

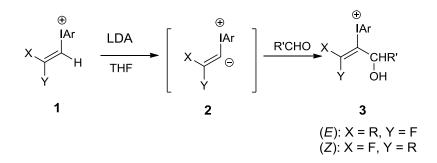
HOKKAIDO UNIVERSITY

Title	E- or Z-selective synthesis of trisubstituted (2-fluoroalkenyl)iodonium salts by the reaction of (2- fluoroalkenyl)iodonium ylides with aldehydes		
Author(s)	Shimobaba, Satoshi; Tahara, Ryuhei; Hara, Shoji		
Citation	Journal of Fluorine Chemistry, 142, 105-108 https://doi.org/10.1016/j.jfluchem.2012.07.001		
Issue Date	2012-10		
Doc URL	http://hdl.handle.net/2115/50357		
Type article (author version)			
File Information	JFC142_105-108.pdf		

E- or *Z*-Selective Synthesis of Trisubstituted (2-Fluoroalkenyl)iodonium Salts by the Reaction of (2-Fluoroalkenyl)iodonium Ylides with Aldehydes Satoshi Shimobaba, Ryuhei Tahara, Shoji Hara*

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

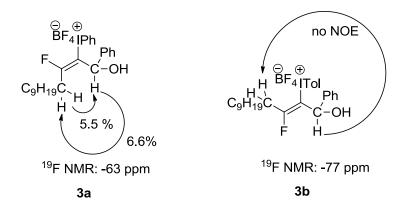
Keywords: (fluoroalkenyl)iodonium ylides, trisubstituted (2-fluoroalkenyl)iodonium salts, stereoselective synthesis


Abstract

Trisubstituted (2-fluoroalkenyl)iodonium salts were prepared *E*- or *Z*-selectively by the reaction of (fluoroalkenyl)iodonium ylides generated from (fluoroalkenyl)iodonium salts with aldehydes.

1. Introduction

Alkenyliodonium salts have been used as a versatile reagent in organic synthesis and many methods have been reported for their synthesis [1]. However, the stereoselective synthesis of acyclic alkenyliodonium salts having a substituent on the same carbon as the iodine is difficult and only few precedent works have been reported for their synthesis [2]. Recently, Ochiai *et al.* succeeded in preparing the (E)-isomer of trisubstituted (fluoroalkenyl)iodonium salts stereoselectively by the addition of iodotoluene difluoride to the unsymmetrical internal alkynes [3]. However, their method can't be applied to the synthesis of the corresponding


(Z)-isomers. Recently, we succeeded in the stereoselective synthesis of (fluoroalkenyl)boranes by using the unstable (2-fluoroalkenyl)iodonium ylides 2 generated from (2-fluoroalkenyl)iodonium salts 1 by the treatment with LDA [4]. As both (*E*)- and (*Z*)-(2-fluoroalkenyl)iodonium salts can be prepared stereoselectively, the methodology using 2 is considerably promising [5]. We report here the *E*- or *Z*-selective synthesis of trisubstituted (fluoroalkenyl)iodonium salts 3 by the reaction of 2 with aldehydes (Scheme 1).

Scheme 1. The reaction of (2-fluoroalkenyl)iodonium ylide 2 with aldehyde

2. Results and discussion

When a THF solution of (Z)-(2-fluoro-1-dodecyl)(phenyl)iodonium salt 1a [6] was treated with LDA in the presence of benzaldehyde at -78°C, a viscous liquid was obtained after a work-up procedure. The ¹H NMR spectra of the viscous liquid showed no vinylic proton, and the ¹⁹F NMR spectra showed a singlet peak at -63 ppm. In NOE studies, 5.5%-6.6% interaction was observed between allylic protons and a benzylic proton. From these observations, the product was determined to be (Z)-(3-fluoro-1-hydroxy-1-phenyltridec-2-en-2-yl)(phenyl)iodonium salt **3a**. On the other hand, when the (E)-isomer of (2-fluoro-1-alkenyl)iodonium salt 1b [7] was used in the reaction with benzaldehyde, a product different from 3a was obtained. In the ¹⁹F NMR spectra of this product, a singlet peak appeared at -77 ppm, and in NOE studies, no interaction was observed between allylic protons and a benzylic proton. From these observations. the product obtained from 1b determined was to be (E)-(3-fluoro-1-hydroxy-1-phenyltridec-2-en-2-yl)(tolyl)iodonium salt 3b (Scheme 2). Therefore, the generated ylides 2a and 2b reacted with benzaldehyde to give (E)- and (Z)-trisubstituted (fluoroalkenyl)iodonium salts 3a and 3b, respectively, without losing their original stereochemistry.

