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We develop a theory to describe the energy relaxation of photoexcited carriers in low-temperature ordered states
with a band-gap opening. Carrier relaxation time τ near and below transition temperature Tc is formulated by
examining the contributions from different carrier-phonon scatterings to the relaxation rate. Transverse acoustic
phonon modes are found to play a crucial role in carrier relaxation; their heat capacity determines the τ divergence
near Tc. Remarkable agreements with the theory and experimental data on two different materials which exhibit
contrasting τ (T ) behaviors are also demonstrated.
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I. INTRODUCTION

The nonequilibrium dynamics of photoexcited carriers
in solids has attracted considerable research interest in the
field of condensed matter physics. These dynamics are
governed by multiple scatterings of carriers and the energy
transfer to the phonon field, both of which are quantified
by the carrier relaxation time τexp and its temperature (T )
dependence. Usually the anomalous T dependence of τexp

is observed in many gapped systems, for example, phase-
ordered systems showing an energy gap opening in the
electron band below the transition temperature Tc. It has
been found that a wide variety of superconductors1–13 and
density-wave compounds14–19 show diverging behavior of τexp

near Tc, as confirmed by femtosecond time-resolved optical
spectroscopy.1,4,5,7–17,19 The divergence of τexp in these gapped
systems is believed to result from a recursive energy transfer
between electrons and phonons. Photoexcited electrons having
high energy emit a number of phonons through relaxation from
above to below the energy gap. Conversely, relaxed electrons
can be reexcited above the gap by absorbing phonon energy.
This phonon emission-reabsorption process becomes efficient
near Tc because of the small gap energy, and thus it suppresses
the relaxation of carriers, extending τexp significantly. This
anomalous phonon-mediated relaxation in gapped systems is
called the phonon bottleneck effect. This bottleneck enables
the reproduction of these experimental observations of τexp in
various gapped systems that exhibit τexp divergence at Tc.

There exists, however, a distinct class of gapped sys-
tems such as Tl-based superconductors2,6 and C60-related
materials3,18 that, instead of showing τexp divergence at Tc,
show monotonic increases in τexp with cooling across Tc. In
light of the bottleneck, the monotonic variation in τexp near Tc

appears controversial, leading to the questions of why the τexp

divergence vanishes in a portion of gapped systems despite
the well-defined energy gap formation at the Fermi level
and whether the bottleneck concept is completely invalid in
these gapped systems. Theoretical studies have been unable to
satisfactorily answer these two questions over the last decade.

In this paper, we develop a theory of photoexcited carrier
relaxation dynamics with the objective of resolving the above-
mentioned issues. We postulate that the lack of τexp divergence

even in gapped systems can be ascribed to the presence of
transverse acoustic (TA) phonon modes. Further, we state that
an ensemble of TA modes in gapped systems serves as a high-
capacity thermal sink, and the energy release to the sink from
other phonon modes facilitates the efficient cooling of carriers,
in other words, a significant reduction in τexp close to Tc. The
proposed theory is validated by the quantitative agreement with
the experimental data of τexp’s for peanut-shaped C60 polymers
and high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212); the
first of these is a typical charge density wave (CDW) material
devoid of τexp divergence.

Section II starts with a description of the phonon dynamics
based on the phonon bottleneck concept (Sec. II A), followed
by the derivation of the carrier relaxation time (Sec. II B). In
Sec. II B1, we show the kinetic Boltzmann equation taking
into account the phonon-phonon collision for gapped systems.
In Secs. II B2 and II B3, we demonstrate how to calculate the
collision terms and derive the expression of the anharmonic
decay time (τ ) below Tc (Ref. 20), respectively. Section III is
devoted to the numerical results. The temperature dependence
of τ is shown in Sec. III A. The comparison between our model
and the experimental data is made in Sec. III B. Conclusions
are presented in Sec. IV. For the explicit expression of τ , in
the Appendix, all collision terms are listed.

