Title
Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment.

Authors
Koji Mori,1 Takao Iino,2 Ken-ichiro Suzuki,1 Kaoru Yamaguchi1 & Yoichi Kamagata3
1NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
2Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
3Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 400-8511, Japan

Corresponding author
Koji Mori
NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
Tel, +81-438-20-5763; Fax, +81-438-52-2329; E-mail, mori-koji@nite.go.jp

Running title
Marine aceticlastic methanogen, Methanosaeta pelagica
ABSTRACT

Acetate is a key compound for anaerobic organic matter degradation, and so far, two genera, *Methanosaeta* and *Methanosarcina*, are only contributors for acetate degradation among methanogens. An aceticlastic methanogen, designated strain 03d30qT, was isolated from a tidal flat sediment in Futtsu, Japan. The phylogenetic analyses based on 16S rRNA and *mcrA* genes revealed that the isolate belonged to the genus *Methanosaeta*, but the optimal Na\(^+\) concentration for growth shifted to marine environments unlike the other known *Methanosaeta* species. The quantitative estimation by using a real-time PCR indicated that the 16S rRNA gene of the genus *Methanosaeta* was detected in the sediments and the relative abundance ranged from 3.9% to 11.8% of the total archaeal 16S rRNA genes. Also, the amount of the genus *Methanosaeta* increased with increasing depth and was much higher than that of the genus *Methanosarcina*. This is the first report of marine *Methanosaeta* species, and on the basis of phylogenetic and characteristic studies, the novel species is proposed, “*Methanosaeta pelagica*” sp. nov., with type strain 03d30qT.
INTRODUCTION

The global budget of atmospheric CH₄ is on the order of 500-600 Tg CH₄ per year (26), and approximately 74% of the emitted CH₄ is derived from biological methanogenesis (5, 12, 17). Acetate is a key compound for anaerobic organic matter degradation, and it accounts for two-thirds of total CH₄ generated (18). However, so far, only two genera, *Methanosarcina* and *Methanosaeta* are known as aceticlastic methanogens. *Methanosarcina* is a relative generalist that prefers methanol and methylamine to acetate (2), while *Methanosaeta* is a specialist that uses only acetate (3). Analyses of the complete genome sequences of *Methanosarcina acetivorans*, *Methanosarcina mazei* and *Methanosaeta thermophila* revealed that two genera employ different enzymes to catalyze the first step of acetoclastic methanogenesis while the core steps of methanogenesis are similar in the two genera (10, 14, 51). In fact, as phenotype, the distinction of affinities for acetate between two genera has been known among the scientists working in this field: *Methanosaeta* shows a much lower minimum threshold for acetate utilization (7-70 μM) than *Methanosarcina* (0.2-1.2 mM) (17). Accordingly, *Methanosaeta* adapts to the low acetate environments, and it was often detected more dominantly than *Methanosarcina* in the environments such as rice fields (15), landfill sites (24, 34) and anaerobic digestors (25, 49). *Methanosaeta* is widely distributed in nature and probably the predominant CH₄ producer on earth.

Methanogens are abundant in habitats where electron acceptors such as oxygen, nitrate and sulfate are limiting. In anaerobic marine habitats, owing to the existence of sulfate in seawater, organic matter degradation is usually performed by sulfate-reducing bacteria, and anaerobic oxidation of CH₄ that is produced by methanogenesis beneath the sulfate-reducing layers is also performed by ANME clusters (1, 22, 28, 42). Meanwhile, many studies in marine sediments have demonstrated that the methanogenesis also occur in the high sulfate concentration layer and the anaerobic methane oxidation layer as well as the deep sulfate-depleted layer (6, 8, 45). Methylotrophic methanogens containing *Methanosarcina* are regarded as major contributors to the CH₄ production here because methylated compounds are not utilized efficiently by sulfate-reducing bacteria and are termed noncompetitive substrates (40). In marine sediments, particularly deep sulfate-depleted layer, CH₄ has been considered to originate from H₂/CO₂ rather than acetate (60). To date, methylotrophic, hydrogen and acetate-utilizing methanogens have been isolated from the marine sediments (13, 20, 52).