Scheme 2. NOE study of (Z)- and (E)-trisubstituted (fluoroalkenyl)iodonium salts 3a

and 3b

Both aromatic and aliphatic aldehydes can be used in the reaction, and various hydroxyalkyl groups introduced vinylic can be to the carbon of the (fluoroalkenyl)iodonium salts. Furthermore, multi-functionalized trisubstituted (fluoroalkenyl)iodonium salts (3e-g) can be prepared by using functionalized (fluoroalkenyl)iodonium salts (1c-e) as the starting material (Entries 5-7, Table 1).

Table 1

		-		
Entry	Iodonium salt 1	Aldehyde	Product	Yield (%) ^a
1	⊕ IPhBF₄ F C ₁₀ H ₂₁ 1a	PhCHO	$ \begin{array}{c} \oplus & \ominus \\ \text{IPh BF}_4 \\ F \\ C_{10}H_{21} \\ \end{array} \begin{array}{c} \oplus \\ \text{CHPh} \\ CHPh$	85
2	$C_{10}H_{21}$	PhCHO	€ ⊖ ITol- <i>p</i> BF ₄ C ₁₀ H ₂₁ ← CHPh F OH 3b	(68)
3	1 a	^t BuCHO	$ \begin{array}{c} $	70
4	1 a	EtCHO	$ \begin{array}{c} $	79
5	⊕ ⊖ IPh BF₄ F H BnO⁻(CH ₂) ₈ 1c	PhCHO	⊕ ⊖ IPh BF ₄ F ← CHPh BnO-(CH ₂) ₈ OH 3e	75
6	$ \begin{array}{c} $	PhCHO	$ \begin{array}{c} $	83
7	$ \begin{array}{c} $	PhCHO	$\begin{array}{c} \textcircled{\begin{tabular}{c} & & \\ & $	(52)

Reaction of (2-fluoroalkenyl)iodonium ylides $\mathbf{2}$ with aldehydes

^aIsolated yield based on **1** used. In parentheses, ¹⁹F NMR yield.

3. Conclusion

The (2-fluoroalkenyl)iodonium ylide generated from 2-(fluoroalkenyl)iodonium salt was shown to be used for the synthesis of the trisubstituted (2-fluoroalkenyl)iodonium salt by the reaction with aldehyde. It was also shown that the reaction proceeds stereoselectively and from (E)- and (Z)-(2-fluoroalkenyl)iodonium salts, the corresponding (E)- and (Z)-trisubstituted (fluoroalkenyl)iodonium salts were formed without loss of the original stereochemistry. Introduction of functional group to the product was also performed.

4. Experimental

4.1. General

The IR spectra were recorded using a JASCO FT/IR-410. The ¹H NMR (400 MHz) spectra, ¹⁹F NMR (376 MHz) spectra, and ¹³C NMR (100 MHz) were recorded in CDCl₃ on a JEOL JNM-A400II FT NMR and the chemical shift, δ , is referred to TMS (¹H, ¹³C) and CFCl₃ (¹⁹F), respectively. The EI-high-resolution mass spectra were measured on a JEOL JMS-700TZ. p-Iodotoluene difluoride was prepared according to the literature [8]. 1-Alkynyliodonium salts were prepared from 1-alkyne according to the literature [9]. (Z)-(2-Fluoro-1-alkenyl)iodonium salts (1a, 1c-f) were prepared from 1-alkynyliodonium salts according to the literature [6]. (E)-(2-Fluoro-1-dodecyl)iodonium salt (1b) was prepared from 1-dodecyne and *p*-iodotoluene difluoride according to the literature [7].

4.2. General procedure for the reaction of 2 with aldehydes

To a THF solution (6 mL) of (2-fluoroalkenyl)iodonium salt **1** (0.5 mmol) and an aldehyde (0.7 mmol) was added a cooled THF solution (2 mL) of LDA (0.7 mmol) at -78 °C (for (*Z*)-isomer) or at -90°C (for (*E*)-isomer), and the mixture was stirred at -60 °C for 1.5h. After the addition of a 42% aqueous HBF₄ (2 mL), the cooling bath was removed and the mixture was stirred at room temperature for 1h. Then, the product was extracted with ether (10 mL X 3) and the combined organic layer was dried over MgSO₄. After concentration under reduced pressure, the remained viscous liquid was washed with hexane. An upper hexane layer was removed by decantation (this operation was repeated twice). A volatile part was removed under high vacuum to give the (fluoroalkenyl)iodonium salt **3**.

