operated by the GSI. The Advanced Rapid Imaging and Analysis (ARIA) team at Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) estimated coseismic displacements due to the earthquake from 5 minutes interval of kinematic solutions of the GPS data. We use the coseismic displacements data (version 0.3, ftp://sideshow.jpl.nasa.gov/pub/usrs/ARIA/ARIA_coseismic_offsets.v0.3.table) estimated by the ARIA team at 1230 GPS stations in Japan to help estimate the slip distribution of the 2011 Tohoku earthquake.

Crustal deformation on the seafloor above the hypocenter of the 2011 earthquake has been measured using a technique that combines GPS and acoustic technologies at 5 seafloor reference points (KAMS, KAMN, MYGI, MYGW and FUKU) by the Japan Coast Guard (JCG). Displacements at the reference points due to mainshock, foreshocks and aftershocks of the 2011 earthquake until about 20 days after the mainshock are 5 to 24 m toward ESE and -0.8 to 3 m upward (Sato et al., 2011). Displacements due to effects other than the mainshock are estimated to be not larger than 1 m, therefore, the recorded displacements are considered as the coseismic displacements (Sato et al., 2011).

3. Joint inversion of tsunami waveforms and coseismic deformation data

3.1. Fault parameters

A ruptured plate interface is assumed to have a size with a length of 450 km and a width of 200 km by referring to aftershock distribution (Fig. 1). Then the plate interface is divided into 45 subfaults with length and width of 50 km and 40 km, respectively. Strike for each subfault is assumed to be 202°, dip angles of 5°, 10°, 15°, 18° and 20° are used for the subfaults at depth of 1.0 km, 4.5 km, 11.5 km, 21.8 km and 34.2 km, respectively (Fig. 1).
Rake angles of 45° and 135° are used for each subfault to estimate the slip direction of each
subfault (within the range between 45° and 135°).

The initial sea surface deformation is assumed to be the same as the ocean bottom
deformation if the spatial wavelength of the ocean bottom deformation is much larger than
the ocean depth (Satake, 2002). This assumption cannot be applied to obtain sea surface
deformation from the ocean bottom deformation that is induced by faulting of a very shallow
fault near a trench, because the deformation near the trench has steep slope with spatial
wavelength that is smaller than ocean depth. Therefore, the initial sea surface deformation for
subfaults near the trench (A and B subfaults) (Fig. 1) is computed from the coseismic vertical
deformation on the ocean bottom using Kajiura (1963) formula. For the other subfaults, it is
assumed to be equal to the coseismic vertical deformation. The coseismic horizontal and
vertical deformations on the ocean bottom are computed for each subfault with unit amount

3.2. Tsunami numerical simulation

The bathymetry data sets used for tsunami simulation are based upon the General
Bathymetric Chart of the Oceans (GEBCO) 30 arc-second data set and the Japan
Hydrographic Association’s M7001 and M7006 bathymetric contour data sets. The
computation area ranges from 130° to 160° E and from 10° to 50° N. We use different grid
systems with grid sizes of 90 arc-seconds, 30 arc-seconds, and 10 arc-seconds to compute the
tsunami. The finest grids are used for the coastal area around the Erimo, Mori, Katsuura, and
Ito tide gauge stations.

Synthetic tsunami waveforms generated from all subfaults at the stations were
numerically computed by solving the linear shallow water equations with spherical
coordinate system (Johnson, 1998). We used a tsunami model that has been developed and
used in tsunami waveform inversion studies (i.e. Fujii and Satake, 2008; Tanioka et al., 2008; Gusman et al., 2010; Fujii et al., 2011). Tsunami in the deep ocean is not affected by coastal effects and simulation of the tsunami using the linear shallow water equations is widely accepted (Synolakis et al., 2008). While the nonlinearity becomes important around coastal tide gauge stations, Fujii et al. (2011) confirmed by comparing the nonlinear and linear computations that they produce similar arrival times and initial slopes. The sea level observation instruments used different sampling rates, so the tsunami waveforms are resampled at 15 seconds interval and the synthetic tsunami waveforms are also resampled at 15 seconds interval.