II. THEORY

A. Description of the phonon dynamics

First, we briefly review the conventional bottleneck concept
for τexp divergence. It is based on the assumption that photoex-
cited carrier relaxation in gapped systems is regulated by the
anharmonic slow decay of phonons.1,23 By the absorption of a
pump laser photon, electrons in the valence band are excited
far above the initial states, and they rapidly accumulate in the
upper end of the gap through carrier-carrier and carrier-phonon
interactions. Then, the carriers emit high-energy phonons
(HEPs) whose energies are higher than the gap width 2�

to relax into the lower end of the gap. The HEPs produced
can be reabsorbed to create new carriers above the gap [see
Fig. 1(a)] or they can decay in an anharmonic manner into
low-energy phonons (LEPs) that no longer excite carriers
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FIG. 1. (Color online) (a) Emission-reabsorption process of HEPs
across the energy gap with width 2�. (b) Diagram of three-
phonon scattering processes through which HEPs dissipate. Only
the scatterings that involve TA modes are relevant to the lack of
divergence in τ . (c) Phonon density of states of TA modes with cutoff
frequency �TA, and those of LA modes with �h. The maximum
frequency of the LEP is �l (see text for its definition).

because their energy is lower than 2� [see the left-hand
side panel in Fig. 1(b)]. If the reabsorption probability per
unit time is much larger than the inverse of the anharmonic
decay time (τ−1), photoexcited carriers and HEPs settle in
nearly steady states that obey the Fermi and Bose distribution
functions, respectively, with temperature T ′ that is higher than
the lattice temperature T (Ref. 1). Meanwhile, LEPs obey
the Bose distribution function with T because they remain
unperturbed after the laser pulse incident. Consequently, the
carrier relaxation is dominated by the energy transfer from
HEPs to LEPs, that is, τexp � τ , which is described by the
time evolution of the two temperatures, that is, T ′ = T ′(t) and
T = T (t). In this way, with the help of the bottleneck concept,
the carrier relaxation across the gap can be mapped into the
phonon relaxation dynamics.

It should be emphasized that in the conventional bottleneck
concept, only longitudinal acoustic (LA) phonon modes are
considered. Here, we point out the unnoticed but important role
of TA phonon modes in the HEP’s decay [see the right-hand
side panel in Fig. 1(b)]. Because TA phonon modes generate
no density modulation in the lattice, they cannot interact with
photoexcited carriers within the deformation potential theory.
This fact implies that TA modes serve as a thermal receiver
into which HEPs can dissipate,24 as a result of which the
τ divergence vanishes even at Tc. Below, we prove that this
holds true in certain gapped systems.

Before going into the derivation of τ , let us mention how
our theory is compared to the experiment. In a pump probe
experiment, a transient reflectivity change should be measured
by probe pulses. By absorbing an intense pump pulse, carriers
are excited far above the initial state: This leads to a change
in the reflectivity of the probe pulse with a delay to the
pump pulse. The magnitude of the change is proportional
to the number of the nonequilibrium carriers.1 Due to the
phonon bottleneck effect, the nonequilibrium carriers relax
down to states near the gap via electron-electron and electron-

phonon scatterings, resulting in quasi-equilibrium populations
of carriers and HEPs. They then reach equilibrium by HEP
decay. After the quasi-equilibrium, the rate of decrease in the
number of carriers is equivalent to the decay rate of HEPs:
The latter is regulated by the time evolution of T ′ and T .
Thus, the reflectivity change is time dependent, which can be
described by a two-temperature model.

B. Derivation of the relaxation time based on the
phonon bottleneck concept

1. Phonon-phonon collisions

To formulate the anharmonic decay time τ of HEPs, we
consider the time evolution of the phonon distribution function.
Following the above discussion, we divide phonon excitations
into two groups. One group consists of HEPs (�l < ωq,LA <

�h) in equilibrium temperature at T ′ that can participate
in the reabsorption process. The other group involves TA
modes (ωq,TA < �TA) and LEPs [ωq,LA < 2�/h̄(≡ �l)] in
equilibrium at T that do not participate in the reabsorp-
tion process. Here, ωq,TA and ωq,LA represent the phonon
dispersion relations, where q is the wave vector. �h, �l,

and �TA are the cutoff frequencies for the HEP, LEP, and
TA modes within the Debye approximation, respectively.
The distribution functions for the two groups are given by
n(ωq,j ) = {exp [(h̄ωq,j )/(kBx)] − 1}−1, with an appropriate
variable x = T or T ′.

