Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

A Concise [4+3] Cycloaddition Reaction of Pyrroles Leading to Tropinone Derivatives

Ryuichi Fuchigami, Kosuke Namba*, and Keiji Tanino*

*Hokkaido University, Sapporo, 060-0810, Japan

\[
\text{MeS} \quad \text{OTIPS} \quad \text{OH} + \quad \text{Ns} \quad \text{N} \quad \text{NsTf}_2\text{NH} \quad \text{CH}_2\text{Cl}_2, -78^\circ \text{C} \quad 85\%
\]
Concise [4+3] Cycloaddition Reaction of Pyrroles Leading to Tropinone Derivatives

Ryuichi Fuchigamia, Kosuke Nambab*, and Keiji Taninob*

a Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
b Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Abstract—A concise [4+3] cycloaddition reaction of pyrroles with 2-(silyloxy)allyl cations has been developed. The oxyallyl cations stabilized with a methylthio group or geminal methyl groups were generated from the corresponding allylic alcohols under the influence of a Brønsted acid (\text{TF}_2\text{NH}), respectively. The use of \text{N}-nosyl-protected pyrroles as the four-carbon unit was found to give tropinone derivatives in high yield.

Tropine alkaloids, which comprise a large family of natural products, have received a great deal of attention due to their variety of pharmacological activities and structural diversity.1 In particular, atropine, cocaine, and scopolamine are famous lead compounds of pharmaceuticals,2 and stenofoline3 and himandrine4 are also known as a class of challenging synthetic targets. One of the most powerful synthetic approaches to tropane scaffold may be a [4+3] cycloaddition reaction of pyrroles with oxyallyl cations, giving rise to tropinones (Scheme 1).5

While there are a number of reports concerning the [4+3] cycloaddition reactions of furans or cyclopentadienes,3 the use of pyrroles as four-carbon units is generally difficult due to competition with the Friedel-Crafts type reaction.6 The oxyallyl cation species applicable to pyrroles thus far have been confined to those generated from \text{a,\textacutes;}-dihaloketones7 or allenamides8. On the other hand, one of the authors reported the regio- and stereoselective [3+2] cycloaddition reactions using allyl acetates 1\textsubscript{a} and 1\textsubscript{b} as a three-carbon unit (Scheme 2).9 Under the influence of \text{EtAlCl}_2, allyl acetate 1 reacted with alkene 2 to afford cyclopentanone 3 in good yield. In this reaction, the methylthio group of 1 plays an important role in stabilizing the allyl cation species A as well as controlling the regioselectivity of the cycloadducts.10

These results led us to examine the [4+3] cycloaddition reaction of 1 with pyrrole derivatives. Herein, we describe concise [4+3] cycloaddition reactions of 2-(silyloxy)allyl cations stabilized by a methylthio group or \textit{gem}-dialkyl groups with pyrroles having various substituents.

The 2-nitrobenzenesulfonyl (nosyl, \text{Ns}) group11, which can be removed under mild conditions, was chosen for protection of the nitrogen atom. The reactions of \text{N}-nosyl pyrrole (4) with 1\textsubscript{a} or its derivatives under acidic conditions are summarized in Table 1.

Keywords: tropinone, [4+3] cycloaddition reaction, pyrroles, oxyallyl cation, sulfur-stabilized cation

1 Corresponding author. Tel.: +81-11-706-2703; fax: +81-11-706-4920; e-mail: namba@mail.sci.hokudai.ac.jp
2 Corresponding author. Tel.: +81-11-706-2705; fax: +81-11-706-4920; e-mail: ktanino@sci.hokudai.ac.jp
Table 1. The reactions of 4 with three-carbon units 1 promoted by an acid.*

<table>
<thead>
<tr>
<th>entry</th>
<th>1: X</th>
<th>acid</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1a: OAc</td>
<td>EtAlCl₂</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>1a: OAc</td>
<td>Tf₂NH</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>1c: OCO₂Me</td>
<td>Tf₂NH</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>1d: OH</td>
<td>Tf₂NH</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>1d: OH</td>
<td>TfOH</td>
<td>41</td>
</tr>
</tbody>
</table>

*Conditions: N-nosyl pyrrole (0.10 mmol), 1 (0.30 mmol), acid (0.60 mmol), CH₂Cl₂ (0.2 M), b isolated yield.