4.2.1. (Z)-(3-Fluoro-1-hydroxy-1-phenyl-2-tridecen-2-yl)(phenyl)iodonium tetrafluoroborate (**3a**)

Viscous liquid. IR (neat): 3484, 2925, 1656, 1060 cm⁻¹. ¹H NMR δ 0.88 (3H, t *J* = 7.2 Hz), 1.15-1.40 (14H, m), 1.50-1.80 (2H, m), 2.75-2.89 (2H, dt, *J* = 23.6, 7.8 Hz), 5.67 (1H, d, *J* = 3.3 Hz), 5.30-6.00 (1H, brs), 7.10-7.49 (10H, m). ¹³C NMR δ 13.9, 22.5, 26.0, 28.9, 28.9, 29.1, 29.2, 29.3, 30.0 (d, ²*J*_{*C*-*F*} = 24.8 Hz), 31.7, 69.2 (d ³*J*_{*C*-*F*} = 3.5 Hz), 109.9, 112.2 (d, ²*J*_{*C*-*F*} = 19.7 Hz) 125.6 (2C), 128.6, 128.8 (2C), 131.6 (2C), 132.3, 135.3 (2C), 138.6 (d, ⁴*J*_{*C*-*F*} = 2.4 Hz), 168.1 (d, ¹*J*_{*C*-*F*} = 275.6 Hz). ¹⁹F NMR δ -63.28 (1F, t, *J* = 22.9 Hz) -147.79 (s, 4F). HRMS (FAB, M⁺-BF₄) calcd for C₂₅H₃₃FOI 495.1560, found 495.1540

4.2.2. (E)-(3-Fluoro-1-hydroxy-1-phenyl-2-tridecen-2-yl)(p-tolyl)iodonium tetrafluoroborate (**3b**)

Viscous liquid. IR (neat) 3480, 2925, 1651, 1059 cm⁻¹. ¹H NMR (CDCl₃) δ 0.88 (3H, t, J = 6.9 Hz), 1.00-1.65 (16H, m), 2.29 (3H, s), 2.85-3.00 (2H, m), 4.60-4.90 (1H, s), 6.00

(1H, s), 6.90-7.50 (9H, m). ¹³C NMR (CDCl₃) δ 14.0, 21.1, 22.6, 25.8, 28.9, 29.19, 29.2, 29.3, 29.4, 31.8, 33.9 (d ²*J*_{*C-F*} = 24.4 Hz), 67.2 (d ³*J*_{*C-F*} = 6.2 Hz), 106.5, 117.0 (d 2*J*_{*C-F*} = 33.9 Hz), 125.7 (2C), 128.3, 128.9 (2C), 132.5 (2C), 134.9 (2C), 139.0, 143.4, 169.5 (d ¹*J*_{*C-F*} = 281.1Hz). ¹⁹F NMR (CDCl₃) δ -77.68 (1F, q, *J* = 18.0 Hz), -147.05 (4F). HRMS (FAB, M⁺-BF₄) calcd for C₂₆H₃₅FOI 509.1717, found 509.1711.

4.2.3. (*Z*)-(5-Fluoro-3-hydroxy-2,2-dimethyl-4-pentadecen-4-yl)(phenyl)iodonium tetrafluoroborate (**3***c*)

Viscous liquid. IR (neat) 3501, 2926, 1648, 1468, 1062 cm⁻¹. ¹H NMR δ 0.87 (3H, t, J = 7.0 Hz), 0.97 (9H, s), 1.20-1.70 (16H, m), 2.40-2.80 (2H, m), 4.17 (1H, s), 5.00-5.40 (1H, m), 7.40-8.00 (5H, m). ¹³C NMR δ 14.0, 22.6, 25.4 (3C), 26.0, 29.0 (2C), 29.2 (2C), 29.4, 31.0, 31.1 (d, ² $J_{C-F} = 24.8$ Hz), 31.8, 74.1, 108.1 (d, ² $J_{C-F} = 19.8$ Hz), 110.8, 132.3 (2c), 132.7, 135.2 (2C), 168.5 (d, ¹ $J_{C-F} = 275.7$ Hz). ¹⁹F NMR δ -60.08 (1F, s), -148.31 (4F, s). HRMS (FAB, M⁺-BF₄) calcd for C₂₃H₃₇FOI 475.1873, found 475.1862. 4.2.4. (Z)-(5-Fluoro-3-hydroxy-4-pentadecen-4-yl)(phenyl)iodonium tetrafluoroborate (**3d**)

