Influence of annealing on spin-dependent tunneling characteristics of fully epitaxial \(\text{Co}_2\text{MnGe}/\text{MgO}/\text{Co}_{50}\text{Fe}_{50} \) magnetic tunnel junctions

Tomoyuki Taira, Takayuki Ishikawa, Naoki Itabashi, Ken-ichi Matsuda, Tetsuya Uemura, and Masafumi Yamamoto

Division of Electronics for Informatics, Hokkaido University, Sapporo 060-0814, Japan

(Received 16 December 2008; accepted 28 January 2009; published online 20 February 2009)

We found that the tunnel magnetoresistance ratio of fully epitaxial \(\text{Co}_2\text{MnGe}/\text{MgO}/\text{Co}_{50}\text{Fe}_{50} \) magnetic tunnel junctions (MTJs) increased discontinuously and significantly from 92% at room temperature (RT) (244% at 4.2 K) for \(T_a \) of 475 °C to 160% at RT (376% at 4.2 K) for \(T_a \) of 500 °C, where \(T_a \) is the temperature at which the MTJ trilayer was in situ annealed just after deposition of the upper electrode. We also found that the \(\text{dl/dV} \) versus \(V \) characteristics for the parallel and antiparallel magnetization configurations changed discontinuously and markedly with increasing \(T_a \) from 475 °C or less to 500 °C or higher. These significant changes are discussed in terms of a possible change in the spin-dependent interfacial density of states. © 2009 American Institute of Physics.

Co-based Heusler alloys (Co\(_2 \)YZ) attracted much interest as promising ferromagnetic electrode materials for spintronic devices, including magnetic tunnel junctions (MTJs),\(^1\)–\(^6\) giant magnetoresistance devices,\(^\text{7,8} \) and for spin injection from ferromagnetic electrodes into semiconductors.\(^9\)\(^,\)\(^10\) This is because of the half-metallic ferromagnetic nature theoretically predicted for many of these alloys\(^1\)\(^1\)–\(^13\) and because of their high Curie temperatures, which are well above room temperature (RT).\(^14\) We recently developed fully epitaxial Co\(_2 \)YZ-based MTJs with a MgO tunnel barrier\(^3\)\(^,\)\(^6\) and demonstrated high tunnel magnetoresistance (TMR) ratios of 179% at RT and 683% at 4.2 K for fully epitaxial Co\(_2 \text{MnSi}/\text{MgO}/\text{Co}_2\text{MnSi} \) MTJs.\(^6\)\(^,\) These high TMR ratios at both a low temperature of 4.2 K and RT show that our approach of growing fully epitaxial MTJ layer structures with Co\(_2 \)YZ thin films and a MgO barrier is highly advantageous for fully utilizing high spin polarizations of potentially half-metallic Co\(_2 \)YZ electrodes.\(^6\)\(^,\)\(^15\)

One Co-based Heusler alloy, in particular, Co\(_2 \text{MnGe} \) (CMG), features a theoretically predicted half-metallic nature\(^11\)–\(^13\) and a high Curie temperature of 905 K (Ref. 14). It also features a small lattice mismatch of \(\sim -3.6\% \) with MgO for a 45° in-plane rotation within the (001) plane. This small lattice mismatch, compared to, for example, that of \(-5.1\% \) between Co\(_2 \text{MnSi} \) and MgO is preferable for realizing high-performance CMG-based MTJs with a single-crystalline MgO barrier. By comparison, previously reported CMG/MgO/Co\(_{50}\text{Fe}_{50} \) MTJs showed lower TMR ratios of 83% at RT and 185% at 4.2 K (Ref. 5). Our purpose in the present study has been to clarify the key factors that determine the spin-dependent tunneling characteristics of CMG/MgO/Co\(_{50}\text{Fe}_{50} \) MTJs. To do this, we investigated the effects that in situ annealing immediately after preparation of the MTJ trilayer, i.e., just after preparation of the interfaces in the MTJ trilayer had on the spin-dependent tunneling characteristics through a possible improvement of the electronic structure; in particular, that of the interfacial region.

The fabrication procedure was essentially the same as for the exchange-biased CMG/MgO/Co\(_{50}\text{Fe}_{50} \) MTJs previously reported,\(^5\) but we introduced in situ annealing just after deposition of the Co\(_{50}\text{Fe}_{50} \) upper electrode. The fabricated MTJ layer structure was as follows: (from the substrate side) MgO buffer (10 nm)/CMG (50 nm)/MgO barrier (0.8–3.4 nm)/Co\(_{50}\text{Fe}_{50} \) (3 nm)/Ru (0.8 nm)/Co\(_{50}\text{Fe}_{10} \) (2 nm)/Ir\(_{22}\)Mn\(_{78}\) (10 nm)/Ru cap (5 nm), grown on a MgO(001) substrate. The CMG lower electrode was deposited at RT using magnetron sputtering and subsequently annealed in situ at 500 °C for 15 min. The Co\(_{50}\text{Fe}_{50} \) upper electrode was also deposited at RT. The MTJ trilayer was in situ annealed right after deposition of the Co\(_{50}\text{Fe}_{50} \) upper electrode at various temperatures (\(T_a \)). TMR characteristics were investigated as a function of \(T_a \) along with \(\text{dl/dV} \) versus \(V \) characteristics. We determined through inductively coupled plasma analysis that the CMG film composition used in this study was Co\(_{2}\text{Mn}_{0.77}\text{Ge}_{0.42} \) with an accuracy of 2%–3% for each element. The fabricated junction size was \(10 \times 10 \mu\text{m}^2 \). We defined the TMR ratio as \(\text{TMR} = \frac{\text{RA} – \text{RA}_P}{\text{RA}_P} \), where \(\text{RA}_P \) and \(\text{RA}_A \) are the respective resistance-area products for the parallel (P) and antiparallel (AP) magnetization configurations. We measured the differential conductance (\(\text{dl/dV} \)) versus \(V \) characteristics of the fabricated MTJs using a conventional lock-in method with a typical modulation peak-to-peak voltage of 10 mV and a modulation frequency of 317 Hz. The bias voltage (\(V \)) was defined with respect to the CMG lower electrode, i.e., electrons tunnel from the CMG lower electrode to the Co\(_{50}\text{Fe}_{50} \) upper electrode at a positive \(V \).