While the reaction of 4 with 1a promoted by EtAlCl₂ led to formation of cycloadduct 5 in 15% yield (entry 1), the use of a Brønsted acid was found to be more effective for the desired transformation. Thus, under the influence of trifluoromethanesulfonimide (Tf₂NH), tropinone 5 was obtained in 34% yield along with 27% of 6 (entry 2). Interestingly, the Tf₂NH-promoted reaction of 4 with carbonate 1c gave 54% of 5 (entry 3), and the yield increased to 85% with alcohol 1d (entry 4). On the other hand, the use of trifluoromethanesulfonic acid (TfOH) instead of Tf₂NH in the reaction of 4 and 1d resulted in decrease of 5 (entry 5), probably because of the low solubility of TfOH in dichloromethane.

It is noteworthy that tropinone 5 was produced as a single diastereomer which underwent partial isomerization to afford epi-5 by chromatography on silica gel. The stereostructure of these compounds was determined by the NOE experiments, indicating that 5 possesses the methyloxy group and the nitrogen atom on the opposite face of the seven-membered ring (endo-type stereochemistry). The methyloxy group of 5 was easily removed by treating with PPh₃ and p-toluenesulfonic acid (TsOH) to give tropinone 7 in good yield, according to the desulfurization protocol of Durst (Scheme 3). Thus, the [4+3] cycloaddition reaction using sulfur-stabilized 2-(silyloxy)allyl cation is proven to be a concise and effective method for the preparation of tropinone derivatives.¹⁵

The reactions of 4 with three-carbon units 1 promoted by an acid. Next, the [4+3] cycloaddition reaction of pyrroles possessing various protecting groups (X) with allyl alcohol 1d were examined (Table 2). While N-(p-toluensulfonyl) and N-methanesulfonyl pyrroles Ts-4 and Ms-4 afforded the corresponding tropinones Ts-5 and Ms-5 in low yields, respectively (entries 2 and 3), N-benzyloxy carbonyl (Cbz), N-acetyl (Ac), N-benzyl (Bn), and unsubstituted pyrroles failed to undergo the cycloaddition reaction (entries 4-7). These results suggest that the electron-withdrawing inductive effect of the protecting group (Ns > Ts, Ms > Ac, Cbz) is of more significance than the steric bulkiness.¹⁶

Table 2. Comparison of the protecting group on pyrrole.⁶

<table>
<thead>
<tr>
<th>entry</th>
<th>X</th>
<th>yield (%)⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>Ns</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Ms</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Ts</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Cbz</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Ac</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Bn</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>0</td>
</tr>
</tbody>
</table>

*Conditions: pyrrole X-4 (0.10 mmol), 1d (0.30 mmol), Tf₂NH (0.60 mmol), CH₂Cl₂ (0.2 M), b isolated yield. ⁵NMR yield using CHBr₃ as an internal standard.

Having established the suitable conditions of the [4+3] cycloaddition reaction, the scope of the tropinone synthesis was examined (Table 3). Although the reaction of N-nosyl-2-methylpyrrole (8) led to formation of the Friedel-Crafts product 13 (entry 1), 3-methylpyrrole (9) underwent the desired [4+3] cycloaddition reaction at –60 °C to afford tropinone 14 in 71% yield as a single product (entry 2). The configuration of 14 and stereochemical relationship between the methyl group and the methyloxy group were determined by the ¹H-¹H COSY and the NOE experiments. Similarly, tropinone 15 was obtained from the corresponding pyrrole 10 in a regio- and stereoselective manner, albeit in low yield due to the instability of the vinyl bromide moiety.¹⁷

Scheme 3. Desulfurization of cycloadduct 5
The reaction of methyl-substituted three-carbon unit **11** with pyrrole **4** at 0 °C afforded the desired cycloadduct **16** in 55% yield. Three-carbon unit **12** having a methyl group at the other side also gave cycloadduct **17** as a single regio and stereoisomer, while the yield was low.