As aceticlastic methanogens, *Methanosarcina* have been isolated from the marine sediments while *Methanosaeta* have not yet. However, because acetate concentration of pore water in marine sediments are usually below 20 μM (19, 44), it would appear that the conditions are suitable for *Methanosaeta* rather than *Methanosarcina*. In the present study, we report the isolation of an aceticlastic methanogen belonging to *Methanosaeta* from tidal flat sediment, and based on the results of the phylogenetic relationship and ecological investigation, we will discuss the contribution to CH₄ production from acetate in marine sediments.
MATERIALS AND METHODS

Microorganisms and growth conditions. Strain 03d30q\(^T\) (= NBRC 105920\(^T\) = DSM 24271\(^T\)) was isolated as follows in this study. *Escherichia coli* NBRC 3301 (K-12), *Methanosarcina barkeri* NBRC 100474\(^T\), *Methanosaeta thermophila* NBRC 101360\(^T\), *Methanosaeta concilii* NBRC 103675\(^T\) and *Methanosaeta harundinacea* NBRC 104789\(^T\) were used for analyses. The cultivating media were NBRC media No. 802, 837, 897, 994 and 925 (38), respectively, and the cultivating temperatures were 37°C except for *M. thermophila* (55°C).

Study area, sample collection, and measurements. Futtsu tidal flat is a foreshore sandy flat situated from the estuary of Koito River to sea in Tokyo Bay, Chiba Prefecture, Japan. Sediment samples were collected on 24 June 2005 by using a peat sampler (model DIK-105A; Daiki Rika Kogyo Co., Ltd.). For the cultivation, the collected sample was transported to our laboratory in a sealed nylon bag with an O\(_2\)-absorbing and a CO\(_2\)-generating agent (Anaero-Pack; Mitsubishi Gas Chemical) and inoculated to a medium as soon as possible. For the molecular analysis, the collected samples in 2-ml tubes were stored at -80°C until extraction of the microbial DNA. Temperature of the sediment was measured on site by a thermometer. Salinity and pH of pore water were measured on site by a refractometer (ATC-S/Mill-E; ATAGO) and a pH meter (D-13; Horiba), respectively.

Enrichment and isolation of acetoclastic methanogen. In order to enrich and isolate acetoclastic methanogens, NBRC medium No. 1108 was used. The medium was composed of the following salts and solutions (liter\(^{-1}\)): 1.19 g KH\(_2\)PO\(_4\), 0.21 g K\(_2\)HPO\(_4\), 3.05 g MgCl\(_2\)-6H\(_2\)O, 0.15 g CaCl\(_2\)-2H\(_2\)O, 0.54 g NH\(_4\)Cl, 20 g NaCl, 6.56 g sodium acetate, 1.5 g Bacto Yeast Extract (Difco), 0.4 g Bacto Tryptone (Difco), 0.14 g Coenzyme M (2-Mercaptoethanesulfonic acid sodium), 2.5 g NaHCO\(_3\), 1 mg resazurin, 2 ml trace element solution (36), 10 ml vitamin solution (36), and 0.36 g Na\(_2\)S-9H\(_2\)O. The medium was prepared in culture vessel with butyl-rubber stoppers and aluminum caps under N\(_2\)/CO\(_2\) (80/20 [vol/vol]). For the enrichments and routine cultivations, 50-ml culture vessel containing 20 ml of the liquid medium were used.

Study of phenotypic and chemotaxonomic futures. The optimum temperature, pH, and Na\(^+\) concentration for growth were determined by examining the time course of CH\(_4\) production. The pH of medium was adjusted by adding Na\(_2\)CO\(_3\) or HCl at room temperature. Na\(^+\) concentration range for growth of each *Methanosaeta* species was examined by using each medium adding various concentration of NaCl. The gas phase of the cultures was analyzed by gas chromatography using a thermal conductivity detector and a Molecular Sieve 60/80 column (both of Shimadzu). The G + C content of extracted genomic DNA was analyzed using high performance liquid chromatography (HPLC) with a reverse-phase column (31).

