<table>
<thead>
<tr>
<th>Title</th>
<th>Photoactive Self-Assembled Monolayers (SAMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kondo, Toshihiro; Uosaki, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bottom-up Nanofabrication (Supramolecules, Self-Assemblies, and Organized Films), ed. by Katsuhiko Ariga and Hari Singh Nalwa, ISBN: 1-58883-079-9, Volume 4, Chapter 19, pp. 409-424</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-01</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/50297</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright © 2009 by American Scientific Publishers</td>
</tr>
<tr>
<td>Type</td>
<td>bookchapter</td>
</tr>
</tbody>
</table>

File Information: BuN4_409-425.pdf
CHAPTER 19

Photoactive Self-Assembled Monolayers (SAMs)

Toshihiro Kondo¹, Kohei Uosaki²

¹Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
²Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

CONTENTS
1. Introduction .. 409
2. Photoinduced Electron Transfer at SAMs 410
3. Control of Photo-Electrochemical Properties by SAMs 412
4. Photoinduced Electron Transfer at SAM-Covered Nanocluster Layers 413
5. Control of Electron Transfer by Photoisomerization at SAMs 414
6. Luminescence from SAMs .. 416
7. Photopatterning Using SAMs 420
8. Conclusions .. 422
References .. 422

1. INTRODUCTION

Photoactivity is one of the most important functionalities for constructing molecular devices. Construction of highly efficient molecular photodevices should require the arrangement of molecules in order at a molecular level because the photoinduced electron/energy transfer between molecules and the structure and/or the properties of molecules are changed by photoperturbation. As described in this book [Vol. 3, Ch. 14], one of the most important techniques in modern nanotechnology is the arrangement of molecules in order on a solid surface with a nanometer precision, and the self-assembly (SA) technique has become a widely used method for constructing ordered molecular layers, because molecules in self-assembled monolayers (SAMs) are chemisorbed onto the solid surface and are therefore expected to be stable. SAMs of alkylthiols on metals, especially on gold, have been extensively studied because of their potential applications in many fields, such as sensors, wetting control, and biomolecular and molecular electronic devices [1–5]. Thus, alkylthiol SAMs with several functionalities have been extensively investigated by many research groups, including our group, since the 1990s [1–46] and are one of the best candidates for construction of highly efficient molecular photodevices. Although there is another type of SAMs constructed using the silane coupling reaction of alkoxysilane on an oxide surface [1, 2], here we concentrate only on alkylthiol SAMs as in this book [Vol. 3, Ch. 14]. In that chapter, the method for constructing alkylthiol SAMs on a metal surface and the structures of the SAMs during their process of formation and after their formation were described in detail. In this chapter, we focus on and review various photo-characteristics of SAMs: photoinduced electron transfer at electrodes modified with SAMs and at electrodes modified with a nanocluster modified with SAMs, control of photophotoselectrochemical properties by the SAMs, control of electron transfer by photoisomerization...
at the SAMs, application of luminescence from the SAMs, especially to sensors, and making micro/nanopatterns using the SAMs.

2. PHOTOINDUCED ELECTRON TRANSFER AT SAMs

Construction of a very efficient artificial photoelectric conversion device mimicking a natural photosynthetic system is one of the dreams of scientists. In natural systems, molecules of various functionalities, such as a photon absorber like chlorophylls and electron donors and acceptors like pho­ophyllins and quinones, are well-organized with molecular dimensions such that very efficient photoinduced charge separation and photoinduced electron transfer are achieved with a minimum reverse electron transfer [47, 48]. Thus, it is of great interest to mimic the elaborate molecular machinery of natural systems for the realization of a highly efficient artificial photosynthetic system. This concept was first employed by Moore et al. and Fujihira et al., who used lipid bilayer membranes [49, 50] and Langmuir-Blodgett (LB) films [51-55], respectively, to arrange molecules in order. Unfortunately, the quantum efficiencies of these systems were quite low (0.4-1.5%) [49, 50] compared with those of natural systems because the molecular arrangements of these systems were not high enough to achieve a highly efficient photoinduced electron transfer.