Next, the stabilizing effect of a methylthio group on the 2-(silyloxy)allyl cation was compared with that of an alkyl group (Table 4). The reaction of allyl alcohol **18** with **4** under the influence of **Tf₂NH** gave neither cycloadduct **7** nor a Friedel-Crafts type product (entry 1), and allyl alcohol **19** possessing a methyl group instead of the methylthio group of **1d** also failed to undergo the [4+3] cycloaddition reaction (entry 2). On the other hand, the use of *gem*-dimethyl-substituted derivative **20** led to formation of the desired cycloadduct **22** in 54% yield (entry 3). These results indicate that a *gem*-dimethyl group is as effective as a methylthio group in stabilizing a 2-(silyloxy)allyl cation, while a single methyl group of **19** is not sufficient for this purpose. Furthermore, we later found that 1,1,3,3,3-hexafluoro-2-propanol (HFIP) is a better solvent for the reaction of *gem*-dimethyl-substituted analog **20**, and the yield of **22** was increased to 67% (entry 3).\(^\text{18}\) In contrast to the reaction of 2-methylpyrrole **8** with alcohol **1d** which gave only substituted pyrrole **13** (entry 1 in Table 3), cycloadduct **23** was obtained by the use of **20** as the three-carbon unit (entry 4). It is noteworthy that the regiochemical outcome of the reaction of alcohol **20** is also different from that of the sulfur-containing alcohol **1d**. Thus, for the reactions with 3-methylpyrrole **9**, alcohol **20** afforded a 1:1 regioisomeric mixture of cycloadducts **24a** and **24b** in 65% yield (entry 5), while the use of **1d** resulted in formation of cycloadduct **14** as a single regioisomer (entry 2 in Table 3).

Table 3. Substrate scope in the [4+3] cycloaddition reactions.

<table>
<thead>
<tr>
<th>entry</th>
<th>pyrrole</th>
<th>alcohol</th>
<th>conditions</th>
<th>product</th>
<th>yield (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>1d</td>
<td>-78 °C 60 min</td>
<td>Me Ns O SMe</td>
<td>13 64</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1d</td>
<td>-60 °C 120 min</td>
<td>MeS Ns O Me</td>
<td>14 71</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1d</td>
<td>-40 °C 10 min</td>
<td>MeBr Ns O Br</td>
<td>15 30</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11</td>
<td>0 °C 3 min</td>
<td>MeS Ns O Me</td>
<td>16 55</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>0 °C 5 min</td>
<td>MeS Ns O Me</td>
<td>17 25</td>
</tr>
</tbody>
</table>

Conditions: N-nosyl pyrrole (0.10 mmol), allyl alcohol (0.30 mmol), Tf₂NH (0.60 mmol), CH₂Cl₂ (0.2 M), \(^\text{1d}^a\)isolated yield. \(^\text{1d}^a\)The reaction was conducted at -78 °C.

Table 4. The [4+3] cycloaddition reactions of N-nosyl pyroles with silyloxyallyl alcohol derivatives having no methylthio group.

<table>
<thead>
<tr>
<th>entry</th>
<th>pyrrole</th>
<th>alcohol</th>
<th>product</th>
<th>yield (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>18</td>
<td>O Ns Me</td>
<td>7 0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>19</td>
<td>O Ns Me</td>
<td>21 0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>20</td>
<td>O Ns Me</td>
<td>22 67 (54)(^b)</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>20</td>
<td>O Ns Me</td>
<td>23 48 (20)(^b)</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>20</td>
<td>O Ns Me</td>
<td>24 65 (47)(^b)</td>
</tr>
</tbody>
</table>

Reaction conditions: N-nosyl pyrrole (0.10 mmol), allyl alcohol (0.30 mmol), Tf₂NH (0.60 mmol), HFIP (0.2 M), 0 °C, 30 min. \(^\text{1d}^a\)Isolated yield. \(^\text{1d}^a\)The reaction was conducted in dichloromethane at 0 °C.