The rate of change in n(ωq,j ) due to phonon-phonon
collisions is written as26

∂n(ωq,j )

∂t
= Jcol[n(ωq,j )]. (1)

The collision integral Jcol[n(ωq,j )] describes three-phonon
scattering, and it is defined by

Jcol[n(ω0)] = 2π

h̄N2

∑
q1,q2,j1,j2

|wi→f |2
(

1

2
SA + SB

)
, (2)

where SA = {[n(ω0) + 1]n(ω1)n(ω2) − n(ω0)[n(ω1) + 1] ×
[n(ω2) + 1]}δ(h̄ω0 − h̄ω1 − h̄ω2) and SB = {[n(ω0) + 1]
[n(ω1) + 1]n(ω2) − n(ω0)n(ω1)[n(ω2)+1]}δ(h̄ω2−h̄ω0−h̄ω1).
Here ωs(s = 0,1,2) is an abbreviation of ωqs ,js

, and wi→f is
the matrix element between the initial and the final state.27

Note that Jcol regulates the time evolution of the total energy
through the relationship

∂

∂t
(ELA + ETA) = KLA + KTA, (3)

Kj =
∑
q(j )

h̄ωq,j Jcol, (j = LA,TA), (4)

where the summation of Eq. (4) runs over q’s satisfying 0 <

ωq,LA < �l for j = LA and 0 < ωq,TA < �TA for j = TA.
The energy Ej is defined by

Ej =
∑
q(j )

h̄ωq,j n(ωq,j ) =
∫ y

0
h̄ωn(ω)ρj (ω)dω, (5)
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where y = �TA(�l) for j = TA (LA). ρj is the density of
states defined by

ρj (ω) = αjω
2θ (z − ω),

(
αj = 3νjN

z3
∑

j ′ νj ′

)
, (6)

where z = �TA(�h) for j = TA (LA), νj ′ is the number of
phonon branches participating in the three-phonon scattering,
N is the number of unit cells, and θ is the Heaviside step
function; the total density of states is given by ρ = ρTA + ρLA

[see Fig. 1(c)], satisfying the normalization condition 1 =∫
ρ(ω)dω/N . The Debye approximation we have used in

Eq. (6) is valid when kBT < h̄�TA(<h̄�h), which holds for
many gapped systems below Tc. We simplify n(ω) in Eq. (5)
as kBT /h̄ω1 to obtain Ej = CjT , where Cj = kBαjy

3/3 (kB

is the Boltzmann constant).
Substituting Eq. (2) into the right-hand side of Eq. (4) and

replacing the summations by integrals, we obtain

KLA = 2πw2
1

h̄2N2

∫ �l

0
dω

∫
dω′[Sa(T ,T ′)ρLA(ω)ρLA(ω′)

× ρLA(ω − ω′) + Sb(T ,T ′)ρLA(ω)ρLA(ω′)
× ρLA(ω + ω′)], (7)

KTA = 2πw2
2

h̄2N2

∫ �TA

0
dω

∫
dω′[Sa(T ,T ′)ρTA(ω)ρ(ω′)

× ρ(ω − ω′) + Sb(T ,T ′)ρTA(ω)ρ(ω′)ρ(ω + ω′)],
(8)

where ρ(ω) = ρLA(ω) + ρTA(ω) and

Sa(T ,T ′) = h̄ω

2
{[n(ω) + 1]n(ω′)n(ω − ω′) − n(ω)[n(ω′) + 1]

× [n(ω − ω′) + 1]}, (9)

Sb(T ,T ′) = h̄ω{[n(ω) + 1][n(ω′) + 1]n(ω + ω′) − n(ω)n(ω′)
× [n(ω + ω′) + 1]}. (10)

Here the first term in the brackets in Eqs. (7) and (8) are the
contributions from the three-phonon processes (i.e., decays
of two phonons with frequencies ω′ and ω − ω′ followed by
the creation of a phonon mode with ω and vice versa). The
second term is due to the decay of a phonon with ω + ω′
followed by the creation of two phonon modes with ω and
ω′ and vice versa. Equation (8) describes the three-phonon
processes in which both the LA and TA modes are involved,
whereas Eq. (7) describes the processes in which only the LA
modes are involved. To derive Eqs. (7) and (8), we assumed
that the matrix element is momentum independent, that is,
wi→f ≡ w1 (or w2) = const. when TA modes are absent from
(join in) the three-phonon scattering.