In order to achieve a highly efficient photoinduced electron transfer, the order of molecules in the films should be required with a molecular dimension as described above, and then alkylthiol SAMs on gold can be employed as a method for constructing a molecular system based on the concept shown in Figure 1, where the metal electrode is modified with a SAM containing a photon absorber, electron relay, and surface-active groups. Based on this concept, we have achieved for the first time the construction of alkylthiol SAMs for an artificial photosynthetic system using porphyrin-quinone-thiol (PQSH) and porphyrin-ferrocene-thiol (PFcSH) coupling molecules as shown in Figure 2, parts (a) and (b), respectively [56-58]. PQSH with porphyrin as the photon absorber, quinone as the electron relay, and thiol as the surface-active group was synthesized. PFcSH, which has porphyrin, ferrocene, and thiol groups as the photoactive, electron transport or relay, and surface-binding groups, respectively, separated from each other by alkyl chains, was also synthesized. Then their SAMs were constructed on a gold surface. Figure 3 shows cyclic voltammograms (CVs) at gold electrodes modified with SAMs of PQSH and PFcSH. In both curves, a pair of redox waves due to the redox reaction of quinone and ferrocene groups were observed at +210 mV (vs. Ag/AgCl) and +610 mV, respectively. From the charges of their waves, the amounts of surface-bound molecules were estimated to be 3.7×10^{13} and 1.4×10^{14} molecules cm$^{-2}$ at PQSH and PFcSH SAMs, respectively. The difference in the surface coverage of PQSH and PFcSH should be caused by the presence of alkyl chains in the PFcSH SAM. The orders of the molecular layer of PFcSH should be higher than that of PQSH. When gold electrodes modified with SAMs of PQSH and PFcSH were illuminated in electrolyte solutions containing methylviologen (MV$^{2+}$) as an electron acceptor, a stable cathodic photocurrent flowed if the electrode potentials were more negative than +200 and -650 mV, respectively, which coincide with the redox potentials of the quinone and ferrocene moieties in the SAMs, respectively (Fig. 4). It is noted here that the illumination at the PQSH SAM was a white light (15 mW cm$^{-2}$) from the Xe lamp.
while that at the PFcSH SAM was a monochromated light (430 nm, 40 \mu W \text{ cm}^{-2}). These stable photocurrents flowed for many hours without any signs of deterioration. After prolonged illumination of the SAM-modified electrodes, the color of the solution in front of the electrode changed to blue, showing that MV^{2+} had been reduced to the methylviologen cation radical (MV^{+}). Since the redox potential of MV^{2+}/MV^{+} is -630 mV, we have achieved the uphill transport of electrons of more than 0.8 eV at the POSH SAM and more than 1.2 eV at the PFcSH SAM by visible light illumination. The photocurrent action spectra of the gold electrodes modified with the POSH and PFcSH SAMs matched well with the absorption spectra of the POSH and PFcSH SAMs, confirming that the porphyrin groups in both of the SAMs really acted as photoactive sites. The quantum efficiencies of these systems were more than 3% at the POSH SAM and more than 10% at the PFcSH SAM. It was demonstrated by the results of the alkyl chain length dependence, a structural study by angle-resolved X-ray photoelectron spectroscopy (ARXPS), and the electrode surface...
flatness dependence that the reason for the achievement of such a very high efficiency at the PFcSH SAM is the relatively high orientation of this SAM due to the introduction of the alkyl chain between each functional group, and then the reverse electron and energy transfer are minimized [59-61].

Following our reports, a large number of photoinduced electron transfer studies using alkylthiol SAMs have been carried out [62-79]. Imahori et al. synthesized a fullerene-porphyrin-ferrocene-thiol coupling molecule (FuPorFcSH, Fig. 5(a)), which has two electron relay groups, i.e., ferrocene and fullerene, with porphyrin placed between them as a photon absorber, and many derivatives similar to this molecule, and then constructed their SAMs on gold and indium tin oxide (ITO) [62-71]. A high efficiency of 20-25% was achieved by the SAM of FuPorFcSH. They concluded that utilization of the fullerene group with the small reorganization energy satisfies the requirement for the high photocurrent generation, leading to high efficiency even at the metal electrode. They constructed a mixed SAM with FuPorFcSH and a pyrene-thiol linked molecule (Fig. 5(b)) as an antenna group to mimic natural systems and achieved light harvesting with a photocurrent generation efficiency of 0.6-1.5% [72]. They also constructed a SAM of a fullerene-oligothiophene linked molecule (Fig. 5(c)) and observed a relatively large photocurrent [73, 74]. Ishida and Majima observed a much more intense photocurrent by surface plasmon excitation than that provided by conventional direct photoexcitation at the SAM of a porphyrin-thiol linked molecule [75]. A ruthenium complex was also used as a photon absorber [76-78]. Yamada et al. constructed SAMs of a ruthenium(II) tris(2,2'-bipyridine) (Ru(bpy)$_3$$^{2+}$)-viologen-thiol derivative (Fig. 5(d)) on gold and ITO, and photocurrent generation was observed. There is also a report of fullerene being used as a photon absorber [79].