Observation. An Olympus AX70 microscope was used for routine observation. For the observation of ultrathin section of cells, cells were prepared by using rapid freezing and the freeze-substitution method (63). After the procedures, cells were embedded, stained (63), and observed using a transmission electron microscope (H-7000; Hitachi) operating at 100 kV.
DNA extraction, PCR, sequencing, and quantitative PCR. The extraction and purification of the genomic DNA of microorganisms were performed as previously described (37). The 16S rRNA gene of microorganisms was amplified and sequenced as previously described (35). The partial mcrA (alpha subunit of methyl-coenzyme M reductase) gene was amplified using primers MR1mod (5'-GAC CTS CAC TWC GTV AAC AAC-3') and ME2mod (5'-TCA TBG CRT AGT AGT TNG GRT AGT-3') that were slightly modified primers MR1 (50) and ME2 (16) based on the genome sequence of M. thermophila (CP000477). The PCR amplification and sequencing of the products were performed as previously described conditions (33).

The genomic DNA of the microbial cells in the sediments was extracted using Power Soil DNA Isolation Kit (MoBio). An analysis of a quantitative PCR was performed as previously described (35) except for primer sets and standards. The following 16S rRNA gene-targeted PCR primer sets were used: Bac349F and Bac806R (55) for the domain Bacteria, A344F (4) and ARC915 (54) for the domain Archaea, MX825cm (5'- GCT AGG TGT CRG YCA CGG TGC GA-3') modified MX825c (7) and ARC915 for the genus Methanosaeta, and MS821c (5'-GCT CGC TAG GTG TCA GGC ATG GCG-3') (47) and ARC915 for the genus Methanosarcina. For the construction of the template standards for each primer set, the dilution series of the 16S rRNA gene PCR products of E. coli (for Bacteria), M. thermophila (for Archaea and Methanosaeta) and M. barkeri (for Methanosarcina) were used. These PCR products were used in each real-time PCR analysis to calculate the copy number of the 16S rRNA genes in the sediment samples. Two tests were performed to confirm the specificity of the real-time PCR assay. First, a melting-curve analysis was performed after the amplification. Second, the sizes of the PCR products were confirmed by gel electrophoresis. In addition to them, as for the assays of the genera Methanosaeta and Methanosarcina, the real-time PCR products were cloned and sequenced using the TOPO TA Cloning Kit (Invitrogen) and M13 primer set to confirm the specificity.

Phylogenetic analysis. Phylogenetic analyses were carried out using the 16S rRNA gene sequence and the deduced amino acid sequence of the mcrA gene. The 16S rRNA gene sequences were aligned against an ARB data set using the ARB program (29), and the resulting alignment was manually refined based on primary and secondary structural considerations. The data set of the mcrA gene was aligned using program Clustal X (56). Phylogenetic trees were inferred by neighbor-joining (NJ) with the software packages of Clustal X, and 1,000 replicate data sets were used for bootstrap analysis (48, 56).

Nucleotide sequence accession number. The GenBank/EMBL/DDBJ accession numbers for the sequences of 16S rRNA and mcrA genes are XXXXXX-XXXXXX.

RESULTS

Site description. Core samples of sandy sediments were collected from 2 points (samples 031 and 032) at low tide. Because the sample 031 was near a sea grass and the sediment was blackish in whole, the conditions were inferred to be totally anaerobic. As for the 032 sample, the sediment
gradually came to black from gray with increasing depth, and the deeper sediment probably maintained anaerobic conditions. Each sediment sample at 3 depths (10, 35 and 60 cm) was selected for the molecular analysis, and the 032 samples at 35 and 60 cm in depths were used for the enrichment of aceticlastic methanogens. The temperature, pH and salinity of the sediments were 21°C, 7.3 and 32‰ on average, respectively. Those of the surrounding sea water were 25°C, 7.8 and 31‰, respectively.

