In the work reported here, we investigated the items listed below to identify factors that affect the ICT machine air intake temperature, focusing on the effects of machine cooling characteristics on air conditioning efficiency. 1) We created a machine cooling model that relates the temperatures in different parts, derived the parameters that affect the machine air intake temperature, and analyzed the factors that govern the machine cooling characteristics. 2) To understand the factors that affect the air intake temperature of rack-mounted machines that generate high heat, we conducted experiments on the relation of the machine mounting method and the air intake temperature for various amounts of air conditioning in-flow. 3) We presented a method for determining the amount of air conditioning inflow that takes machine cooling characteristics into account, and evaluated the effect of machines cooling characteristics on air conditioning efficiency.

Keywords: Air Conditioning, Data Center, Forced Air cooling, Ventilation Flow Amount, Energy Consumption
2. 機器冷却特性の評価方法

2.1 機器冷却モデルの概要

室内に設置されたラックおよびそれに搭載された機器の冷却性能を評価するため、図1に示す集中定数モデルを作成する。二重床から温度θ_f、風量V_fの空調給気を室温に供給する。室内の機器発熱量H_fと壁体熱損失H_w（冷房負荷になる場合は正の値）によって最終的に室温環境温度θ_eに昇温し空調機内に戻る。温度θ_eの空調給気量V_fは機器の冷却に有効な風量（有効空調給気量V_{ae})と機器の冷却に寄与しない風量（無効空調給気量V_{aw})に分離する。機器発熱量H_fによりθ_{ae}まで昇温し機器から排気される。機器から換気量（機器換気量V_{ae})の内、再度機器へ再循環する比率を機器再循環率γ_fとすると、γ_fV_fは機器に還流する。一方、ラックからの排気(1−γ_f)V_fの内、ラック周囲を再循環する比率を室内外循環率γ_wとし、再循環風量V_{aw}と室温環境温度θ_eになる。再循環風量を室内温湿度とする。

2.2 換気流量比と排熱効率

換気流量比V_fに対する空調給気流量V_fの比を換気流量比κ_{ae}、空調給気流量V_fに対する機器の冷却に有効な風量V_{ae}の比を排熱効率η_{ae}とする一次式で定義する。

\[\kappa_{ae} = \frac{V_f}{V_{ae}} \quad \eta_{ae} = \frac{V_{ae}}{V} = \frac{1}{1 - \kappa_{ae}} \]

(1) \(2) \]

2.3 平衡式と各部の温湿度差

空調給気流量V_f、無効空調給気流量V_{aw}および有効空調給気流量V_{ae}の体積収支より次式が得られる。

\[V_f + V_{aw} = V \]

(4)

機器吸込み風機及び再循環風機θ_{ae}、機器吹出し風機温度θ_{ae}、空調環境温度θ_eを未知数として以下の熱平衡式が成り立つ。

\[c_p \rho (1 - \gamma_w) V_f (\theta_e - \theta_{ae}) + c_p \rho \gamma_w V_{aw} (\theta_e - \theta_{ae}) = 0 \]

(5)

\[c_p \rho (1 - \gamma_w) V_f (\theta_e - \theta_{ae}) + c_p \rho \gamma_w V_{ae} (\theta_e - \theta_{ae}) = 0 \]

(6)

\[c_p \rho (1 - \gamma_w) V_f (\theta_e - \theta_{ae}) + c_p \rho \gamma_w V_{ae} (\theta_e - \theta_{ae}) = 0 \]

(7)

(1)〜(4)式の条件を用いた(5)〜(8)式を整理し、各部の温度を空調温湿度θ_eと室温温度θ_eに換算し次元化すると以下のようになる。なお、室内再循環比γ_wと機器再循環比γ_fは(9)式の関係を踏まえたものとする。一方、各温度差は壁体熱損失H_wを考慮しているが、発熱量が大きな場合は壁体熱損失を無視することがある。このとき、H_w = 0 とすることで簡単に記述できる。

\[\gamma_w + \eta_{ae} \leq 1 \]

(9)

・機器吸込み温度差

\[\theta_{ae} = \frac{\theta_0 - \theta_{ae}}{\eta_{ae}} \]

(10)

H_wのとき、\[\theta_{ae} = \frac{\theta_0 - \theta_{ae}}{\eta_{ae}} \]

(11)

・再循環温度差

\[\gamma_w = \frac{\eta_{ae} \theta_0 - \theta_{ae}}{\eta_{ae} (1 - \gamma_w) (H_w + H_e)} \]

(12)