There are examples of photocurrent observations at a multilayer using a SAM as an underlayer. Reese and Fox constructed a SAM of a thiol-terminated oligonucleotide on gold and then constructed an oligonucleotide duplex with a pyrene end-labeled oligonucleotide on the SAM (Figs. 5(e, f)) [80]. They observed a photocurrent at this SAM-modified gold electrode in a solution containing MV$^{2+}$ as an electron acceptor. Thompson et al. also observed photocurrent generation at photoactive multilayers constructed on a porphyrin SAM using electrostatic interaction between a zirconium cation and a phosphate anion (Fig. 6) [81]. Shinkai et al. also constructed a multilayer of a fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer on an ITO electrode modified with a SAM of a sulfonate-terminated thiol molecule (Fig. 7), and they observed a relatively large photocurrent [82].

3. CONTROL OF PHOTO-ELECTROCHEMICAL PROPERTIES BY SAMs

An alkylthiol SAM can also be formed on a semiconductor surface [83-89] and this SAM can control photoelectrochemical properties of the semiconductor substrates,
Photoactive Self-Assembled Monolayers (SAMs)

although it is not easy to prepare it at room temperature compared with the case of an alkylthiol SAM on a metal surface. A relatively ordered monolayer of the alkylthiol can be prepared by heating a solution containing an appropriate alkylthiol and dipping the semiconductor substrate in it for several hours. Gu and Waldeck constructed an n-InP semiconductor electrode modified with SAMs of n-alkylthiols having several different alkyl chain lengths and observed a photocurrent [84-88]. They investigated the alkyl chain length dependence on the photocurrent and demonstrated that studies of photocurrent versus chain length of the alkylthiols can be used to examine how the electron transfer rate constant depends on the thickness of the insulating layer. They suggested that of particular interest is the ability of the alkylthiol SAM to probe the distance dependence of the electronic coupling. The principles of photocurrent generation at semiconductor electrodes have been studied in detail and are summarized in the literatures [90-93].

4. PHOTOINDUCED ELECTRON TRANSFER AT SAM-COVERED NANOCLUSTER LAYERS

Since an alkylthiol SAM is a monomolecular film, the concentration of functional molecules is very low compared with that in a three-dimensional system, and the quantum efficiency of the SAM system is low. However, it is difficult to construct a multilayer using the SA technique because surface reaction with a relatively low yield to connect the molecules would be required. Thus, metal nanoclusters whose surfaces were covered with alkylthiol SAMs with several functional groups were employed to construct three-dimensional systems, since Brust et al. reported that alkylthiol SAM-covered gold nanoclusters are stable and that functional groups can be easily introduced by a place-exchange method [94-96]. There have been studies on photoinduced electron transfer using alkylthiol SAM-modified metal or semiconductor nanoclusters [97-112]. It should be noted here that in the case of SAM-covered semiconductor nanoclusters, the role of the SAMs play is control of the photoelectrochemical properties of the semiconductor and/or assistance in the construction of the three-dimensional system.

Yamada et al. observed photocurrents at ITO electrodes modified with a multilayer of gold nanoclusters and porphyrin-tetraalkylthiol molecules (Fig. 8) [97]. Imahori et al. investigated the photophysical properties of gold nanoclusters modified with a SAM of a porphyrin-thiol coupling molecule [98, 99], and observed a photocurrent at the SnO₂ electrode modified with electrophoretically deposited layers of gold nanoclusters, the surface of which was covered with mixed SAMs of porphyrin-thiol and fullerene-thiol coupling molecules [100]. Li et al. also observed a photocurrent at a gold electrode modified with electrophoretically deposited layers of gold nanoclusters, the surface of which