3.3. Joint inversion

We estimate a slip distribution by a joint inversion using the tsunami waveforms and crustal deformation data. A green’s function for the joint inversion is made from the synthetic of tsunami waveforms and crustal deformation using the fault parameters. The number of tsunami waveforms data points that we used is 2989, while the number of crustal deformation data points at the 1235 stations is 3705.

We used non-negative least square method (Lawson and Hanson, 1974) and include a spatial smoothness constraint to estimate the slip distribution of the earthquake. The optimal value of smoothing factor was selected to minimize Akaike’s Bayesian information criterion (ABIC) (Akaike, 1980). For more details of our inversion method, see Gusman et al. (2010). A “delete-half” Jackknife resample is extracted from the original data by deleting half the number of data points. The standard error of the slip distribution is calculated using 50 models that are estimated from the “delete-half” Jackknife resamples (Tichelaar and Ruff, 1989).

4. Results
The maximum slip amount is estimated to be 44 m and the major slip region is located up-dip of the hypocenter with dimensions of roughly 300 km length and 160 km width (Fig. 3a). The earthquake ruptured the plate interface from the hypocenter all the way to the trench with large slip amount, about 41 m, near the trench. These results are consistent with results from inversion analysis based on dispersive tsunami simulation by Saito et al. (2011). The seismic moment calculated from the slip distribution is 5.5×10^{22} N m (Mw 9.1) by assuming the rigidity of 4×10^{10} N m$^{-2}$. The estimated average rake angle from the slip distribution is 88° (Fig. 4a), which is equal to the rake angle at the centroid (GCMT). The slip distribution generated sea surface deformation with a maximum water level of about 9 m above mean sea level (Fig. 3c).

The calculated horizontal and vertical displacements at GPS stations and at seafloor reference points resemble the observations. Comparisons between the calculated and the observed horizontal and vertical displacements are shown in Fig. 5a. We compare the simulated tsunami waveforms from the estimated slip distribution with the observed tsunami waveforms at sea level observation stations in Fig. 6. Overall, observed tsunami waveforms are well explained by simulated tsunami waveforms.

5. Discussion

The main difference between the slip distributions of the 2011 earthquake estimated from GPS data (i.e. Ozawa et al., 2011) and those estimated from tsunami waveforms (i.e. Fujii et al., 2011; Maeda et al., 2011; Saito et al., 2011) is the location of the largest slip amount. The slip distribution estimated from GPS data concentrated near the epicenter whereas that estimated from tsunami waveforms has large slip near the trench. By using tsunami waveforms, GPS data and seafloor crustal deformation data in a joint inversion, a more accurate slip distribution of the 2011 earthquake can be estimated. In this study, the slip
distribution of the 2011 earthquake estimated from tsunami waveforms and crustal
deformation data has large slip near the trench similar to those estimated by previous studies
(Fujii et al., 2011; Maeda et al., 2011; Saito et al., 2011), and the slip distribution can explain
well the tsunami waveforms and crustal deformation data.

Because Tanioka and Seno (2001) suggested that the additional uplift along the
unconsolidated sedimentary wedge near the trench generated the additional tsunami for the
1896 Sanriku tsunami, we also need to test that the observed tsunami waveforms can be
explained by the additional uplift near the trench. In this study, the calculation of the
additional uplift is following the Model A in Tanioka and Seno (2001). The uplift of the
sediments, u_s, is represented by $u_s=uh \tan \theta$ where uh is the horizontal movement due to
earthquake, and θ is the dip angle of the slope. A seismic profile after the 2011 earthquake
provided by JAMSTEC shows a large bathymetric change near the trench that has a width of
1.5 km. To calculate additional uplift, we assume that the dip angle of the backstop slope (θ)
is 50°, which is the same as that of Tanioka and Seno (2001), and the width of uplift area is
1.5 km. The horizontal movement (uh) is computed for each subfault “A” with unit amount of
slip using Okada (1985) formula. The sea surface deformation of the additional uplift is
calculated by the Kajiura (1963) formula because the width of the additional uplift is 1.5 km,
which is smaller than the ocean depth. Then a slip distribution is estimated by joint inversion
using green’s function that is made from both faulting and additional uplift.