H_wのとき、\[\gamma_w = \frac{\eta_{ae} \theta_0 - \theta_{ae}}{\eta_{ae} (1 - \gamma_w) (H_w + H_e)} \]

(13)

・機器吹出し温度差

\[\theta_{aw} = \frac{\theta_0 - \theta_{aw}}{\eta_{ae}} \]

(14)

H_wのとき、\[\theta_{aw} = \frac{\theta_0 - \theta_{aw}}{\eta_{ae}} \]

(15)

2.4 室内外循環比と機器再循環比

室内再循環比γ_wと機器再循環比γ_fは各部の温度差を用いた下記のように求められる。

・室内外循環比

\[\gamma = \frac{\theta_0 - \theta_{ae}}{(m_{ae} - m_{aw}) (H_w + H_e) + H_e \kappa_{ae}} \]

(16)

H_wのとき、\[\gamma = \frac{\theta_0 - \theta_{ae}}{(m_{ae} - m_{aw}) (H_w + H_e) + H_e \kappa_{ae}} \]

(17)

・機器再循環比

\[\gamma_f = \frac{(m_{ae} - m_{aw}) (H_w + H_e)}{(m_{ae} - m_{aw}) (H_w + H_e) + H_e \kappa_{ae}} \]

(18)

H_wのとき、\[\gamma_f = \frac{(m_{ae} - m_{aw}) (H_w + H_e)}{(m_{ae} - m_{aw}) (H_w + H_e) + H_e \kappa_{ae}} \]

(19)

2.5 排熱効率と機器吸込み温湿度差を決定する要因

排熱効率と機器吸込み温度差を決定する要因を分析する。まず、(2)式の排熱効率η_{ae}は機器吹出し温度差m_{aw}の逆数と定義した。そこで、(2)式および(14)式から排熱効率η_{ae}は次式になる。

\[\eta_{ae} = \frac{1}{\kappa_{ae}} \]

(20)

機器再循環比γ_wと室内再循環比γ_fの合計を総合再循環比γ_wを定義する。
$$\gamma_e = (\gamma_g + \gamma_r)$$ とし、これをパラメータに、換気流量比 $$\varkappa_e$$ と排気比率 $$\bar{\gamma}_k$$ の関係を図 2 に示す。その結果、換気流量比の増加にともない排気効率は低下するが、その傾向は総合再循環比の増加にともない顕著になる。排気効率は空調給気量 $$V_c$$ の内、有効空調給気量 $$V_r$$ の比率を表しており、空調換気方式の効率を評価する指標である。これを高く維持するには、総合再循環比と換気流量比の双方を小さくすることが重要である。

次に、(20) 式を (10) 式に代入し整理すると、機器吸込み温度差比 $$m_{\alpha}$$ は次式になる。

$$m_{\alpha} = \frac{\frac{\lambda}{\varkappa_e} \left(\frac{\lambda}{\varkappa_e} \right) H_a + H_p}{(1 - \varkappa_e) \left(\frac{\lambda}{\varkappa_e} \right) + H_f} \quad \frac{\frac{\lambda}{\varkappa_e} \left(\frac{\lambda}{\varkappa_e} \right) H_a + H_p}{(1 - \varkappa_e) \left(\frac{\lambda}{\varkappa_e} \right) + H_f} \quad (21)$$

$$H_f = 0$$ のとき、$$m_{\alpha} = \frac{\frac{\lambda}{\varkappa_e} \left(\frac{\lambda}{\varkappa_e} \right) H_a + H_p}{1 - \varkappa_e} \quad \frac{\frac{\lambda}{\varkappa_e} \left(\frac{\lambda}{\varkappa_e} \right) H_a + H_p}{1 - \varkappa_e} \quad (22)$$

機器吸込み温度差比 $$m_{\alpha}$$ は文字どおり機器の冷却を保証する温度であり、これを適正な範囲に維持することが空調設備の使命である。 (22) 式を用い、総合再循環比 $$\gamma_e$$ をパラメータに換気流量比 $$\varkappa_e$$ と機器吸込み温度差比 $$m_{\alpha}$$ の関係を図 3 に示す。その結果、機器吸込み温度差比は換気流量比と比例関係にあり、その値は総合再循環比により決定される。

総合再循環比の増加は機器吸込み温度差比を相乗的に増大させることが、機器吸込み温度差比を低く維持するには、総合再循環比の抑制が欠かせない。なお、総合再循環比を構成する機器再循環比 $$\bar{\gamma}_k$$ と室内再循環比 $$\gamma_r$$ は、室内に設置されるラックの状況、ラック内に設置される機器の状況により異なると予想され、CFD による解析、あるいは機器の構造を再現した実験により把握することが必要になる。

