Title
Analysis the future shortage and maldistribution of physician by forecasting based on System Dynamics modeling

Author(s)
Ishikawa, Tomoki

Citation
第4回北海道大学サステナビリティ学生研究ポスターコンテスト 2012年10月13日-21日 北海道大学学術交流会館 札幌市

Issue Date
2012-10-13

Doc URL
http://hdl.handle.net/2115/50334

Type
conference presentation

File Information
poster 4-16.pdf

Hokkaido University Collection of Scholarly and Academic Papers
HUSCAP
Analysis the future shortage and maldistribution of physician by forecasting based on System Dynamics modeling approach

Purpose

To evaluate the absolute number and distribution of future physicians

Conclusion

Results of this study presented some findings...
- The absolute number shortage would be resolved at Japan in the future. But it takes 12 years from 2010 before the shortage is resolved.
- Regional maldistribution would be corrected by degrees. But, the correct is slight. Furthermore, there would be some areas evaluated as “shortage”.

Findings suggested us necessity of strategic policy for ...
- Securing the absolute number of physicians: continually increasing medical school quotas
- Distribution of physician by region: Intensive allocation to areas evaluated as “shortage”

Results

Table shows increasing the number of physicians and the number of physician in Japan, Hokkaido would continue grow during 2010-2030. The number of physicians per 1000 persons in Japan would surpass the OECD average (3.1 in 2010) by 2030. However, maldistribution would correct slightly with time by decreasing of Gini coefficient. However, Figure 1 indicated luck of the absolute number would continue until 2026 from line plot of the sufficiency level. (In Hokkaido, the luck would continue until 2019) Moreover, Figure 2 showed that there would be areas evaluated as “shortage”, even if the sufficiency level reached “1.0” in Japan and in Hokkaido as a whole.

![Table: Results of the number of physicians forecasted and Gini coefficient calculated](image)

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>281,282</td>
<td>303,036</td>
<td>326,748</td>
<td>349,181</td>
<td>371,546</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>12,029</td>
<td>12,597</td>
<td>13,895</td>
<td>14,799</td>
<td>15,653</td>
</tr>
<tr>
<td>The number of physician per 1000 persons</td>
<td>2.24</td>
<td>2.40</td>
<td>2.46</td>
<td>2.90</td>
<td>3.19</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>2.43</td>
<td>2.58</td>
<td>2.58</td>
<td>2.87</td>
<td>3.18</td>
</tr>
<tr>
<td>Gini coefficient in Japan</td>
<td>0.127</td>
<td>0.204</td>
<td>0.223</td>
<td>0.221</td>
<td>0.219</td>
</tr>
<tr>
<td>Gini coefficient in Hokkaido</td>
<td>0.078</td>
<td>0.189</td>
<td>0.212</td>
<td>0.221</td>
<td>0.219</td>
</tr>
</tbody>
</table>

![Figure 1: Forecasting change of sufficiency level in Japan, and Hokkaido during 2010-2030](image)

Background

Suffering from physician shortage in Japan

There is a lack of the absolute number...

Regional maldistribution arise at once...

(Ministry of Health, and Labour and Welfare, 2010)

In addition!!

Policy change to address these matter

We increase the quota of medical schools(2007)

We set the admission frame designed to force enrollee to work specific area(2006)

The policy change may affect the supply-needs balance for physicians in the future

Methods

Modeling based on System Dynamics (SD) approach

SD is methodology of modeling and computed simulation. When SD model describes process of social change, the model consist of combination of differential equation. Strength of SD is permitting to add in the model dynamic factor. We performed retrospective comparison with simulation data and historical data to test the validity of the forecasting model.

Analysis target: all clinical physicians

Spatial units: Japan, Hokkaido, and Secondary Medical Services Area(SMSA)

Evaluation of distribution in the future

$$Gini\ coefficient = \frac{1}{n(n-1)} \sum_{i,j} \left(x_i - x_j \right)$$

n: the number of SMSA

Average of the number of physician per 10,000 x, x: the number of physician per 1000 at areas assigned as “i”, “j”

Gini coefficient was calculated to evaluate inequity of distribution. The Gini coefficient can theoretically range from 0 to 1. A low Gini coefficient indicates a more equality, while higher Gini coefficient indicates more inequality.

Evaluation of the absolute number in the future

The required number of physician

“The required number of physician”, reported by Health, Labour and Welfare Ministry, was used to define “sufficiency level”; in order to evaluate the absolute number of physicians. If the sufficiency level is ≥ 1.0, we judge as “sufficient”, if the sufficiency level is < 1.0, we judge as “shortage”.

Figure 2: Time line of change sufficiency level in each SMSA at Hokkaido