The seismic moment calculated from the estimated slip distribution (Fig. 3b) is $5.1 \times
10^{22}$ N m (Mw 9.1) by assuming the rigidity of 4×10^{10} N m$^-2$. The inferred slip distribution
and inferred additional uplift generated initial sea surface deformation with a distinctive short
wavelength and high peak (11 m) near the trench (Fig. 3d). The calculated horizontal and
vertical displacements are consistent with the observations (Fig. 5b). Comparison between
the observed and simulated tsunami waveforms from the source model with additional uplift
is shown in Fig. 7. Observed tsunami waveforms and crustal deformation data are explained well by the result from the source model with additional uplift.

To evaluate the fitness between simulated and observed data from both source models, the root mean square (RMS) of the residual between simulated and observed data from each of source model is calculated. The RMS for the tsunami waveforms and crustal deformation from the results of the source model with additional uplift are 31.1 cm and 11.9 cm, respectively. These are smaller than those calculated from the results of the source model without additional uplift, which are 33.3 cm for tsunami waveforms and 12.0 cm for crustal deformation. Standard error of each slip distribution is calculated by using Jackknife technique. The maximum error for the slip distribution without additional uplift is ± 6.1 m, which is relatively small (Fig. 4a). The slip distribution with additional uplift is improved with smaller error than that for the slip distribution without additional uplift (Fig. 4b). These suggest that the additional uplift as the same as the 1896 Sanriku tsunami earthquake might occur during the 2011 great Tohoku earthquake because the 2011 Tohoku earthquake also ruptured the plate interface near the Japan Trench.

To analyze the effect of additional uplift near the trench on tsunami generation, the tsunami waveforms generated by the coseismic vertical deformation and those generated by the additional uplift due to the coseismic horizontal deformation are simulated separately. Then we integrate the first cycle of the generated tsunami waveforms at each station. The tsunami waveforms generated from the additional uplift at all stations range from 10 % to 30 % of the combined tsunami waveforms from both coseismic vertical deformation and additional uplift.

The seafloor crustal deformation data strongly constrains the slip distribution because the locations of the stations are right above the plate interface. Because we use crustal
deformation data in addition to tsunami waveforms to estimate a slip distribution, the fit to
 tsunami waveforms from our result is slightly worse than those from results that used only
tsunami waveforms (e.g. Fujii et al., 2011; Saito et al., 2011). The misfit from our result is
more apparent at DART21418, whereas slip distributions estimated by tsunami inversion
studies (e.g. Fujii et al., 2011; Saito et al., 2011) can explain well the tsunami waveforms at
DART21418. Saito et al. (2011) also suggest that dispersive tsunami is recorded at
DART21418.

Ito et al. (2011) observed seafloor horizontal and vertical displacements at three
stations (GJT3, TJT1, and TJT2) near the Japan Trench, and estimated a localized slip
amount of 80 m near the trench to explain the observed displacements. The calculated
vertical displacements of around 5.5 and 4.5 m from our slip distributions are very close to
the observations of 5 (± 2) m and 5 (± 0.5) m at GTJ3 and TJT1, respectively. While the
calculated horizontal displacements of 30-34 m from our slip distributions are smaller than
the observations of 31 ± 1 m, 58 ± 20 m, and 74 ± 20 m at the three stations. The
discrepancies may be explained by the difference of dip angle used in the two studies (i.e.
this study dip is 5° and in Ito et al. (2011) dip is 3°). The misfits may be reduced by further
study of source models for this event that use a smaller subfault size and synthetic tsunami
waveforms solved with dispersive tsunami equations.

6. Conclusions

In this study, joint inversion is performed using tsunami waveforms, GPS data and
seafloor deformation data to study the source model of the 2011 earthquake. The earthquake
ruptured the plate interface from the hypocenter all the way to the trench with large slip
amounts up to 41 m on the shallowest subfaults. Total seismic moment calculated from
estimated slip distributions with and without additional uplift are 5.1×10^{22} N m (Mw 9.1), respectively, which are consistent with that estimated by GCMT (5.3×10^{22} N m).