2.6 各部の温度差比

各部の温度差比は機器吸込み温度 $$\theta_{\alpha}$$、再循環空気温度 $$\theta_r$$、機器吹出し温度 $$\theta_{\alpha}$$、空調換気空気温度 $$\theta_a$$ そして空調給気温度 $$\theta_f$$ から得られる。

また、室内全体の気温を用いることではなく、個別機器につけても求めることができ、空調換気方式および機器の冷却特性評価の指標として活用できる。例えば、機器吸込み温度が最も高くなる値を $$\theta_{\alpha, \max}$$ とし、最高機器吸込み温度差比 $$m_{\alpha, \min}$$ を求め、これを基に空調換気量が決定でき、実際に稼働している機械室でも利用できる。

3. 機器冷却特性の実験

3.1 実験方法

（1）実験装置の概要

データセンターで多く見られる二重床吹出し・天井吸込み気流方式の空気を実験し、ラックに搭載された機器の冷却特性を把握することを目的に実験装置を作成した（図 4、図 5）。ラックが架設後は、連続で配管されている状態を模擬できるよう、ラック後方の通路中央部を対面台としてラック 1 台のみで試験できるようにした。

実験装置を冷蔵庫用の厚さ 50mm の断熱パネルで構成し、二重床と天井を設置した。ラック正面側の二重床には穴あきパネル（直径 5mm、開口率 12.7%）を配置し、天井にはスリット状の開口（110mm × 2010mm）を設けた。天井上部のチャンバーに送風機を接続し、排気できるよう構成した。この点燃機を動作させることにより、実験箱の下部から吸込んだ空気がラック内に設置された機器を冷却し、ラック上部からの排気が天井面に吸込まれる。送風機はインバータで制御し、換気流量比（0.49 ～ 1.33）を変化させた。なお、実験箱の統温換気率は 20.1/min であり、実験中の実験箱内外の温度差は非常に小さかった。

写真 1 機器の設置状況

表 1 実験装置の仕様

<table>
<thead>
<tr>
<th>機器ユニット</th>
<th>外形寸法</th>
<th>材質</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ラック]</td>
<td>W695×D900×H2000</td>
<td>鋼板</td>
<td>定格流量 730m³/h (0.203m³/s)</td>
</tr>
</tbody>
</table>

表 2 実験装置の温度測定点

<table>
<thead>
<tr>
<th>測定点</th>
<th>測定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>新築箱内表面</td>
<td>1</td>
</tr>
<tr>
<td>新築箱下表面</td>
<td>1</td>
</tr>
<tr>
<td>ラック内部温度</td>
<td>1</td>
</tr>
<tr>
<td>室内温度</td>
<td>10</td>
</tr>
<tr>
<td>ラック排気温度</td>
<td>2</td>
</tr>
<tr>
<td>ラック排気温度</td>
<td>2</td>
</tr>
<tr>
<td>機器排気温度</td>
<td>2</td>
</tr>
<tr>
<td>機器排気温度</td>
<td>2</td>
</tr>
<tr>
<td>機器吸気温度</td>
<td>2</td>
</tr>
<tr>
<td>機器吸気温度</td>
<td>2</td>
</tr>
<tr>
<td>機器吸気温度</td>
<td>2</td>
</tr>
<tr>
<td>機器出口温度</td>
<td>10</td>
</tr>
<tr>
<td>機器出入口混合温度</td>
<td>10</td>
</tr>
</tbody>
</table>

計 50

表 3 実験パラメータ

<table>
<thead>
<tr>
<th>測定項目</th>
<th>測定</th>
<th>測定</th>
</tr>
</thead>
<tbody>
<tr>
<td>送風機パラメータ</td>
<td>排気換気率比 X [％]</td>
<td>0.49</td>
</tr>
<tr>
<td>冷房温度差△T[K]</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td>熱源パラメータ</td>
<td>排気換気率比 X [％]</td>
<td>0.52</td>
</tr>
<tr>
<td>冷房温度差△T[K]</td>
<td>22.9</td>
<td></td>
</tr>
</tbody>
</table>

− 723
差を乗じて室内的熱負荷とした。実験装置の仕様は表1に示すとおりである。

（2）機器とラック

機器およびラックはアメリカ電子工業会EIA (Electronic Industries Alliance) により規格化(TIA/EIA-310-D)されたものを使用した。ラック内の機器取り付け用支柱のねじの水平間隔は19インチと定められ、19インチラックと通称される。