Enrichment and isolation. For the primary enrichment of aceticlastic methanogens, 1 g of each sediment sample was inoculated into the medium and incubated at 20 and 30°C. After a 1-month cultivation, microbial growth and CH₄ formation were observed in all cultures, and then enriched cultures were transferred to the fresh medium. The procedure was repeated several times. After that, microscopic observation indicated that *Methanosaeta*-like cells were enriched in the culture of the sample 032 (60 cm in depth) at 30°C. Therefore, we focused on the enrichment and tried to obtain a pure culture. Because growth of enriched microorganisms could not be achieved successfully on medium solidified with 2% agar, an attempt was made to isolate microorganisms by the serial dilution method. We found that the *Methanosaeta*-like cells were dominant and the transferred culture at higher dilution (>10⁷) continuously grew in the medium removing yeast extract and tryptone although more than 3 months were necessary for confirming its growth. After repeating the maximum dilution several times, an aceticlastic methanogen, designated strain 03d30qᵀ, was obtained (Fig. 1A). The purity of the isolate was verified by determination of the 16S rRNA gene sequence amplified from the extracted DNA using the various primer sets (36) and inoculation into following media: the medium under H₂/CO₂ (80/20 [vol/vol], 150 kPa) as substitute for N₂/CO₂; the medium supplemented with 10 mM sodium lactate, 10 mM sodium sulfate and 10 mM sodium thiosulfate; NBRC medium No. 325 (38) for aerobic heterotrophs. The results showed that a trace of contaminant was not observed and culture of strain 03d30qᵀ was pure.

Phylogenetic analysis. Almost the full-length 16S rRNA gene sequences of strain 03d30qᵀ (1,383 bp; XXXXXXXX) and *M. concilii* NBRC 104675ᵀ (1,407 bp; XXXXXXXX) were determined. Phylogenetic analysis based on the 16S rRNA gene sequence (Fig. 2) indicated that strain 03d30qᵀ belonged to the genus *Methanosaeta* and sequence similarities between the isolate and the valid species, *M. concilii*, *M. thermophila* and *M. harundinacea* were 92.8, 92.5 and 97.0%, respectively. In the genus *Methanosaeta*, strain 03d30qᵀ formed a cluster with environmental clone sequences retrieved from saline environments such as hydrothermal sediments, cold-seep sediments, oil reservoirs, marine methane hydrates and ancient seawater (11, 20, 32, 39, 43, 46) although it included the sequences from terrestrial environments and *M. harundinacea*, which were isolated from a UASB reactor treating beer-manufacture wastewater (30). The cluster was clearly separated from the ANME clusters that were often retrieved from marine sediments. The sequence divergence for the cluster was 9.4%.

In addition to the 16S rRNA gene sequence, the *mcrA* gene sequences of strain 03d30qᵀ (1,160 bp; XXXXXXXX), *M concilii* NBRC 103675ᵀ (1,160 bp; XXXXXXXX) and *M. harundinacea* NBRC
104789T (1,160 bp; XXXXXXX) were also determined. The neighbor-joining tree for McrA (Fig. 3) demonstrated that strain 03d30qT was also associated with the genus Methanosaeta and the similarities between the isolate and M. concilii, M. thermophila and M. harundinacea were 82.2, 85.6 and 90.9%, respectively.