2. Calculation of the collision integral

We now derive the expression of KTA that appears in
Eq. (8). For this purpose, the integration in Eq. (8) should
be performed. The integrand in Eq. (8) has the products of the
Bose distribution functions (BDFs): n(ω), n(ω′), and n(ω ±
ω′). The temperature endowed in each BDF depends upon the
phonon mode, as given by n(ω) = {exp [(h̄ω)/(kBx)] − 1}−1

(x = T or T ′). The phonon mode with frequency ω′ (ω ± ω′)

TABLE I. Phonon mode combinations for three-phonon pro-
cesses in gapped systems.

ω ω′ ω − ω′ ω ω′ ω + ω′

K
(1)
A TA LA LA K

(1)
B TA LA LA

K
(2)
A TA TA LA K

(2)
B TA TA LA

K
(3)
A TA LA TA K

(3)
B TA LA TA

is either the TA or the LA mode; there are six patterns, as
listed in Table I. In Table I, there is no case in which both
phonons with ω′ and ω ± ω′ are in the TA mode; this is because
the integrand in Eq. (8) is always zero if all the distribution
functions—n(ω), n(ω′), and n(ω ± ω′)—are associated with
the same temperature T . Thus, the collision integral (8) can be
decomposed as

KTA =
∑

j=1,2,3

[
K

(j )
A + K

(j )
B

]
, (11)

where
∑3

i=1 K
(j )
A (

∑3
i=1 K

(j )
B ) is the integral of the first

(second) term of the bracket in Eq. (8). Each K
(j )
A(B) is

the contribution from the three-phonon processes shown in
Table I.

The following deals with a derivation of K
(1)
A , as an

example. Repeating the similar derivation, we can obtain
expressions for K

(j )
A (j = 2,3), K

(j )
B (j = 1,2,3), and KLA by

taking care of the domains in the double integral in Eqs. (7)
and (8) (see the Appendix for the expressions).

To derive K
(1)
A , let us consider the following three cases:

(i) 2�l < �TA, (ii) �l < �TA < 2�l , and (iii) �TA < �l . In
case (i), because the LA phonon modes with ω′ and/or ω − ω′
obey the BDF characterized by temperature T ′ that is higher
than the lattice temperature T , the expression of the integrand
in Eq. (8) depends on the magnitude of the frequencies ω and
ω′. Depending on ω and ω′, the domain on the ω-ω′ plane in
Eq. (8) can be decomposed into three pieces, M1, M2, and M3

[see Fig. 2(a)], so that K (1)
A = ∑

j=1,2,3 Q
(1)
A (j ), where Q

(1)
A (j )

is equal to the integral over the domain Mj . In the domain
represented by M1, the phonon modes with ω′ and ω − ω′ obey
the BDF with T ′ and T , respectively (i.e., n(ω′) � kBT ′/(h̄ω′)

FIG. 2. (Color online) Domains on the ω-ω′ plane appearing in
the double integral K

(1)
TA given by Eq. (8) for (a) 2�l < �TA and

(b) �l < �TA < 2�l .
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and n(ω − ω′) � kBT /[h̄(ω − ω′)]). Then, Q
(1)
A is written by

Q
(1)
A (1) = 2πw2

2

h̄2N2

(∫ 2�l

�l

dω

∫ ω

�l

dω′ +
∫ �TA

2�l

dω

∫ ω

ω−�l

dω′
)

×μ(ω,ω′)Sa(T ,T ′)

= w2
2γ1G

(1)
A (1)T (T ′ − T ), (12)

G
(1)
A (1) = 71

168
�7

l + 1

120

(
6�2

l �
5
TA − 10�3

l �
4
TA

+ 5�4
l �

3
TA − 72�7

l

)
, (13)

where μ(ω,ω′) = ρTA(ω)ρLA(ω′)ρLA(ω − ω′). In domain M2,
the phonon mode with ω′(ω − ω′) obeys the BDF with T (T ′).
Then, Q