機器は、1台当たり300Wの発熱量を有し、冷却ファンが搭載される。

[図6]機器吸込み温度差比（左：遮蔽パネルなし、中：遮蔽パネルあり、右：最大値・平均値・最小値）

[図7]再循環温度差比（左：遮蔽パネルなし、中：遮蔽パネルあり、右：最大値・平均値・最小値）

[図8]排熱率（左：遮蔽パネルなし、中：遮蔽パネルあり、右：最大値・平均値・最小値）

[図9]室内再循環比（左：遮蔽パネルなし、中：遮蔽パネルあり、右：最大値・平均値・最小値）

[図10]機器再循環比（左：遮蔽パネルなし、中：遮蔽パネルあり、右：最大値・平均値・最小値）
ている。このファンの風量は 73m³/h（台・台）であり、10 台の換気換気量は 730m³/h（0.203m³/s）である。

一方、機器の冷却のために図 12 および図 13 に示すように壁面換気によっても隙間が多か、ある機器の裏面から
の換気が面内を側面から配風して、そこで換気量 1 台（台）に示すように、機器を設置した後で機器後面に層を層で、機器裏面
からその層風を防止する遮蔽バネを設置した。

3.4 温度および風量の計測

実験では図 5 および図 8 に示す側所の温度を熱電対用を用い 5 分間で測定した。概ね定常状態になったことを確認し、15 分間
の平均値を用いた。一方、機器の換気量、換気量および空調
換気量は、予め各条件の熱損失係数を求め、換気量と換気量の支払から
風量を推定した。実験は表 3 に示すように、遮蔽バネの有無に
より各種類の換気換気量で実験した。

3.2 実験結果

（1）機器換気量温度

遮蔽バネ有無の双方のケースについて機器換気量温度を (10) 式
を用い無次元化し図 6 に示す。この結果もと、全ての各層の機
器吸込み温度差が高くなる傾向があるが、継続して上層の機器ほど
高くなっている。また、換気量換気量の増加とともに、機器吸込み温
度差が急激に上昇する領域が高くなり、それらの検出も大きくな
る。遮蔽バネを設置することで、機器吸込み温度差の値は低下
している。特に、下段での低下だけでなく上段での低下も見られる
（図 6 中）。

図 6 中右側に換気量換気量と機器換気温度差の最大値、平均値、最小
値を示す。これらの結果から、平均値と最小値は遮蔽バネの有
無ともに差異は少なく、平均値は換気量換気量の増加にともない、ほ
ぼ先端的に減少する。一方、最大値は換気量換気量の増加にともない
概ね一定となっている領域を急激に減少する二つが領域が見られ
る。また、遮蔽バネを設置したケースではその値が小さくなり、
遮蔽バネの効果が表れている。

（2）遮蔽バネ効果差

（12）式を用い、遮蔽バネ効果差を求める図 7 に示す。各ケースとも
床面から上方に向かい遮蔽バネ効果差が増大する傾向にあるが、あ
る高さから急激に上昇する。温度差が急激に上昇する領域は、換
気量換気の低下とともに下方へ移動する。その傾向は遮蔽バネ有
無の順で順に顕著である。これは、遮蔽バネを設置することで機器
の遮蔽が低下したので、遮蔽バネの効果が増加したものと考えられる。

図 7 右に換気量換気と遮蔽バネ効果差の最大値、平均値、最小値を
示す。これらの結果から、平均値と最小値は遮蔽バネの有無とも
に差異は少なく、平均値は換気量換気の増加にともない、ほぼ直線
的に減少する。さらに、最大値は換気量換気が 1.0 以下の領域で遮
蔽バネありのほうが小さくなっている。これは、上層の遮蔽バネ
の影響を受ける機器の遮蔽が減少したためと推察される。

（3）換気換気度数

（2）式を用い、換気換気を求め図 8 に示す。これらの結果から、上
層の機器はその値が減少している。また、換気量換気の増加にと
もにその値は低下し、その傾向も上段より下段の機器の方が顕著
である。さらに、遮蔽バネの設置により上段の機器の換気換気度数
が高くなっている。

図 8 右に換気換気度数と遮蔽換気度数の最大値・平均値・最小値の関係
を示す。これらの結果から、いずれの値も遮蔽バネの有無による
差異は少なく、換気量換気の増加とともに減少するが、その傾向は
最小値、平均値、最大値の順で顕著になる。