Physiology of the isolate and Na+ requirement. Morphologically, the cells of strain 03d30qT were weakly auto-fluorescent rods, and many multicellular filaments were microscopically observed (Fig. 1A). There was a tubular sheath enclosing some cells and the individual cells within the sheath had cytoplasmic membrane (Fig. 1B). The G+C content of the genomic DNA of strain 03d30qT was 45.4 mol%. Strain 03d30qT utilized acetate as the sole energy source, and yeast extract stimulated its growth. Strain 03d30qT only used acetate as energy and carbon sources. Growth and methane formation were not observed on H2/O2 (80/20; 125 kPa), formate (40 mM), methanol (20 mM), ethanol (20 mM), methylamine (20 mM), dimethylamine (20 mM), trimethylamine (20 mM) or dimethyl sulfide (4 mM). Strain 03d30qT was able to grow between 20ºC and 35ºC, and pH 6.0 and 7.8: its optimum growth conditions were 30ºC and pH 7.5. Effect of Na+ concentration in the medium on growth as CH4 production of strain 03d30qT and Methanosaeta species were shown in Fig. 4. The Na+ concentrations for growth of strain 03d30qT ranged from 0.20 to 0.80 M, with an optimum of 0.28 M. The other Methanosaeta species optimally grew in each medium containing the lowest Na+ concentration. The upper Na+ concentration for growth of M. concilii, M. thermophila and M. harundinacea were 0.40, 0.56 and 0.34 M, respectively. Strain 03d30qT had a doubling time of 12.4 day under the optimum growth conditions (30ºC, pH 7.5 and in 0.28M Na+).

Environmental quantification. For the field estimation of aceticlastic methanogens in the tidal flat sediment, quantitative real-time PCR assays using the 16S rRNA gene copy number were performed (Fig. 5). The relative abundance of the genera Methanosaeta and Methanosarcina were calculated as the percentages of the total archaeal 16S rRNA gene copy number in the DNA extracts (Table 1). There was a trend that Bacteria decreased and Archaea increased with increasing depth. Like the tendency of Archaea, the amount of the genus Methanosaeta increased with increasing depth although their proportions in the total Archaea ranged from 3.9 to 11.8% and did not correlate with depth. The amount of the genus Methanosarcina was less than one-tenth of that of the genus Methanosaeta, and at a maximum, the proportion was 0.9% of the total Archaea.

DISCUSSION

Ecology In the present study, we firstly succeeded in the isolation of aceticlastic methanogen belonging to the genus Methanosaeta from marine environments. The phylogenetic analyses based on the 16S rRNA gene have indicated that Methanosaeta species inhabit saline environments such as marine sediments, gas hydrate sediments, hydrothermal sediments, oil reservoir and natural gas filed (11, 20, 32, 39, 43, 46), although it is difficult to distinguish clearly between saline and terrestrial Methanosaeta species by the phylogenetic analysis (Fig. 2). These analyses has also suggested that Methanosaeta species detected as clonal genes in saline environments are probably the saline-adapted
species. Our isolated strain is obviously halophilic and adapts to saline environments unlike the other
Methanosaeta species isolated so far (Fig. 4). We firstly demonstrated that Methanosaeta species can
grow in saline environments and saline-adapted Methanosaeta species are ubiquitous in saline
environments. Accordingly, Methanosaeta species seems to contribute to anaerobic acetate
degradation in saline environments as well as terrestrial environments.
There are much larger areas of non-seep marine sediments, but these have been much less studied. Some reports revealed that the constituent members in the sediments were similar to those in some
seep sediment (21, 23, 44, 57, 61, 62). Global CH₄ production in marine sediments is very
significant but the large fraction is converted to CO₂ by ANME in seep and non-seep sediments and by
aerobic methanotrophs in the water column (1, 41). These CH₄ is mainly produced from
methanogens living under the ANME layer and methylotrophic methanogens although hydrogen and
acetate are mainly consumed by sulfate-reducing bacteria in surface layer (27, 40). However,
generally sulfate is depleted at a depth of tens of centimeters to several meters, and potentially
methanogenesis becomes the dominant terminal oxidation process in the sulfate-depleted layer. In
addition, CH₄ production has been detected and methanogen has been retrieved from the sediments
with high sulfate concentration (6, 8, 19, 20, 45). In the present study, by the real-time PCR analysis
using the Methanosaeta-specific primer set, the 16S rRNA gene fragments of the genus were detected
in the tidal flat sediments and the amount increased with increasing depth (Fig. 5). Interestingly, the
amount of Methanosaeta was ten times higher than that of Methanosarcina. The result may reflect
that the CH₄ production from acetate originates from Methanosaeta rather than Methanosarcina and
Methanosaeta contributes to anaerobic organic matter degradation in tidal flat sediments. Acetate
concentration of pore water in marine sediments are usually below 20 μM (20, 44). Therefore, in
marine sediments, Methanosaeta has an advantage in acetate utilization than Methanosarcina from the
aspect of affinity for acetate (17).