(2)
A is written by

Q
(1)
A (2) = 2πw2

2

h̄2N2

(∫ 2�l

�l

dω

∫ ω−�l

0
dω′ +

∫ �TA

2�l

dω

∫ �l

0
dω′

)
×μ(ω,ω′)Sa(T ,T ′)

= w2
2γ1G

(1)
A (2)T (T ′ − T ), (14)

G
(1)
A (2) = G

(1)
A (1). (15)

In domain M3, both the phonon modes with ω′ and ω − ω′
obey the BDF with T ′. Then

Q
(1)
A (3) = 2πw2

2

h̄2N2

(∫ �TA

2�l

dω

∫ ω−�l

�l

dω′
)

μ(ω,ω′)Sa(T ,T ′)

= w2
2γ1G

(1)
A (3)T ′(T ′ − T ), (16)

G
(1)
A (3) = 1

420

(
5�7

TA − 42�2
l �

5
TA + 35�3

l �
4
TA + 144�7

l

)
.

(17)

In case (ii), the domain in Eq. (8) can be decomposed into two
pieces, M1 and M2, as shown in Fig. 2(b). Therefore, we obtain
K

(1)
A = ∑

j=1,2 Q
(1)
A (j ), where the definition of Q

(1)
A (j ) is the

same as that in case (i). In domain M1, the phonon mode with
ω′ obeys the BDF with T ′, whereas that with ω − ω′ obeys the
BDF with T . Then, Q

(1)
A (1) is written as

Q
(1)
A (1) = 2πw2

2

h̄2N2

(∫ �TA

�l

dω

∫ ω

�l

dω′
)

μ(ω,ω′)Sa(T ,T ′)

= w2
2γ1G

(1)
A (1)T (T ′ − T ), (18)

G
(1)
A (1) = 1

168

(
�7

TA − 7�2
l �

4
TA + 7�4

l �
3
TA − �7

l

)
. (19)

In domain M2, the phonon modes with ω′ and ω − ω′ obey the
BDF with T and T ′, respectively. Then

Q
(1)
A (2) = 2πw2

2

h̄2N2

(∫ �TA

�l

dω

∫ ω−�l

0
dω′

)
μ(ω,ω′)Sa(T ,T ′)

= w2
2γ1G

(1)
A (2)T (T ′ − T ), (20)

G
(1)
A (2) = G

(1)
A (1). (21)

In case (iii), because both phonon modes with ω′ and ω − ω′
obey the BDF with T , there is no three-phonon process such
that K

(1)
A has a finite value, [i.e., K

(1)
A = 0].

FIG. 3. (Color online) (a) Numerical result of τ (T ) based on
Eq. (22). See text for detailed numerical conditions. (b) Inverse square
law of τ at T = Tc with respect to p. (c) T dependence of ILA and
ITA defined by Eqs. (24) and (25). Because ITA differs from zero at
T = Tc, the τ divergence at Tc is strongly suppressed.

3. Relaxation time

As a result, Eq. (3) is rewritten as28

∂T (t)

∂t
= 1

τ
[T ′ − T (t)], τ = CLA + CTA

ILA + ITA
, (22)

using the definitions

Ij = Kj

T ′ − T
, (j = LA,TA), (23)

and

ILA = w2
1γ0(VAT + VBT ′), (24)

ITA = w2
2γ1(VCT + VDT ′) + w2

2γ2VET , (25)

where γk = 2πk2
Bα3−k

LA αk
TA/(h̄3N2). T ′ is given by kBT ′ =

−�/ ln{ε + exp [−�/(kBT )]}, where ε is the dimensionless
photoexcitation energy.1 VX (X = A to E) in Eqs. (24) and (25)
are functions of �l, �TA, and �h. Equation (22) is the main
finding of this study because it clearly shows the contribution
of TA phonon modes to carrier relaxation.