（4）室内再循環比

（16）式を用い、室内再循環比を求める図 9 に示す。これらの結果か
ら、換気量換気の小さなケースにおいて上段の機器ほどその値が増
加する。また、換気量換気の増加にもかかわらずその値は低下し、その
傾向は上段より下段の機器の方が顕著である。遮蔽バネありの場合
、換気量換気が小さな領域で最大値の値が遮蔽バネなしよりも
上回る。これは、遮蔽バネの設置により機器再循環比が減少した
分、室内再循環比が増加したためと考えられる。

図 9 右に換気量換気と室内再循環比の最大値、平均値、最小値を
示す。これらの結果から、換気量換気の増加にともない、ほぼ直線
的に減少する。平均値は遮蔽バネの有無に関わらず同様の傾向を
示すのにに対し、最大値は遮蔽バネありの方がやや小さな値となっ
ている。遮蔽バネを設置することによる再循環比の減少が機器換
込み温度差の低下に寄与していると推察される。

（5）機器再循環比

（18）式を用い、機器再循環比を求める図 10 に示す。これらの結果か
ら、遮蔽バネ有無双方のケースについて、中層の値に乱れが見ら
れる。しかし、換気量換気が小さな領域のの中段および、下段にお
いて遮蔽バネありの方が機器再循環比の値は小さくなり再循環の
防止に寄与していると考えられる。

図 10 右に換気量換気と室内再循環比の最大値・平均値・最小値
を示す。これらの結果から、ばらつきが大きいものので、最大値およ
び平均値において、遮蔽バネありは遮蔽バネなしと比較し全般
的に小さな値になっている。

（6）総合遮蔽度数

遮蔽バネ有無の双方のケースについて、室内再循環比γ の和を総合遮蔽度数γ とした。その値が
最大値と平均値を図 11 に示す。その結果、総合遮蔽度数は換気量
の増加にともない、直線的に減少し、遮蔽バネありの方がなし
に比べや小さな値になっている。これらの実験結果を一次関数で

図 11 推換気度数と最大機器換気温度差比と近似式

－725－
近似する。その結果、換気流量比 \(\epsilon_{\text{ex}} = 0 \) の最大総合再循環比 \(\gamma_{\text{ex},\text{ax}} \) の値が 1.0 に近くなり、(8) 式の条件も満たしている。

4. 空調用エネルギー消費量の評価

4.1 空調用エネルギー消費係数

本研究では機器の冷却特性と空調効率の関係を明確にするとを目的の一つとし、空調用エネルギー消費量の評価にエネルギー消費係数を用いる。発熱密度が高いデバイスセンターの場合、機器発熱量が多く、さらに機器の冷却に大きな換気風量が求められる。すなわち、空調は空調温度差の小さな運転になる。このような場合、送風機のエネルギー消費量が熱源の負荷として大きな比率になる。ここでは、空気温送系と熱源系双方のエネルギー消費量を評価するため、空気系熱流量、室内熱流量等どの種の熱損失、利得を全て 1 として、各部のエネルギー消費係数で定義する。\(^3\)

(1) 空調機の空気温送エネルギー消費係数

空調機の空気温送エネルギー消費量 \(E_{\text{fa}} \) は、空調給気および各部の圧力損失を用い (23) 式で表される。

\[
E_{\text{fa}} = \frac{V}{\eta_m} \left(P_{\text{d}} + P_{\text{p}} \right) \quad P_{\text{d}} = \frac{\varepsilon_{\text{ex}} \rho \nu^2}{2} \tag{23}
\]

\(P_{\text{d}} \) は空調機の機内圧力損失を表し、空調温度差と室内機の形状が決まり定数である。一方、\(P_{\text{p}} \) は空気温送系のダクトの他の、二重板やプレナム天井での圧力損失を含み、風量の増加に比例する。二重板やプレナム天井の圧力損失は既存\(^3\)の方法で吹出し、吸込み風量分布の均一性を考慮し求めるものであるが、ここでは、空気温送系の熱源の通気抵抗係数 \(\zeta_{\text{ex}} \) を用いる。さらに、空気温送エネルギー消費係数 \(\epsilon_{\text{ex}} \) は、空気温送エネルギー消費量 \(E_{\text{fa}} \) を熱負荷 \(H_{\text{e}} \) で除し次式で得られる。

\[
\epsilon_{\text{ex}} = \frac{E_{\text{fa}}}{H_{\text{e}}} \tag{24}
\]