Although several strains of aceticlastic methanogens belonging to Methanosarcina have been isolated
from marine sediments (13, 20, 52, 58), isotopic evidence suggests that acetate is a minor precursor to
methanogenesis and the rate of acetate oxidation to CO₂ is higher than that of CH₄ production in the
surface layer (44, 60). On the other hand, there is a case that growth of Methanosaeta could not be
observed although it was detected by the molecular approach (24). Certainly, the enrichment and
isolation of Methanosaeta are difficult tasks among methanogens because of its slow growth. In
addition, Wellsbury et al. reported that it may be difficult to distinguish between abiological
thermogenic and biological aceticlastic methanogenesis in marine sediments (9, 59). These facts
may suggest that aceticlastic CH₄ generation in marine sediments has previously been underestimated.
Parkes et al. showed that trace of Methanosaeta was detected and the acetate concentration was kept at
a low level in marine sediments although the rate of CH₄ production from acetate was equivalent to
one-quarter of that from CO₂ (44), indicating that there are sufficient acetate-utilizing microorganisms
to maintain the ecology in the site. Aceticlastic methanogens may thinly and broadly contribute
acetate degradation in marine sediments, particularly tidal flat sediments where a lot of organic matter
is often supplied to.

In conclusion, we firstly obtained the marine *Methanosaeta* species from the tidal flat sediment and suggested a possibility for the contributor for acetate degrading in saline environments. Further analyses for acetate degradation in tidal flat sediments such as amounts of acetate, sulfate, methanogens and sulfate-reducing bacteria are needed.

Taxonomy Characteristics of strain 03d30q^T^ and *Methanosaeta* species are summarized in Table 2. The phylogenetic tree based on 16S rRNA gene (Fig. 2) revealed that strain 03d30q^T^ belonged to the genus *Methanosaeta*, with *M. harundinaceae* as the closest relative (sequence similarity, 97.0%). Similar trend was also found for phylogenetic analysis based on McrA (Fig. 3). These results suggested that a new species should be created for the isolate (53). In addition, the G + C content of genomic DNA, the sensitivities to Na^+^ concentration and temperature for growth differentiated strain 03d30q^T^ from the other *Methanosaeta* species. In particular, the difference of Na^+^ sensitivity was a criterion for discriminating strain 03d30q^T^ from the other *Methanosaeta* species: strain 03d30q^T^ was a sole halophilic species in the genus *Methanosaeta*. For the reasons given above, strain 03d30q^T^ represents a novel species within the genus *Methanosaeta*, for which the name *Methanosaeta pelagica* sp. nov. is proposed.

Description of *Methanosaeta pelagica* sp. nov.

Methanosaeta pelagica (pe.la’gi.ca. L. fem. adj. *pelagica*, pertaining to the sea). Single cells are 0.5 μm wide and 2.5-11.0 μm long, and long sheathed chains of cells form. It shows weakly blue-green autofluorescence under epifluorescence microscopy. Strictly anaerobic. Acetate is the only substrate for growth and CH₄ production; H₂/CO₂, formate, methanol, ethanol, methylamine, dimethylamine, trimethylamine or dimethyl sulfide do not support growth. Yeast extract is essential for growth. The optimum growth conditions are 30°C, pH 7.5 and in 0.28M Na^+^ concentration (1.6% NaCl). The DNA G + C content of the type strain is 45.4 mol%. The type strain, 03d30q^T^ (= NBRC 105920^T^ = DSM 24271^T^), was isolated from a tidal flat sediment in Tokyo Bay, Chiba Prefecture, Japan.