III. RESULTS AND DISCUSSIONS

A. Crossover from diverging to nondiverging behaviors

Figure 3(a) shows the T dependence of τ that we have
formulated in Eq. (22). The parameter p (≡w2/w1) is the
coupling strength through which the HEPs decay into TA
modes, and it is tuned from 0 to 0.5 in increments of 0.1.
With an increase in p, the magnitude of τ decreases over
the entire T range. When p is smaller (larger) than ∼0.3, τ

increases (decreases) as T approaches Tc from below. The
most significant phenomenon is the drastic reduction in τ at Tc

with increasing p. In fact, τ at Tc is inversely proportional to
p2, as shown in Fig. 3(b). These results indicate that the lack of
τ divergence at Tc is attributable to efficient phonon-phonon
coupling between the HEP and the TA mode characterized
by p.

104512-4
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To explain the microscopic mechanism for the lack of
divergence, in Fig. 3(c), we show the T dependence of the
magnitude of ILA and ITA given in Eqs. (24) and (25). Here
ILA(TA) quantifies the efficiency of the HEPs energy dissipation
through the anharmonic interaction with LA (TA) phonon
modes. In the limit of T → Tc (that is, � → 0), ILA vanishes
(irrespective of p) but ITA converges to a finite value as long as
p �= 0. Therefore, we obtain a nondiverging τ at Tc if p �= 0,
which readily follows from Eq. (22). When p = 0, on the
other hand, ITA ≡ 0 for arbitrary T [because ITA ∝ w2

2; see
Eq. (25)]. In this case, ILA = ITA = 0 at Tc so that τ → ∞
at Tc. We thus conclude that the anharmonic decay of HEPs
to TA modes plays a prominent role in the efficient cooling
of HEPs as well as in determining the significance of the τ

divergence at Tc.
Upon reducing the temperature to zero, the energy dissipa-

tion of HEPs gradually reduces due to monotonic decreases in
ILA and ITA [see Fig. 3(c)]. The decrease in ILA(TA) is attributed
to the reduced phonon population, which results in a monotonic
increase in τ at low T , as shown in Fig. 3(a). A similar increase
has been found in various gapped systems,2–6,9–13,15,18 and it is
attributable to the inefficient cooling of HEPs.

B. Comparison with experimental data

Now we apply the proposed theory to photoexcited carrier
relaxation in quasi-one-dimensional (1D) C60 polymers. It was
previously observed in experiments29 that the C60 polymers
undergo the CDW transition30 at Tc = 60 K, forming a
well-defined energy gap at the Fermi level. This result implied
the possibility of τexp divergence at 60 K; nevertheless, optical
pump-probe investigations18 of the C60 polymers revealed a
monotonic variation in τexp near Tc, whose origin has yet to
be clarified. This problem is solved by considering that the
twisting phonon modes of the C60 polymer31 play the same
role as the above-described TA modes. The only twisting
mode is relevant despite the presence of many other TA
modes in the system because these modes give quite minor
contributions to the total phonon density of states. Figure 4(a)
shows the numerical reproduction (indicated by lines) of the
experimental data18 (indicated by circles) of the T -dependent
τexp of the C60 polymers. An overall agreement between
the theory and the experiments is obtained by assuming
p ∼ 0.3. The other parameters we used are �TA = 220 cm−1,
�h = 360 cm−1, and 2�(0) = 360 K; the first two values were
estimated from the phonon model for 1D C60 polymers,31 and
the last value gives 2�(0)/kBTc = 6 consistent with many
CDW compounds.32

The generality of Eq. (22) is of great importance. The
formula is applicable to τexp in other gapped systems such as
Tl-based cuprate superconductors2,6 and the solid fullerenes
K3C60 and Rb3C60 (Ref. 3). Even these materials show a
lack of τexp divergence; however, no theoretical studies have
attempted to clarify their relaxation anomalies. We believe
that the proposed theory will serve as a unified framework for
nonequilibrium carrier dynamics in gapped systems.