(2) 機器の空気温送エネルギー消費係数

ラッパに搭載されている機器の冷却には一般に軸流ファンが用いられている。この軸流ファンの全圧損失 \(P_{\text{d}} \) は圧力損失が多く、空調機の全圧損失と比較して小さい。しかし、機器冷却温度差が小さな場合、そのエネルギー消費量は無視できない。機器機の場合と同様に機器の空気温送エネルギー消費量 \(E_{\text{fa}} \) および機器の空気温送エネルギー消費係数 \(\epsilon_{\text{fa}} \) は次式となる。

\[
E_{\text{fa}} = \frac{V}{\eta_m} P_{\text{d}} \tag{25}
\]

\[
\epsilon_{\text{fa}} = \frac{E_{\text{fa}}}{H_{\text{e}}} \tag{26}
\]

(3) 熱源エネルギー消費係数

熱源エネルギー消費量 \(E_{\text{com}} \) は、熱負荷 \(H_{\text{e}} \) と空気温送エネルギー消費量 \(E_{\text{fa}} \) および機器冷却エネルギー消費系 \(\epsilon_{\text{fa}} \) の和を熱環境機器の効率 \(\text{COP}_{\text{com}} \) で除し次式となる。なお、冷却用の熱源はパッケージ型空調機を想定し、総合熱効率 \(\text{COP}_{\text{com}} \) を用いる。

\[
E_{\text{com}} = \frac{H_{\text{e}} + E_{\text{fa}} + E_{\text{fa}}}{\text{COP}_{\text{com}}} \tag{27}
\]

\[
\epsilon_{\text{com}} = \frac{E_{\text{com}} + E_{\text{fa}} + E_{\text{fa}}}{H_{\text{e}} \times \text{COP}_{\text{com}}} \tag{28}
\]

(4) トータルエネルギー消費係数

以上の各エネルギー消費系の和がトータルエネルギー消費系

\[
\epsilon_{\text{t}} \tag{29}
\]

\[
\epsilon_{\text{t}} = \frac{E_{\text{fa}} + E_{\text{fa}} + E_{\text{fa}}}{H_{\text{e}} \times \text{COP}_{\text{com}}} \quad \text{ただし} \quad E_{\text{fa}} = \frac{V}{\eta_m} (P_{\text{d}} + P_{\text{p}}) \quad P_{\text{d}} = \frac{\varepsilon_{\text{ex}} \rho \nu^2}{2} \tag{29}
\]

4.2 空調給気量とトータルエネルギー消費係数

空調給気量エネルギー消費量の評価に必要な空調給気流量 \(V \) は(30)式で表される。一方、空調給気流量 \(\theta_{\text{fa}} \) を(10)式的関係から(31)式に

\[
V = \frac{H_{\text{e}}}{c_{\rho} (\theta_{\text{fa}} - \theta_{\text{t}})} \quad \text{ただし} \quad \theta_{\text{fa}} = H_{\text{e}} + H_{\text{s}} \tag{30}
\]

\[
\theta_{\text{t}} - \theta_{\text{fa}} = \frac{H_{\text{e}}}{m_{\text{gs}}} \tag{31}
\]

前章に述べたように、総合再循環率 \(\gamma_{\text{ex}} \) は換気流量比 \(\gamma_{\text{ax}} \) の一次関数で表され、これを代入すると(32)式となる。

\[
V = \frac{H_{\text{e}}}{c_{\rho} (\theta_{\text{fa}} - \theta_{\text{t}})} \cdot \left(1 - \frac{(a + b)}{(a + b)} \right) \left(H_{\text{e}} + H_{\text{s}} \right) \quad \kappa_{\text{ex}} = \frac{V}{V_{\text{ex}}} \tag{32}
\]

(33) 式および(34) 式における機器吸込温度 \(\theta_{\text{fa}} \) は空調設備設計あるいは使用目的の目標値である。室内に設置した機器の内、最大機器吸込む温度を設定すれば、各々最大機器吸込温度 \(\theta_{\text{ax} \text{, ax}} \) は最大機器吸込温度比 \(\kappa_{\text{ex}} \) および空調再循環率 \(\gamma_{\text{ex}} \) を用い、その必要空調給気量が得られる。

なお、(33) 式および(34) 式の換気流量比 \(\kappa_{\text{ex}} \) は空調給気流量 \(V \) の関数になっているため、解を得るには繰り返し計算が必要になる。そこで得られた空調給気流量 \(V \) を(23)式から(29)式から次式のトータルエネルギー消費係数 \(\epsilon_{\text{t}} \) が得られる。