ACKNOWLEDGMENTS

We thank the staff of Futtsu fishermen’s union for collecting the sediment samples. We also thank Kuniko Shimamura and Shinobu Iwasaki for technical support.

REFERENCES

blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol
62:668-75.

a comparison of the acetate metabolism in \textit{Methanothrix soehngenii} and \textit{Methanosarcina} spp.
FEMS Microbiology Reviews 88:181-198.

Whitman (ed.), Microbial production and consumption of greenhouse gased: methane,
nitrogen, oxides, and halomethanes. ASM Press.

Alaska, including cultivated methanogens, and description of \textit{I} sp. nov. Appl Environ

coastal subsurface sediments: a cultivation approach using various electron acceptors and

Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van
Leeuwenhoek 89:423-34.

44 anaerobic digesters as determined by single strand conformation polymorphism analysis

oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol
73:3348-62.

32:1363-71.

30. Ma, K., X. Liu, and X. Dong. 2006. \textit{Methanoseta harundinacea} sp. nov., a novel
G+C content of deoxyribonucleic acid by high-performance liquid chromatography.
33. Mori, K., and S. Harayama. in press. Methanobacterium petrolearium sp. nov. and
Methanobacterium ferruginis sp. nov., novel mesophilic methanogens isolated from salty
34. Mori, K., R. Sparling, M. Hatsu, and K. Takamizawa. 2003. Quantification and diversity of
chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from
Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a
38. NBRC. 2010. NBRC Catalogue of Biological Resources: Microorganisms,
microorganism-related DNA resources, and human-related DNA resources., 2nd ed. National
Institute of Technology and Evaluation (NITE), Chiba, Japan.
39. Orcutt, B., et al. 2010. Impact of natural oil and higher hydrocarbons on microbial diversity,
Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.
Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl
community structure and diversity in the sediments of an active submarine mud volcano
(Kazan mud volcano, East Mediterranean Sea). FEMS microbiology ecology 72:429-44.
44. Parkes, R. J., et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface
45. Parkes, R. J., B. A. Cragg, and P. Wellsbury. 2000. Recent studies on bacterial populations

TABLE 1. Relative abundances of *Archaea*, and the genera *Methanosaeta* and *Methanosarcina* calculated by real-time PCR analyses.

<table>
<thead>
<tr>
<th>Sample (cm)</th>
<th>Depth (cm)</th>
<th>Abundance of the 16S rRNA gene number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Archaea in the total Prokaryotes</td>
</tr>
<tr>
<td>031</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>35</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>35</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2. Comparison of properties among the species of the genus *Methanoseta*.

<table>
<thead>
<tr>
<th>Species</th>
<th>“M. pelagica”</th>
<th>M. concilli</th>
<th>M. thermophila</th>
<th>M. harundinacea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type strain</td>
<td>03d30q<sup>T</sup></td>
<td>GP6<sup>T</sup></td>
<td>P<sub>T</sub><sup>T</sup></td>
<td>8Ac<sub>T</sub></td>
</tr>
<tr>
<td>Habitat</td>
<td>Tidal-flat sediment</td>
<td>Anaerobic digestor</td>
<td>Anaerobic digestor</td>
<td>Anaerobic digestor, mud in thermal lake</td>
</tr>
<tr>
<td>Optimum growth conditions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp. (°C)</td>
<td>30</td>
<td>35-40</td>
<td>55-60</td>
<td>34-37</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
<td>7.1-7.5</td>
<td>6.5-6.7</td>
<td>7.2-7.6</td>
</tr>
<tr>
<td>Na<sup>+</sup> conc. (M)</td>
<td>0.28</td>
<td><0.06</td>
<td><0.13</td>
<td><0.02</td>
</tr>
<tr>
<td>Effect on yeast extract for growth</td>
<td>Require</td>
<td>Inhibit</td>
<td>Inhibit*</td>
<td>Require</td>
</tr>
<tr>
<td>G+C content (mol%)</td>
<td>45.4 (HPLC)</td>
<td>50.3 (Tm)</td>
<td>52.7 (HPLC)</td>
<td>55.7 (Tm)</td>
</tr>
</tbody>
</table>