![Figure 8. Schematic illustration for the fabrication of multilayer assemblies: (P/Au)_n/P/ITO (n = 0, 3, 6, 9) and (Au/HD)_n/ITO. Reprinted with permission from [97], S. Yamada et al., Thin Solid Films 438-439, 70 (2003). © 2003, Elsevier.](image-url)
was covered with a SAM of a porphyrin-viologen coupling molecule [101]. For a gold electrode modified with semiconductor nanocluster multilayers, a unique preparation procedure is employed. First, semiconductor nanoclusters that are covered with the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT, AOT) were prepared in reverse micelles [102]. Thereafter, dithiol SAMs were prepared on a gold surface, and then layers of the semiconductor nanoclusters were prepared by dipping the dithiol SAM-modified gold in a nanocluster dispersion (Fig. 9) [103-109]. It was confirmed by XPS that the terminated thiol group, which is not connected with the gold, in the dithiol SAMs on gold is covalently bonded to the surface atoms of the semiconductor nanoclusters [103] and, as a result, the SAM forms on the semiconductor nanocluster surface. Relatively large photocurrents were observed at gold electrodes modified with various kinds of semiconductor nanoclusters, such as CdS [104-107], ZnS [106], PbS [108], and CdSe [109], which were prepared by the above procedures shown in Figure 9. An interesting preparation method in which tellurium nanoclusters were electrochemically deposited on gold electrodes modified with SAMs of molecular templates, whose terminal group is β-cyclodextrin (β-CD), has been reported [110]. Woo et al. observed a photocurrent at this SAM. Another method has also been employed to construct multilayers of alkylthiol SAM-covered nanoclusters on the electrode surface [27-30, 111, 112]. Multilayers of semiconductor nanoclusters covered with alkylthiol SAMs, whose terminated groups are the charged groups, can be constructed on the basis of an electrostatic interaction (Fig. 10) [112]. Relatively large and stable photocurrents were observed at this electrode, and photoelectrochemical properties of the semiconductor nanoclusters were discussed on the basis of the quantum size effect [110, 111].

5. CONTROL OF ELECTRON TRANSFER BY PHOTOISOMERIZATION AT SAMs

We can control electron transfer using structure change of several functional groups immobilized in SAMs by their
photoisomerization; in other words, we can construct photoswitching systems using the photoisomerization property of SAMs.

Azobenzene is one of the most popular groups to photoisomerize with a structural change and has often been used even for alkylthiol SAMs [113-125]. Introduction of this group into SAMs enables construction of a photoswitching system. Mirkin et al. synthesized the ferrocene-azobenzene-thiol linked molecule (FcAzSH) shown in Figure 11(a) and achieved a photon-gated electron transfer at a gold electrode modified with mixed SAMs of FcAzSH and an azobenzene-thiol linked molecule (Fig. 11(b)) [113]. The electron source of this photon-gated electron transfer is ferrocyanide in the electrolyte solution. Figure 12(a) shows the CV for a gold electrode modified with a SAM of cis-AzSH in the absence of light and in the presence of 0.5 mM K₄Fe(CN)₆ (b) cis-AzSH SAM after doping it with 1% FcAzSH (no K₄Fe(CN)₆), (c) two-component SAM (1:99 = FcAzSH: cis-azobenzene-thiol) after addition of 0.5 mM K₄Fe(CN)₆ to the cell, and (d) two-component SAM, in the presence of 0.5 mM K₄Fe(CN)₆ after irradiation with >400 nm light for 1 h. The geometric area of the working electrode was 0.21 cm². The electrolyte used in all of the above experiments was 0.2 M NaClO₄. Scan rate = 100 mV s⁻¹. Reprinted with permission from [113], D. G. Walter et al., J. Phys. Chem. B 103, 402 (1999). © 1999, American Chemical Society.

azobenzene derivatives [126-130]. The reduction potential of cis-azobenzene to hydrazobenzene is much more positive than that of the trans form. They also showed that reduced hydrazobenzene is electrochemically oxidized only to trans-azobenzene around +200 mV (vs. Ag/AgCl), even if the original form is the cis form. Using this phenomenon, we can control the charge-transfer rate at a gold electrode modified with a SAM of the azobenzene-ferrocene-thiol linked molecule (AzFcSH) shown in Figure 13(a) [119]. In a CV of a gold electrode modified with a SAM of 100% trans-form AzFcSH (Fig. 13(b)), only a pair of waves due to the redox of ferrocene in the potential range between 0 and +750 mV appeared and did not change shape after a potential scan or UV irradiation. The CV of gold modified with a SAM of 20% cis- and 80% trans-form AzFcSH (Fig. 13(c)), which was prepared from a solution containing AzFcSH after UV irradiation, also showed that only redox peaks due to ferrocene were observed in the potential range between +200 and +750 mV. When the potential was scanned to 0 mV, a pair of waves due to the redox of the azobenzene moiety appeared, in addition to that of ferrocene in the first potential scan (solid line in Fig. 13(d)). The wave due to the redox of azobenzene, however, disappeared, and the redox potential and the peak separation...
Figure 13. (a) AzFcSH molecule. CVs of (b) a 100% trans-AzFcSH SAM-modified gold electrode measured in the potential range between 0 and +750 mV and (c) a 20% cis- and 80% trans-AzFcSH SAM-modified gold electrode measured in the potential range between +200 and +750 mV. (d) The first scan (solid line) and second scan (dotted line) of the CVs of the 20% cis- and 80% trans-AzFcSH SAM-modified gold electrode measured in the potential region between 0 and +750 mV. Note that the potential scan was started from +200 mV in the positive direction. The electrolyte and scan rate in all of the above experiments were 0.1 M HClO₄ and 50 mV s⁻¹, respectively. Reprinted with permission from [119], T. Kondo et al., Langmuir 17, 6317 (2001). © 2001, American Chemical Society.