Viscous liquid. IR (neat) 3502, 2926, 1654, 1468, 1066 cm⁻¹. ¹H NMR δ 0.77 (3H, t, *J* = 7.5 Hz), 0.87 (3H, t, *J* = 7.2 Hz), 1.20-1.90 (18H, m), 2.50-2.80 (2H, m), 4.22-4.28 (1H, m), 4.85 (1H, brs), 7.40-8.05 (5H, m). ¹³C NMR δ 9.5, 14.0, 22.6, 26.0, 28.9, 29.0, 29.2, 29.3, 29.4, 29.9, 30.4 (d, ²*J*_{*C*-*F*} = 25.6 Hz), 31.8, 70.7 (d, ³*J*_{*C*-*F*} = 2.4 Hz), 110.0, 111.2 (d, ²*J*_{*C*-*F*} = 17.2 Hz), 132.3 (2C), 132.7, 135.8 (2C), 168.3 (d, ¹*J*_{*C*-*F*} = 275.9 Hz). ¹⁹F NMR δ -61.41 (1F, t, *J* = 26.3 Hz) -147.45 (4F, s). HRMS (FAB, M⁺-BF₄) calcd for C₂₁H₃₃FOI 447.1560, found 447.1588.

4.2.5. (*Z*)-(11-Benzyloxy-3-fluoro-1-hydroxy-1-phenyl-2-undecen-2-yl)(phenyl)iodonium tetrafluoroborate (*3e*)

Viscous liquid. IR (neat) 3482, 2932, 1541, 1060 cm⁻¹. ¹H NMR δ 1.20-1.80 (12H, m), 2.75-2.95 (2H, m), 3.44 (2H, t, J = 6.8 Hz), 4.47 (2H, s), 4.75-5.00 (1H, brs), 5.63 (1H, d, J = 3.4 Hz), 7.05-7.50 (15H, m). ¹³C NMR δ 25.8, 25.9, 28.8 (2C), 29.0, 29.5, 30.0 (d, ² $J_{C-F} = 25.1$ Hz), 69.1 (d, ³ $J_{C-F} = 3.6$ Hz), 70.3, 72.6, 110.0, 112.5 (d, ² $J_{C-F} = 20.1$ Hz), 125.6 (2C), 127.4, 127.5 (2C), 128.2 (2C), 128.5, 128.7 (2C), 131.6 (2C), 132.2, 135.3 (2C), 138.4, 138.7 (d, ⁴ $J_{C-F} = 1.92$ Hz), 167.9 (d, ¹ $J_{C-F} = 277.8$ Hz). ¹⁹F NMR δ -63.69 (1F, t, J = 24.4 Hz), -148.07 (4F, s). HRMS (FAB, M⁺-BF₄) calcd for C₃₀H₃₅FO₂I 573.1660, found 573.1644.

4.2.6.

(Z)-(11-Benzoyloxy-3-fluoro-1-hydroxy-1-phenyl-2-undecen-2-yl)(phenyl)iodonium tetrafluoroborate (**3***f*)

Viscous liquid. IR (neat) 3478, 2934, 1714, 1284, cm⁻¹. ¹H NMR δ 1.05-1.85 (12H, m), 2.70-3.00 (2H, m), 4.27 (2H, t, J = 6.6 Hz), 5.69 (1H, s), 7.05-8.50 (15H, m). ¹³C NMR δ 25.6, 25.9, 28.4, 28.7 (2C), 28.8, 30.0 (d, ² $J_{C-F} = 25.4$ Hz), 65.0, 69.2 (d, ³ $J_{C-F} = 3.4$ Hz), 109.9, 112.5 (d, ² $J_{C-F} = 20.1$ Hz), 125.7 (2C), 128.2 (2C), 128.6, 128.8 (2C), 129.4 (2C), 130.1, 131.6 (2C), 132.3, 132.9, 135.4 (2C), 138.6, 166.8, 168.0 (d, ¹ $J_{C-F} = 277.8$ Hz). ¹⁹F NMR δ -63.55 (1F, t, J = 22.9 Hz), -148.17 (4F). HRMS (FAB, M⁺-BF₄) calcd for C₃₀H₃₃FO₃I 587.1453, found 587.1454.