The large maximum slip is strongly constrained by the seafloor crustal deformation data near the epicenter. The tsunami waveforms data at offshore stations near the source area strongly constrain the generated initial sea surface deformation. These emphasize the importance of seafloor monitoring and offshore sea level observation to accurately estimate the slip distribution near the trench of interplate earthquakes in the subduction zone.

We indicate that not only coseismic vertical deformation but also additional uplift near the trench as suggested for the 1896 Sanriku tsunami earthquake may contribute the large tsunami near the seismic source of the 2011 Tohoku earthquake.

Acknowledgements

GPS buoy data are provided by MILT and PARI. KPG1 and KPG2 pressure gauge data are provided by JAMSTEC. TM1 and TM2 pressure gauge data are provided by Tohoku University and University of Tokyo. DART buoy data are downloaded from NOAA’s website. Erimo and Mori tide gauge data are provided by JMA. Katsuura and Ito tide gauge data are downloaded from GSI’s website. Preliminary GPS time series provided by the ARIA team at JPL and Caltech, all original GEONET RINEX data provided to Caltech by the Geospatial Information Authority (GSI) of Japan. Seafloor crustal deformation data are provided by Japan Coast Guard. We thank Peter M. Shearer and two anonymous reviewers for their constructive comments.

References

Maeda T., Furumura, T., Sakai, S., Shinohara, M., 2011. Significant tsunami observed at the ocean-bottom pressure gauges at 2011 the Pacific Coast of Tohoku Earthquake. Earth Planets Space 63, 803-808.

Fig. 1. Map of the 2011 Tohoku earthquake. Red star represents the epicenter of the mainshock, gray circles represent foreshocks and purple circles represent aftershocks and extensional faulting events in the outer-rise.
Fig. 2. Map of sea level observation stations (green triangles). Stars represent epicenters and rectangles represent ruptured areas.
Fig. 3. a) Slip distribution of the 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data and b) estimated slip distribution of the 2011 Tohoku earthquake when the green’s function is constructed from both faulting and additional uplift. c) Sea surface deformation generated from the slip distribution of Fig. 3a. d) Sea surface deformation generated from the slip distribution of Fig. 3b and the inferred additional uplift. Light blue star represents the epicenter of the earthquake.
Fig. 4. Slip distribution and its “delete-half” Jackknife standard deviation (standard error). a) Slip distribution along strike of the 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. b) Estimated slip distribution along strike of the 2011 Tohoku earthquake when the green’s function is constructed from both faulting and additional uplift. Blue arrow represents the inferred rake angle of each subfault.
Fig. 5. Comparison between observed (green arrows) and calculated (black arrows) coseismic displacements. a) Horizontal and vertical displacements calculated from the slip distribution of Fig. 3a. b) Horizontal and vertical displacements calculated from the slip distribution of Fig. 3b.
Fig. 6. Observed and simulated tsunami waveforms from the slip distribution of Fig. 3a. Red lines represent the simulated tsunami waveforms, black lines represent the observed tsunami waveforms that are used in the inversion, and black dashed lines are the observed tsunami waveforms.
Fig. 7. Observed and simulated tsunami waveforms from source model with the additional uplift. Red lines represent the simulated tsunami waveforms, black lines represent the observed tsunami waveforms that are used in the inversion, and black dashed lines are the observed tsunami waveforms.
Table S1. List of bottom-pressure, GPS buoy, and tide gauge stations.