of the redox wave due to ferrocene became more negative and smaller, respectively, in the second scan (dotted line in Fig. 13(d)). The redox potential and the peak separation returned to the original values after UV irradiation. These changes in the electrochemical characteristics of the latter electrode were reversible. On the basis of the results of structural analysis by in-situ Fourier-transform infrared reflection absorption spectroscopy (FT-IRRAS), we concluded that the electrochemical properties, that is, the redox potential and the charge transfer rate, of the ferrocene group in the SAM can be reversibly controlled by electro- and photochemical structural conversions between the cis and trans forms of the azobenzene moiety in the SAM (Fig. 14).

Spiropyran/merocyanine photoisomerization was also used at alkylthiol SAMs to gate/ungate electron transfer [131–134]. Willner et al. constructed a spiropyran/merocyanine-terminated SAM-modified gold electrode using synthesized β-1-[3,3-dimethyl-6-nitrospiro(indoline-2,2'-2H-benzopyran)] propionic acid and an amine-terminated alkylthiol SAM (Fig. 15). Using this SAM, they achieved photo-switchable on/off bioactivities. Figure 16 shows an example of their photoswitchable on/off bioactivity systems (redox of cytochrome c) using this SAM-modified electrode [131, 132]. In this case, they used a mixed SAM of spiropyran/merocyanine-terminated and 4-pyridine thiol.

In addition to photoisomerization of the azobenzene and spiropyran/merocyanine system, (pyridylazo)benzene [135], stilbene [136], and diarylethenes [137] were used as photoisomerization groups in alkylthiol SAM-modified electrodes. Matsui et al. successfully controlled molecular recognition by photoisomerization of an azobenzene group [138]. They used peptide nanotubes, which were self-assembled from peptide bolaamphiphile, as templates to fabricate azobenzene nanotubes. This peptide nanotube incorporates amide sites to anchor decorating molecules such as proteins, nanocrystals, and porphyrins via hydrogen bonding. To anchor the azobenzene nanotubes onto surfaces, a SAM of thiolated α-cyclodextrins (α-CD) molecules was used on the patterned Au substrates, the preparation method of which is described in Section 7 (Fig. 17).

6. LUMINESCENCE FROM SAMs

Luminescence from photoactive SAMs has been extensively studied. Fox and Wooten constructed a SAM of anthracene-thiol linked molecules, measured the luminescent intensity and FT-IR spectrum of the SAMs, and investigated dimer formation of the anthracene moiety in this SAM [139]. Guo et al. constructed a photoactive and electrochemical active myoglobin protein layer on gold surfaces modified with SAMs of metalloporphyrin-thiol linked molecules by reconstitution of apomyoglobin in solution with the corresponding metalloporphyrin and investigated their fluorescence spectra [140]. Fluorescence from mixed SAMs of the ferrocene-thiol derivative and Zn tetraarylporphyrin-thiol derivative were measured under open circuit conditions, and the amounts of the photostored charge in the SAM were quantitatively examined by Roth and co-workers [141]. Bohn et al. constructed protein-connected SAMs by using the procedures...
shown in Figure 18, measured the fluorescence intensity from a polystyrene nanosphere doped as a fluorescent label in the SAMs, and investigated cellular adhesion and motility by measuring the surface composition gradients of extracellular matrix proteins such as fibronectin [142, 143].