To verify the flexibility of our model, we have compared
our theory with the experimental data of Bi2212 which shows
the divergence of τexp at the Tc = 75 K (Ref. 12), as shown
in Fig. 4(b). A very good agreement between Eq. (22) and

τ

FIG. 4. (Color online) Experimental data of τexp’s in (a) the C60

polymer (after Ref. 18) and (b) Bi2212 (after Ref. 12) and their
numerical reproductions based on Eq. (22). The data for (a) T �
Tc = 60 K and (b) 75 K collapse onto the theoretical curves with
p = 0.3 and p = 0.07, respectively.

the data for Bi2212 can be obtained by setting p = 0.07
which is smaller than p = 0.30 in the C60 polymer case.
The consistency for different two experimental data (for C60

polymers and Bi2212) supports the validity of our model. The
larger p for the C60 polymers is thought to originate from the
curved geometry of the system.33,34 Finite surface curvature
of the monoatomic carbon layer enhances the interatomic
forces between neighboring carbon atoms, thus resulting in
a significant increase in the magnitude of the aforementioned
matrix element w2 that is proportional to p (Ref. 35).

IV. CONCLUSION

In conclusion, we have developed a theory to describe
the energy dissipation from HEPs (h̄ωq,LA > 2�) to LEPs
(h̄ωq,LA < 2�) and TA modes in gapped systems below Tc.
This theory enables the evaluation of the T dependence of τ

as a function of the coupling strength p ≡ w2/w1 between the
HEPs and the TA modes, and it explains the crossover between
the diverging and the nondiverging behaviors of photoexcited
carrier relaxation. The coupling between the HEPs and the TA
mode also suggests the variation of τexp divergence in typical
gapped systems. The quantitative estimation of the coupling
strength for various materials ought to be a challenging task
that we must tackle in the future.
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APPENDIX : LIST OF COLLISION TERMS

In this Appendix, we list K
(j )
A (j = 2,3), K

(j )
B (j = 1,2,3),

and KLA defined by Eqs. (7), (8), and (11).
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1. K (2)
A

There are two cases for the value of K
(2)
A to be considered:

(i) �l < �TA,

K
(2)
A = w2

2γ2G
(2)
A T (T ′ − T ), (A1)

G
(2)
A = 1

168

(
�7

TA − 7�3
l �

4
TA + 7�4

l �
3
TA − �7

l

)
; (A2)

(ii) �TA < �l ,

K
(2)
A = 0. (A3)

2. K (3)
A

There also are two cases for the value of K
(3)
A :

(i) �l < �TA,

K
(3)
A = K

(2)
A ; (A4)

(ii) �TA < �l

K
(3)
A = 0. (A5)

3. K (1)
B

K
(1)
B can be expressed by

K
(1)
B =

∑
j=1,2

Q
(1)
B (j ), (A6)

where Q
(1)
B (1) and Q

(1)
B (2) are given below: (i-1) �l < �TA <

�h and �l + �TA < �h,

Q
(1)
B (1) = w2

2γ1G
(1)
B (1)T (T ′ − T ), (A7)

G
(1)
B (1) = 71

210
�7

l + 1

60

(
6�2

l �
5
TA + 10�3

l �
4
TA

+ 5�4
l �

3
TA − 21�7

l

)
, (A8)

and

Q
(1)
B (2) = w2

2γ1G
(1)
B (2)T ′(T ′ − T ), (A9)

G
(1)
B (2) = �4

TA

420

(
35�3

h − 42�TA�2
h + 10�3

TA

− 42�2
l �TA − 35�3

l

)
. (A10)

(i-2) �l < �TA < �h and �h < �l + �TA,

Q
(1)
B (1) = w2

2γ1G
(1)
B (1)T (T ′ − T ), (A11)

G
(1)
B (1) = 1

420

(
5�7

TA − 35�3
h�

4
TA + 35�4

h�
3
TA − 5�7

h

+ 42�2
l �

5
h − 70�3

l �
4
h + 35�4

l �
3
h − 7�7

l

)
,

(A12)

and

Q
(1)
B (2) = w2

2γ1G
(1)
B (2)T ′(T ′ − T ), (A13)

G
(1)
B (2) = 1

140
(�h − �l)

5
(
�2

h + 5�l�h + �2
l

)
. (A14)

(ii-1) �TA < �l < �h and �l + �TA < �h,

Q
(1)
B (1) = w2

2γ1G
(1)
B (1)T (T ′ − T ), (A15)