*Yeast extract inhibits growth of some strains of *M. thermophila*.
FIGURE LEGENDS

Fig. 1. Phase-contrast micrograph of strain 03d30q⁰ (A; bar, 10 μm). Ultrathin section of strain 03d30q⁰ observed with a transmission electron microscope (B; bar, 2 μm).

Fig. 2. Neighbor-joining tree based on 16S rRNA gene sequence of strain 03d30qT and relatives. The probability scores at branch points obtained are indicated by solid circles (above 95%) and open circles (above 90%). The sequence obtained from isolates are indicated in bold. Environmental clonal sequences retrieved from saline environments are indicated by grayish squares. GenBank/EMBL/DDBJ accession numbers are shown in parentheses. Bar, 0.02 substitutions per compared nucleotide site.

Fig. 3. Neighbor-joining tree showing the relationships between strain 03d30q⁰ and relatives based on deduced McrA sequences. The probability scores at branch points obtained are indicated by solid circles (above 95%) and open circles (above 90%). GenBank/EMBL/DDBJ accession numbers are shown in parentheses. Bar, 0.02 substitutions per compared positions.

Fig. 4. Effect of Na⁺ concentration on CH₄ production of strain 03d30q⁰ (solid circles), *M. concilii* (open triangles), *M. thermophila* (open squares) and *M. harundinaceae* (open circles).

Fig. 5. Copy numbers of 16S rRNA genes of *Bacteria* (triangles), *Archaea* (squares), *Methanosaeta* (circles) and *Methanosarcina* (diamonds) detected by real-time PCR analyses. Open and solid symbols are indicated the sediment samples collected from 031 and 032 points, respectively.
Figure 1, Mori et al.
Genus Methanosaeta

- **Methanosaeta concilii** Opitck (X16932)
 - Clone TA04 from terephthalate-degrading consortium (AF229777)
 - Clone TA01 from terephthalate-degrading consortium (AF229774)

- **Methanosaeta concilii** NBRG 103675'' (XXXXXXXX)
 - Clone EA02 from acetate-degrading methanogenic consortium (AB092914)
 - Clone BSA2A-08 from mesophilic anaerobic BSA digestor (AB175353)
 - Clone Ica_A06 from long-chain fatty acids-degrading methanogenic rector

- **Methanosaeta concilii** FE (M59146)
 - Clone TA04 from terephthalate-degrading consortium (AF229777)
 - Clone S10 from manure pit sludge (EU662681)

Family Methanosarcinaceae

- **Methanohalobium evestigatum** Z-7303T (U20149)
- **Methanosarcina barkeri** DSM 800T (AJ012094)
- Clone NAK1-a3 from natural gas field (DQ867049)
- Clone MOB7-4 from natural gas field (DQ841239)

Family Methanomicrobiales

- **Methanohalophilus mahii** DSM 5218' (M59133)
- **Methanococcoides methylutens** DSM 2507' (M59127)
- **Methanobrevibacter smithii** DSM 12139' (M59127)

- **Methanoscoccus methylotrophicus** DSM 2507' (M59127)
- **Methanobrevibacter smithii** DSM 12139' (M59127)

- **Methanohalophilus mahii** DSM 5218' (M59133)
- **Methanococcoides methylutens** DSM 2507' (M59127)
- **Methanobrevibacter smithii** DSM 12139' (M59127)

- **Methanohalophilus mahii** DSM 5218' (M59133)
- **Methanococcoides methylutens** DSM 2507' (M59127)
- **Methanobrevibacter smithii** DSM 12139' (M59127)
Figure 3, Mori et al.
Figure 4, Mori et al.
Figure 5, Mori et al.