3.3 空調用エネルギー消費量の評価結果

機器の冷却特性が空調効率へ与える影響を把握するため、最大機器吸込温度、および機器冷却温度差を変化させ空調のトータルエネルギー消費系を求めた。また、ラッパ内の再循環を抑制する遮蔽の効果を検証した。なお、検討は表 4 に示す条件で行った。

（1）最大機器吸込温度の影響

最大機器吸込温度が各エネルギー消費系に与える影響を検討するため、遮蔽パラメータのケースについて、最大機器吸込温度と空調熱互換温度差の差 \(\theta_{\text{ex} \text{, ax}} - \theta_{\text{fa}} \) と各エネルギー消費系の関係を図 12 に示す。その結果、最大機器吸込温度が低下し、\(\theta_{\text{ex} \text{, ax}} - \theta_{\text{fa}} \) の減少にともない熱源エネルギー消費系 \(\epsilon_{\text{com}} \) および空調機の空気温送系 \(\epsilon_{\text{fa}} \) の減少が見られる。
（2）遮蔽パネルの効果
遮蔽パネルの設置効果を検討するため、最大機器吸込み温度と空調給気温度の比 \(\theta_{\text{sa}} \) と各エネルギー消費係数の関係を図 13 に示す。その結果、遮蔽パネルエネルギー消費係数 \(\gamma_{\text{sa}} \) に与える遮蔽パネルの効果は約 6% であり、最大機器吸込み温度と空調給気温度の差に関わらずほぼ一定の値を示した。

（3）機器冷却温度差の影響
機器冷却温度差が各エネルギー消費係数に与える影響を検討するため、遮蔽パネル有無両者のケースについて、機器冷却温度差 \(\theta_{\text{sa}} = \theta_{\text{sa}} \) と各エネルギー消費係数の関係を図 14 に示す。その結果、遮蔽パネル有無両者のケースとも、遮蔽パネルエネルギー消費係数は機器冷却温度差の減少とともに増大するが、機器冷却温度差が 2 〜 3K よりも下回ると減少に転じる。これにより、機器冷却温度差が減少すると空調効率は低下することが示されているが、さらに極端に機器冷却温度差が減少すると空調効率向上へ転ずる。

これは、機器冷却温度差が減少し機器換気量が増大すると、換気流量比 \(\phi_{\text{sa}} \) が増大する。これにより、総合再換気量 \(\gamma_{\text{sa}} \) が増加するが、排熱効率 \(\eta_{\text{sp}} \) および機器吸込み温度差 \(\Delta t_{\text{sa}} \) が低下し、換気流量比が小さくなっても最高機器吸込み温度 \(\theta_{\text{sa,\text{max}}} \) を満たすようになる。すなわち、機器冷却温度差が極端に小さな場合において、室内は完全混合に近い状態になり、室内温度のばらつきが小さくなる。そのような状態では、空調給気温度が低くしても許容する最高機器吸込み温度 \(\theta_{\text{sa,\text{max}}} \) を満たしながら空調給気温度を低下できるようになる。これにより、機器の冷却ファンの全圧損失が空調機の送風機と比較して十分に小さくなることにより実現する。

一方、遮蔽パネルエネルギー消費係数に与える遮蔽パネルの効果は、機器冷却温度差の減少にともない拡大する。今回の検討範囲において、エネルギー消費係数が最大になる機器冷却温度差は、遮蔽パネルなしの場合に約 2.0K、遮蔽パネルありの場合に約 3.0K であり、遮蔽パネルありの方がやや高い。

5. まとめ
高発熱の機器の冷却特性が空調効率に与える影響を把握するため、機器冷却モデルを構築した後、実験結果から各パラメータを同定し、これを用いてエネルギー消費係数を得る方法を示した。さらに、各種条件を変更した場合の検討例から空調効率およびパラメータを同定する手法を示し、機器の冷却特性を左右する要因を明らかにした。これらの指標は実際に採用している機械性でも利用できる。

2）機器の冷却特性と空調エネルギー消費係数の関係を整理し、機器吸込み温度に与条件にした場合、機器の冷却に必要な空調エネルギーを求めることができる。

3）ラックに搭載された高発熱の機器について、空調給気温度を変化させながら各部の温度を計測する実験を行った。これらの結果から、機器の冷却特性を決定するパラメータ間の関係を明らかにした。

4）機器冷却温度差と空調効率の関係から、最大機器吸込み温度と空調給気温度の差を小さくすることは、すなわち、機器吸込み温度の許容条件が低くなるほど空調のトータルエネルギー消費係数を増加する。