G
(1)
B (1) = 1

420

(−5�7
TA + 42�2

l �
5
TA + 105�3

l �
4
TA

)
, (A16)

and

Q
(1)
B (2) = w2

2γ1G
(1)
B (2)T ′(T ′ − T ), (A17)

G
(1)
B (2) = 1

420

[
10�7

TA − 42
(
�2

h + �2
l

)
�5

TA

+ 35
(
�3

h − �3
l

)
�4

TA

]
. (A18)

(ii-2) �TA < �l < �h and �h < �l + �TA,

Q
(1)
B (1) = w2

2γ1G
(1)
B (1)T (T ′ − T ), (A19)

G
(1)
B (1) = 1

420

[ − 35(�3
h − �3

l )�4
TA + 35

(
�4

h − �4
l

)
�3

TA

− 5�7
h + 42�2

l �
5
h − 70�3

l �
4
h + 35�4

l �
3
h − 2�7

l

]
,

(A20)

and

Q
(1)
B (2) = w2

2γ1G
(1)
B (2)T ′(T ′ − T ), (A21)

G
(1)
B (2) = 1

140
(�h − �l)

5 (
�2

h + 5�l�h + �2
l

)
. (A22)

4. K (2)
B

Next, we show the expressions of K
(2)
B . There are five cases

to distinguish:
(i-1) �l < �TA < �h and �h < 2�TA,

K
(2)
B = w2

2γ2G
(2)
B T (T ′ − T ), (A23)

G
(2)
B = 1

420

(
3�7

TA − 35�4
h�

3
TA + 42�5

h�
2
TA − 5�7

h − 5�7
l

)
.

(A24)

(i-2) �l < �TA < �h and 2�TA < �h,

K
(2)
B = w2

2γ2G
(2)
B T (T ′ − T ), (A25)

G
(2)
B = 1

420

(
147�7

TA − 5�7
l

)
. (A26)

(ii-1) �TA < �l < �h and �h < 2�TA,

K
(2)
B = w2

2γ2G
(2)
B T (T ′ − T ), (A27)

G
(2)
B = 1

420

[−35
(
�4

h − �4
l

)
�3

TA − 42
(
�5

h − �5
l

)
�2

TA

+ 5
(
�7

h − �7
l

)]
. (A28)

(ii-2) �TA < �l < �h and 2�TA < �h,

K
(2)
B = w2

2γ2G
(2)
B T (T ′ − T ), (A29)

G
(2)
B = 1

420

(
144�7

TA + 35�4
l �

3
TA − 42�5

l �
2
TA + 5�7

l

)
.

(A30)
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(iii) 2�TA < �l ,

K
(2)
B = 0. (A31)

5. K (3)
B

For K
(3)
B , there are two cases:

(i) �l < �TA,

K
(3)
B = w2

2γ2G
(3)
B T (T ′ − T ), (A32)

G
(3)
B = (−1)

420

(
2�7

TA − 35�3
l �

4
TA + 70�4

l �
3
TA

− 42�5
l �

2
TA + 5�7

l

)
. (A33)

(ii) �TA < �l

K
(3)
B = 0. (A34)

Finally, using Eqs. (11)–(21), (23), and (A1)–(A34), we
obtain ITA defined by Eq. (25).

6. KLA

In this section, we present the expression of ILA in Eq. (24).
As with Eq. (8), the integrand in Eq. (7) depends on the phonon
frequencies ω and ω′. We find that there are two cases to
distinguish: (i) 2�l < �h and (ii) �h < 2�l . The integral in
Eq. (7) is written as

KLA = w2
1γ0G

(1)
C T (T ′ − T ) + w2

1γ0G
(2)
C T ′(T ′ − T ). (A35)

For case (i), G
(1)
C and G

(2)
C are given by

G
(1)
C = 71

210
�7

l , (A36)

G
(2)
C = �4

l

420

(
35�3

h − 42�l�
2
h − 67�3

l

)
. (A37)

For case (ii)

G
(1)
C = 1

420

(−5�7
h + 42�2

l �
5
h − 35�3

l �
4
h − 2�7

l

)
, (A38)

G
(2)
C = 1

140
(�h − �l)

5
(
�2

h + 5�l�h + �2
l

)
. (A39)
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