Electrochemical and electrogenerated chemiluminescence (ECL) from gold and ITO electrodes modified with a SAM of tris(2,2’-bipyridine)ruthenium(II) (Ru(bpy)$_3^{2+}$)-thiol linked molecules (Fig. 19(a) [144]) have been reported. The potential dependence of the emission intensity (Fig. 19(b-h)) and luminescent spectrum (Fig. 20) were observed at a Ru(bpy)$_3^{2+}$ SAM-modified electrode in a solution containing C$_2$O$_4^{2-}$, and the following reactions were considered to take place within the positive potential region where emission was observed [144]:

\[
\begin{align*}
\text{Ru(bpy)}_3^{2+} & \rightarrow \text{Ru(bpy)}_3^{3+} + e^- \quad (1) \\
\text{Ru(bpy)}_3^{2+} + \text{C}_2\text{O}_4^{2-} & \rightarrow \text{Ru(bpy)}_3^{2+} + \text{CO}_2 + \text{CO}_3^{2-} \quad (2) \\
\text{Ru(bpy)}_3^{2+} + \text{CO}_3^{2-} & \rightarrow \text{Ru(bpy)}_3^{2+} + \text{CO}_2 \quad (3) \\
\text{Ru(bpy)}_3^{2+} & \rightarrow \text{Ru(bpy)}_3^{2+} + h\nu \quad (4) \\
\text{Ru(bpy)}_3^{2+} & \rightarrow \text{Ru(bpy)}_3^{3+} + e^- \quad (5)
\end{align*}
\]

In these processes, electrochemically generated Ru(bpy)$_3^{2+}$ oxidizes C$_2$O$_4^{2-}$, forming CO$_2$ and CO$_3^{2-}$, and becomes Ru(bpy)$_3^{2+}$, which again donates an electron to the electrode (reaction (1)). Thus, the Ru(bpy)$_3^{2+}$ thiol head group in the SAM acts as a mediator for the oxidation of oxalate, and therefore, a monotonic increase in the anodic current was observed as the potential became more positive (Fig. 19(b-h)). CO$_3^{2-}$ reduces Ru(bpy)$_3^{2+}$ to Ru(bpy)$_3^{2+}$, which has excess energy. Ru(bpy)$_3^{2+}$ may directly donate an electron to the electrode (reaction (5)) or relax to Ru(bpy)$_3^{2+}$ with light emission efficiency controlled by the electron transfer rate of reaction (5), which should be dependent on
Figure 16. Schematic coupling model of the photoswitchable interactions between cytochrome c and mixed SAM of spiropyran/merocyanine-terminated and 4-pyridinethiol with (a) reduction of O_2 by COx and (c) oxidation of lactate by lactate dehydrogenase (LDH). (b) When the electrode is in the cationic merocyanine state, repulsive interactions disallow functioning of the bioelectrocatalytic processes. Reprinted with permission from [131], A. N. Shipway and I. Willner, Acc. Chem. Res. 34, 421 (2001). © 2001, American Chemical Society.

the distance between the electrode and the Ru(bpy)$^{+/+}$ head group in the SAM. Bard et al. also used the following oxidation reaction of tripropylamine (TPrA) and the above reactions (1 and 4), and they observed ECL from the generated Ru(bpy)$_3^{2+}$ at SAM-modified gold and platinum electrodes [147, 148].

$$\text{TPrA} \rightarrow \text{TPrA}^{++} + e^- \quad (6)$$
$$\text{Ru(bpy)}_3^{3+} + \text{TPrA} \rightarrow \text{Ru(bpy)}_3^{2+} + \text{TPrA}^{++} \quad (7)$$
$$\text{TPrA}^{++} \rightarrow \text{TPrA}^* + H^+ \quad (8)$$
$$\text{Ru(bpy)}_3^{3+} + \text{TPrA}^* \rightarrow \text{Ru(bpy)}_3^{2+} + \text{products} \quad (9)$$

Using this ECL behavior of the Ru(bpy)$_3^{2+}$/TPrA system, the surface hydrophobicity [147] and immobilization of DNA and protein [146] were investigated. Except for in the above-described studies, ECL behaviors at the Ru(bpy)$_3^{2+}$ SAM-modified electrodes were used to fabricate an optoelectrochemical microring array [149].

The application of a SAM in an electroluminescence (EL) device has been reported (Fig. 21 shows a schematic drawing of EL process). Yamashita et al. used gold electrodes modified with SAMs of tripod-shaped π-conjugated thiols and disulphide (Figs. 22(a-c)) and

Figure 17. Schematic diagram of an azobenzene nanotube assembly on complementary α-CD SAM/Au substrates via host-guest molecular recognition and light-induced nanotube detachment/attachment on the α-CD SAM surface. Reprinted with permission from [138], I. A. Banerjee et al., J. Am. Chem. Soc. 125, 9542 (2005). © 2005, American Chemical Society.