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>Type</th>
<th>Authority</th>
<th>Maximum amplitude (cm)</th>
<th>Arrival time in minutes after time origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DART 21401</td>
<td>152.583</td>
<td>42.617</td>
<td>Bottom-pressure</td>
<td>RFERHRI and NOAA</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>2.</td>
<td>DART 21413</td>
<td>152.123</td>
<td>30.528</td>
<td>Bottom-pressure</td>
<td>NOAA</td>
<td>77</td>
<td>81</td>
</tr>
<tr>
<td>3.</td>
<td>DART 21418</td>
<td>148.698</td>
<td>38.718</td>
<td>Bottom-pressure</td>
<td>NOAA</td>
<td>187</td>
<td>33</td>
</tr>
<tr>
<td>4.</td>
<td>DART 21419</td>
<td>155.735</td>
<td>44.455</td>
<td>Bottom-pressure</td>
<td>NOAA</td>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>5.</td>
<td>DART 52402</td>
<td>154.111</td>
<td>11.882</td>
<td>Bottom-pressure</td>
<td>NOAA</td>
<td>32</td>
<td>224</td>
</tr>
<tr>
<td>6.</td>
<td>Erimo</td>
<td>143.142</td>
<td>42.000</td>
<td>Tide gauge</td>
<td>JMA</td>
<td>298</td>
<td>61</td>
</tr>
<tr>
<td>7.</td>
<td>Mori</td>
<td>140.591</td>
<td>42.112</td>
<td>Tide gauge</td>
<td>MLIT and PARI</td>
<td>88</td>
<td>101</td>
</tr>
<tr>
<td>8.</td>
<td>Katsuraya</td>
<td>140.250</td>
<td>35.133</td>
<td>Tide gauge</td>
<td>GSI</td>
<td>166</td>
<td>47.5</td>
</tr>
<tr>
<td>9.</td>
<td>Ito</td>
<td>139.133</td>
<td>34.900</td>
<td>Tide gauge</td>
<td>GSI</td>
<td>76</td>
<td>62.5</td>
</tr>
<tr>
<td>10.</td>
<td>KPG1</td>
<td>144.438</td>
<td>41.704</td>
<td>Bottom-pressure</td>
<td>JAMSTEC</td>
<td>58</td>
<td>28.3</td>
</tr>
<tr>
<td>11.</td>
<td>KPG2</td>
<td>144.845</td>
<td>42.236</td>
<td>Bottom-pressure</td>
<td>JAMSTEC</td>
<td>50</td>
<td>35.5</td>
</tr>
<tr>
<td>12.</td>
<td>TM1</td>
<td>142.750</td>
<td>39.200</td>
<td>Bottom-pressure</td>
<td>Tohoku Univ and Univ. of Tokyo</td>
<td>516</td>
<td>13.6</td>
</tr>
<tr>
<td>13.</td>
<td>TM2</td>
<td>142.460</td>
<td>39.240</td>
<td>Bottom-pressure</td>
<td>Tohoku Univ and</td>
<td>521</td>
<td>17.9</td>
</tr>
<tr>
<td>No.</td>
<td>GPSB</td>
<td>Longitude</td>
<td>Latitude</td>
<td>Type</td>
<td>Agency</td>
<td>Code</td>
<td>Temperature</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>14</td>
<td>GPSB8 02</td>
<td>142.097</td>
<td>39.259</td>
<td>GPS buoy</td>
<td>MLIT and PARI</td>
<td>664</td>
<td>25.2</td>
</tr>
<tr>
<td>15</td>
<td>GPSB8 04</td>
<td>142.187</td>
<td>39.627</td>
<td>GPS buoy</td>
<td>MLIT and PARI</td>
<td>623</td>
<td>25.6</td>
</tr>
<tr>
<td>16</td>
<td>GPSB8 03</td>
<td>141.894</td>
<td>38.858</td>
<td>GPS buoy</td>
<td>MLIT and PARI</td>
<td>563</td>
<td>27.5</td>
</tr>
<tr>
<td>17</td>
<td>GPSB8 06</td>
<td>141,1856</td>
<td>36.9714</td>
<td>GPS buoy</td>
<td>MLIT and PARI</td>
<td>100</td>
<td>17.45</td>
</tr>
</tbody>
</table>

GSI: Geospatial Information Authority of Japan
JAMSTEC: Japan Agency for Marine-Earth Science and Technology
JMA: Japan Meteorological Agency
MLIT: Ministry of Land, Infrastructure, Transport, and Tourism
NOAA: National Oceanic and Atmospheric Administration
PARI: Port and Airport Research Institute