4.2.7. (Z)-{3-Fluoro-1-hydroxy-1-phenyl-10-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl) dec-2-en-2-yl}(phenyl)iodonium tetrafluroborate (**3g**)

Viscous liquid. IR (neat) 3480, 2979, 1651cm⁻¹. ¹H NMR δ 1.19 (12H, s), 1.26-1.73 (12H, m), 2.72-2.97 (2H, m), 5.02 (1H, t, *J* = 5.1 Hz), 5.67 (1H, s), 7.17-7.47 (10H, m). ¹³C NMR δ 21.7 (2C), 23.9 (2C), 24.0, 25.9, 28.6, 28.8, 29.0, 30.0 (d, ²*J*_{C-*F*} = 25.0 Hz), 36.0, 69.1 (d, ³*J*_{C-*F*} = 3.1 Hz), 81.7 (2C), 100.6, 110.0, 112.5 (d, ²*J*_{C-*F*} = 19.3 Hz), 125.63 (2C), 128.5, 128.8 (2C), 131.6 (2C), 132.3, 135.3 (2C), 138.6, 167.9 (d, ${}^{I}J_{C-F}$ =276.1 Hz). 19 F NMR δ -63.56 (1F, t, J = 22.8 Hz), -148.3 (4F, s). HRMS (FAB, M⁺-BF₄) calcd for C₂₉H₃₉FO₃I 581.1922, found 581.1931.

Notes and references

- [1] As for the reviews, see: (a) N. S. Pirkuliev, V. K. Brel, N. S. Zefirov, Russ. Chem.Rev. 69 (2000) 105-120.
- (b) V. V. Zhdankin, P. J. Stang, Chem. Rev. 102 (2002) 2523-2584.
- (c) P. J. Stang, J. Org. Chem. 68 (2003) 2997-3008.
- (d) E. D. Matveeva, M. V. Proskurnina, N. S. Zefirov, Heteroatom Chemistry 17 (2006) 595-617.
- (e) V. V. Zhdankin, P. J. Stang, Chem. Rev. 108 (2008) 5299-5358.
- (f) P. J. Stang, J. Org. Chem. 74 (2009) 2-20.
- (g) M. S. Yusubov, A. V. Maskaev, V. Zhadankin, Arikivoc (2011) 370-409.
- [2] (a) M. Ochiai, M. Kunishima, K. Fuji, M. Shiro, Y. Nagao, Chem. Commun. (1988) 1076-1077.
 - (b) T. Kitamura, R. Furuki, H. Taniguchi, P. J. Stang, Tetrahedron 48 (1992) 7149-7156.
 - (c) I. Papoutsis, S. Spyroudis, A. Varvoglis, Tetrahedon 54 (1998) 1005-1012.
- [3] M. Ochiai, M. Hirobe, A. Yoshimura, Y. Nishi, K. Miyamoto, M. Shiro, Org. Lett. 9 (2007) 3335-3338.
- [4] (a) S. Hara, T. Guan, M. Yoshida, Org. Lett. 8 (2006) 2639-2641.
- (b) T. Guan, M. Yoshida, S. Hara, J. Org. Chem. 72 (2007) 9617-9621.

- [5] As for the preceeding works of the alkenyliodonium ylide, see: (a) P. J. Stang, H.Wingert, A. M. Arif, J. Am. Chem. Soc. 109 (1987) 7235-7236.
- (b) M. Ochiai, Y. Takaoka, Y. Nagao, J. Am. Chem. Soc. 110 (1988) 6565-6566.
- (c) T. Kitamura, P. J. Stang, Tetrahedron Lett. 29 (1988) 1887-1890.
- (d) M. Ochiai, M. Kunishima, S. Tani, Y. Nagao, J. Am. Chem. Soc. 113 (1991) 3135-3142.
- (e) M. Ochiai, K. Uemura, Y. Masaki, J. Am. Chem. Soc. 115 (1993) 2528-2529.
- (f) T. Sueda, T. Nagaoka, S. Goto, M. Ochiai, J. Am. Chem. Soc. 118 (1996) 10141-10149.
- (g) T. Guan, K. Takemura, H. Senboku, M. Yoshida, S. Hara, Tetrahedron Lett. 49 (2008) 76-79.
- [6] M. Yoshida, S. Hara, Org. Lett. 5 (2003) 573-574.
- [7] (a) S. Hara, M. Yoshida, T. Fukuhara, N. Yoneda, Chem. Commun. (1998) 965.
- (b) M. Yoshida, K. Kawakami, S. Hara, Synthesis (2004) 2821-2824.
- [8] M. Sawaguchi, S. Ayuba, S. Hara, Synthesis (2002) 1802-1803.
- [9] M. Yoshida, N. Nishimura, S. Hara, Chem. Commun. (2002) 1014.