Finally, the utility of the present [4+3] cycloaddition reaction was demonstrated through the synthesis of tricyclic compound **28**, possessing a common framework with biologically active natural products such as *Daphyniphyllum* alkaloids.\(^{19}\) Ketone **26**, which was
prepared from pyrrole 25 and alcohol 20 via a [4+3] cycloaddition reaction, was converted to the corresponding enol silyl ether 27. Treatment of 27 with silver (I) trifluoroacetate20 effected the intramolecular alkylation reaction to provide the desired tricyclic compound 28 in 46\% yield from ketone 26.

![Scheme 4. Synthesis of tricyclic ketone 28 via a [4+3] cycloaddition reaction.](image)

In conclusion, the [4+3] cycloaddition reaction of pyrroles leading to various tropinones was developed.20 The use of N-nosyl pyrrole derivatives was found to afford the desired cycloadducts in good yields. The 2-(silyloxy)allyl cation was generated by treating the corresponding allyl alcohol with Tf$_2$NH, while the cation-stabilizing effect of a methylvioth group or a gem-dimethyl group was essential for generation of the reactive species. The present [4+3] cycloaddition protocol provides a powerful method for constructing substituted tropane skeleton, and the applications to the synthesis of complex natural products are currently underway in our laboratory.7

Acknowledgments

This work was partially supported by the Global COE program (Project No. B01: Catalysis as the Basis for Innovation in Material Science) and Grant-in-Aid for Scientific Research on Innovative Areas (Project No. 2105: Organic Synthesis Based on Reaction Integration and No. 2301: Chemical Biology of Natural Products) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

7 OLE: Object Linking and Embedding; a program-integration technology you can use to share information between programs. All of the Office programs support OLE, so you can share information through linked and embedded objects. For instance you can import an Excel8 graph into Word9 by using ‘Paste special…’ on the ‘Edit’ menu or, essentially the same, using the option on the ‘Tables and figures’ menu.

12 The yield of 5 was substantially increased up to 66\% when the reaction temperature was elevated to –40 °C.

13 The reaction using catalytic amount of Tf$_2$NH (10 mol \%) did not proceeded at –78 °C and the nosylpyrrole 4 (quant) and three carbon unit 1d (90\%) were recovered after 1 h. The similar reaction with increasing temperature induced only decomposition of 1d.

15 Typical procedure: To a solution of Tf$_2$NH (169 mg, 0.60 mmol) in CH$_2$Cl$_2$ (0.25 mL) was added a mixture of 1d (83 mg, 0.30 mmol) and 4 (25.2 mg, 0.11 mmol) in CH$_2$Cl$_2$ (0.25 mL) at –78 °C. After the mixture was stirred at –78 °C for 1 h, the reaction was quenched with a 3 M aqueous NaOH solution at –78 °C. The mixture was extracted with CH$_2$Cl$_2$ (x2), and the combined organic layers were washed with brine, dried over MgSO$_4$, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (elution with hexane/ethylic acetate = 3/1 to 2/1) to give 5 (30 mg, 85\%) as a pale brown solid.

16 Decomposition and polymerization of nosyl-protected pyrroles were not observed even in the excess amount of strong acid such as Tf$_2$NH. The [4+3] cycloadducts were also
sufficiently stable until completion of the reaction, although
the prolonged period of the reaction induced decomposition
of cycloadducts. The strong electron-withdrawing inductive
effect of N-nosyl group was considered to suppress the retro-
Mannich reaction leading to Friedel-Crafts type by-products
and decomposition. Decomposition and polymerization of
pyroles were observed when other protecting groups, not
involving sulfonamides, were used.

17. After quenching the reaction, 15 was stable enough to be
purified by column chromatography and stored for several
months in the freezer.

18. The use of HFIP as a solvent for the reaction of methylthio-
substituted analog 1d was not effective.

19. For recent review on the Daphyniphyllum alkaloids, see:

Supplementary Material

Supplementary data (complete experimental details and
spectroscopic characterization of all new compounds)
associated with this article can be found, in the online
version