Figure 18. Schematic modification process of fluorescent nanospheres containing a large number (~106 per sphere) of pendant carboxylic acid moieties, which were exploited to couple the nanospheres to amineterminated thiol SAMs through amide bond formation. Reprinted with permission from [142], S. T. Plummer and P. W. Bohn, Langmuir 18, 4142 (2002). © 2002, American Chemical Society.
investigated enhanced hole injection from the EL of these SAM-modified electrodes [150]. They constructed layers of 4,4'-bis(3-methylphenyl-phenylamino)biphenyl (TPD), tris(8-hydroxyquinolinato)aluminum(III) (Alq3) and Mg-Ag alloy as hole transport, emission, and electron transport layers, respectively, on these SAMs by vacuum evaporation. As a reference, these layers deposited both on bare gold and bare ITO substrates were also used. Figures 22(d) and (e) show the EL characteristics of these devices. Both the current-voltage ($I-V$) and luminescence-voltage ($L-V$) curves of these devices shifted to higher voltages in the order of SAM(b) < SAM(a) < bare ITO < bare gold < SAM(c), where SAM(a), SAM(b) and SAM(c) represent the SAM of the molecules (a), (b) and (c), respectively, shown in Figure 22. Compared to the bare gold device, the SAM(b) device exhibited significantly improved EL performance, for example, greatly reduced operating potential, yielding much higher current and better stability. In contrast, the SAM(c) device showed EL characteristics poorer than those of the bare gold device. The different effects of the SAMs on EL properties of the devices were concluded to be due to the modification density of the SAMs, leading to a vacuum-level shift at the Au/TPD interface by the SAMs. The results of CVs at the gold electrodes modified with these SAMs showed that the packing of the tripod-shaped thiol SAM(b) was compact, that of the thiol SAM(a) was less compact, and that of the disulfide SAM(c) was very poor. These modifications influence the hole injection barrier height at the Au/TPD interface and then affect the EL characteristics of the devices.

It is quite important to apply a photoactive SAM to a biosensor, detecting the fluorescence from it [151, 152]. Sato et al. investigated the electro-oxidative chemiluminescence from a luminol/hydrogen peroxide system catalyzed by a ferrocene-thiol SAM-modified gold electrode (Fig. 23). When luminol and hydrogen peroxide were contained in the electrolyte solution, in addition to an oxidation peak due to the redox of ferrocene, a catalytic oxidation current of luminol was observed (solid line in Fig. 23(a)) and light emission was simultaneously observed (open circles in Fig. 23(b)). The ECL intensity depended on the pH of the solution. They used this system for detecting glucose in the presence of glucose oxidase [152].
There is an interesting report about fluorescence from a porphyrin incorporated in a SAM. Reich et al. constructed Au and AuNi nanowires whose surfaces were modified with SAMs of porphyrin-thiol coupling molecules [153]. Fluorescence microscopy was used to optimize the functionalization of two-segment gold–nickel nanowires for selectivity and stability of the nanowire–molecule linkages. Magnetic trapping was employed as a technique in which single nanowires are captured from a fluid suspension using lithographically patterned micromagnets. They investigated the influence of an external magnetic field on this process and suggested a model based on the interplay of dipolar forces and viscous drag from the results of investigation of the dynamics of the magnetic trapping.

7. PHOTOPATTERNING USING SAMs

As modern technology proceeds every year, the required resolution of patterning becomes much higher. Since Whitesides published a concept of microcontact printing using SAMs of alkylsiloxanes [154, 155], many studies on photopatterning using SAMs of alkylthiols have been carried out [156–167] because the use of alkylthiol SAMs with a high packing density leads to patterning with a high spatial resolution.

Crooks et al. reported patterning with a high resolution employing the following procedures shown in Figure 24(a) [157]. At first, they placed the transmission electron microscope (TEM) minigrid as a photomask in contact with a SAM composed of closed-packed HOCOC\{(CH\textsubscript{2})\textsubscript{10}\}C≡C≡C≡C\{(CH\textsubscript{2})\textsubscript{10}\}SH confined to a Au/Cr/Si surface (Fig. 24(a-A)). The entire assembly is then exposed to UV light, which induces polymerization in the unmasked regions of the SAM (Fig. 24(a-B)). Next, the unpolymerized portion of the resist is selectively desorbed using an electrochemical reductive stripping method [43] (Fig. 24(a-C)). Selective stripping is possible because the polymeric SAM is sufficiently insoluble and strongly bound to the surface through multiple Au/S and van der Waals interactions, so
Photoactive Self-Assembled Monolayers (SAMs)