5）機器の吸込み温度の上昇を抑制するため、ラック内で発生する機器再循環を防止する遮蔽パネルの効果を検証した。その結果、機器冷却温度差が 5K の場合、空調のトータルエネルギー消費係数の削減率は約 5% になった。一方、機器冷却温度差が低く、機器換気が大きな場合、その効果は増加し、機器冷却温度差が 2K の場合、約 20% になった。このことから、遮蔽パネルは機器冷却温度差が小さな場合に有効といえる。

6）機器冷却温度差には最大空調効率が悪化するポインターがあることがわかった。機器冷却温度差の低下は、機器の冷却ファンの台数増加が空調機の送風機と比較し十分に小さくなることにより実現する。

一方、遮蔽パネルエネルギー消費係数に与える遮蔽パネルの効果は、機器冷却温度差の減少にともない拡大する。今回の検討範囲において、エネルギー消費係数が最大になる機器冷却温度差は、遮蔽パネルなしの場合に約 2.0K、遮蔽パネルありの場合に約 3.0K であり、遮蔽パネルありの方がやや高い。
本論文に関する既発表論文

（1）木下, 隆司弘治, 羽山広文: データセンターにおける機器冷却特性に関する研究 その１ 機器吸込み温度と機器周辺の気温・湿度・日本建築学会大会学術講演会（近畿）, 環境工学11, pp. 1053-1054, 2005, 9

（3）羽山広文, 隆司弘治, 木下, 輪内正道, 重松教: データセンターにおける機器冷却特性に関する研究 その3 IT機器の吸込み温度のモデル化, 日本建築学会大会学術講演会（近畿）, 環境工学11, pp. 1057-1058, 2005, 9

（4）泉孝典, 羽山広文, 輪内正道, 菊田弘樹, 木下: データセンターにおける機器冷却特性に関する研究 その4 空調効率に与える設備機器の影響, 日本建築学会大会学術講演会（関東）, 環境工学11, pp. 1113-1114, 2006, 9

参考文献

1) 早川一也, 椙井篤: 電算機の空気調和に関する一考察, 空気調和・衛生工学, 第43巻第7号, pp. 591-611, 1969, 7
2) 田中俊彦, 村上隆一, 加藤信介, 梅枝, 先端義正: 機器排出空気温度に関する効率的減熱排熱に関する研究（その10）, 空気調和・衛生工学学術講演会講演論文集, pp. 285-288
3) 三宅信雄, 木下, 鈴木常雄: データセンターの気流設計手法に関する研究（室内温度を評価指標とした空調気流設計）, 空気調和・衛生工学学術講演会講演論文集, pp. 1974-1978, 2008, 8
4) 中尾善子, 羽山広文, 西岡真也, 松尾寛: 高発熱機器空調用空調気流方式の研究 第1報 - 気流方式の比較と機器吸込み平均温度計算モデルの実験検討, 空気調和・衛生工学論文集, No.54, pp. 77-89, 1994, 2
5) 中尾善子, 羽山広文, 西岡真也, 松尾寛: 高発熱機器空調用空調気流方式の研究 第2報 - 温度差の分布モデル, 空気調和・衛生工学論文集, No.56, pp. 87-97, 1994, 10
6) 羽山広文, 中里信明, 木下, 金岡隆: 強制空調機器を収容した機械室における空調方式の高効率化に関する研究, 日本建築学会計画論文集, No.494, pp. 29-36, 1997, 4
8) （社）空調調和衛生工学会: 建築・設備の省エネルギー技術指針, pp. 192-198, 1994, 6
9) 羽山広文: 建築排出空調システムの高効率化, 日本建築学会技術報告集, No.2, pp. 110-114, 1996, 3

記号表

\[\phi, \theta \] : 空気の比熱[J/kg(Da)・K]
\[\alpha_{\text{c}} \] : 機器の空調エネルギー消費量[W]
\[\alpha_{\text{r}} \] : 空調エネルギー消費量[W]
\[\alpha_{\text{n}} \] : 空調エネルギー消費量[W]
\[\theta_{\text{o}} \] : 空調給気温度[℃]
\[\theta_{\text{i}} \] : 空調循環温度[℃]
\[\theta_{\text{a}} \] : 機器吸込み温度[℃]
\[\alpha_{\text{a}} \] : 機器吸込み温度差値 [-]
\[\alpha_{\text{b}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{c}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{d}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{e}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{f}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{g}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{h}} \] : 機器排出温度差値 [-]
\[\alpha_{\text{i}} \] : 機器排出温度差値 [-]

（2009年1月10日受領、2009年3月11日採用決定）