that it survives potential excursions that remove monomeric alkylthiol SAMs. Resist removal results in a negative image of the mask, which can be elaborated by etching the grid image into the Au surface with an O2-saturated 1 M KOH + 10 mM KCN aqueous solution (Fig. 24(a-D)). Figure 24(b-A) is an optical micrograph of a 400-mesh (holes per linear inch) Cu TEM minigrid, which was used to pattern the Au surface. Figures 24(b-B) and 24(b-C) are scanning electron micrographs (SEMs) of a patterned Au surface, such as that illustrated in Figure 24(a-D) obtained at two different magnifications. At this level of resolution, they observed excellent reproduction of the mask features. However, close inspection reveals that the lateral dimensions of the hexagonal raised regions are somewhat less than those of the original mask. This may arise from diffraction off the mask edges, that is, from the modulation transfer function, which will tend to reduce the photon flux in areas near the vicinity of the mask edges.

Figure 24. (a) Schematic illustration of the process for making a photo-patterned surface using an HOOC(CH2)6C≡C—C≡C(CH3)6SH molecule. (b) (A) Optical micrograph of the 400-mesh minigrid used to generate the patterns shown in (B and C). Note that the right and left sides of this micrograph are slightly out of focus. (B, C) Scanning electron micrographs of a Au surface patterned using the 400-mesh TEM minigrid shown in (A). Reprinted with permission from [157], K. C. Chan et al., J. Am. Chem. Soc. 117, 5875 (1995). © 1995, American Chemical Society.

that it survives potential excursions that remove monomeric alkylthiol SAMs. Resist removal results in a negative image of the mask, which can be elaborated by etching the grid image into the Au surface with an O2-saturated 1 M KOH + 10 mM KCN aqueous solution (Fig. 24(a-D)). Figure 24(b-A) is an optical micrograph of a 400-mesh (holes per linear inch) Cu TEM minigrid, which was used to pattern the Au surface. Figures 24(b-B) and 24(b-C) are scanning electron micrographs (SEMs) of a patterned Au surface, such as that illustrated in Figure 24(a-D) obtained at two different magnifications. At this level of resolution, they observed excellent reproduction of the mask features. However, close inspection reveals that the lateral dimensions of the hexagonal raised regions are somewhat less than those of the original mask. This may arise from diffraction off the mask edges, that is, from the modulation transfer function, which will tend to reduce the photon flux in areas near the vicinity of the mask edges.

Figure 25. (a) SEM of a diamond pattern on Pd. The pattern was generated by two consecutive printings of 5-μm lines (10-μm pitch) at an angle of ~30° relative to one another. The edge roughness is ~30-70 nm and the radius of curvature at the point of the structure is ~40-50 nm. The inset shows the whole diamond. (b) SEM of a diamond pattern of gold. Note the increase in the number of pits in the surface of the gold and the radius of curvature in the point (~150 nm). Reprinted with permission from [161], J. C. Love et al., J. Am. Chem. Soc. 124, 1576 (2002), © 2002, American Chemical Society.
Leget et al. developed a scanning near-field photolithography technique in which a near-field scanning optical microscope (NSOM) coupled to a UV laser is used to selectively oxidize alkyliothins in SAMs [166, 167]. The weakly bound alkyliotholate oxidation products may either be replaced by contrasting alkyliothols to yield patterned structures as small as 20 nm or be used as resist for the etching of three-dimensional structures into the underlying substrate. They used this technique not only to make photopattering but also to investigate the kinetics of SAM photo-oxidation.

Generally, an alkyliothiol SAM on gold leaves defects and surface pits during etching, as described in detail in Section 6, and an alkyliothiol SAM on gold as a substrate is therefore not useful for construction of a patterned surface without any defects. Whitesides et al. used palladium as a substrate material to construct a patterned surface without defects [161]. Figure 25 shows structures that can be generated by the combination of microcontact printing and etching on palladium and on gold. Both films were patterned with hexadecanethiol and exposed to the most selective etchants. As clearly seen, structures on the palladium film show better edge definition and 85–90% fewer etch pits on the surface than on the gold film (particularly near the edges of the structures).

8. CONCLUSIONS

There have been studies on photocharacteristics using alkyliothiol SAMs on metals because the molecules in SAMs are arranged in order at the molecular level. Thus, we cannot review all of the related papers here. As examples, there are nonlinear optical properties [169–171], surface plasmon [172, 173], single-molecule spectroscopy [174], and so on. We expect that photoactive SAMs will be extensively investigated in a wide variety of scientific fields and will play increasingly important roles in modern nanotechnology.

REFERENCES