Figure 1(a) shows typical MgO barrier thickness (\(t_{\text{MgO}} \)) dependence of \(\text{RA}_P \) and TMR ratios at RT for a \(t_{\text{MgO}} \) range from 1.2 to 3.0 nm for CMG/MgO/Co\(_{50}\text{Fe}_{50} \) MTJs with \(T_a \) of 475 °C fabricated on a \(20 \times 20 \mu\text{m}^2 \) MgO(001) substrate. \(\text{RA}_P \) showed clear exponential dependence on \(t_{\text{MgO}} \) for a relatively wide \(t_{\text{MgO}} \) range from 1.8 to 3.0 nm (region-I), but deviated from the exponential dependence in the \(t_{\text{MgO}} \) range below 1.8 nm (region-II). Note that, even though the values of \(\text{RA}_P \) changed by about four orders of magnitude in the \(t_{\text{MgO}} \) range from 1.8 to 3.0 nm, the TMR ratios were...
almost constant at 93% ± 2% (the absolute mean deviation) for this region, but decreased with decreasing \(t_{\text{MgO}} \) below 1.8 nm. Taking into consideration this dependence of the TMR ratio on \(t_{\text{MgO}} \), we will focus in the following on MTJs having \(t_{\text{MgO}} \) values from region-I to discuss the influence of annealing on spin-dependent tunneling characteristics without \(t_{\text{MgO}} \) being a factor.

Figures 1(c) and 1(d) show typical magnetoresistance curves at RT and 4.2 K for fabricated epitaxial CMG/MgO/Co50Fe50 MTJs with \([\text{Fig. 1(c)}]\) \(t_{\text{MgO}} = 0.3 \text{ nm} \) and \(t_{\text{MgO}} = 2.0 \text{ nm} \). The MTJs exhibited clear exchange-biased TMR characteristics. Note that the TMR ratio increased with increasing \(t_{\text{MgO}} \). This suggests that peak structures exist in the spin-dependent density of states of the electrodes or the interfacial regions of the electrodes facing a MgO barrier. Taking into consideration the abrupt disappearance of the peak structures in the G spectra caused by the annealing at \(T_a \) between 475 and 500 °C, it is improbable that the distinct changes in the TMR spectra were due to a possible existence of peak structures in the density of states of the CMG lower electrode. This is because that the CMG lower electrode was already in situ annealed at 500 °C right after deposition of the CMG lower electrode. The \(G_p \) and \(G_{\text{AP}} \) spectra of the reference Co2Cr0.6Fe0.4Al/MgO/Co50Fe50 MTJ, which was identically fabricated with \(T_a \) of 475 °C and showed a TMR ratio of 294% at 4.2 K (94% at RT), did not exhibit a peak structure, even though it was fabricated with \(T_a \) of RT, like those observed for the CMG lower electrode.

FIG. 1. (Color online) (a) Typical \(t_{\text{MgO}} \) dependence of \(R_A \) and TMR ratios at RT for Co50Mg0.5Ge/MgO/Co50Fe50 MTJs with \(t_{\text{MgO}} = 0.3 \text{ nm} \) fabricated on a \(20 \times 20 \text{ nm}^2 \) MgO(001) substrate, where \(R_A \) represents the resistance-area product RA for the P configuration. (b) TMR ratios at RT as a function of \(T_a \). The error bar for \(T_a = 500 \text{ °C} \) indicates the range of observed TMR ratios for MTJs fabricated on a \(20 \times 20 \text{ nm}^2 \) MgO substrate. [(c) and (d)] Typical magnetoresistance curves at RT and 4.2 K for MTJs with \(T_a = 475 \text{ °C} \) and \(t_{\text{MgO}} = 2.0 \text{ nm} \) and for those with \(T_a = 500 \text{ °C} \) and \(t_{\text{MgO}} = 3.0 \text{ nm} \). The bias voltage was 1 mV at 4.2 K and 5 mV at RT.

Most importantly, these distinct peak structures observed for MTJs with \(T_a = 475 \text{ °C} \) or less completely disappeared for MTJs with \(T_a = 500 \text{ °C} \) at both 4.2 K [Fig. 2(b)] and RT (not shown). Furthermore, MTJs with \(T_a \) higher than 500 °C (i.e., \(T_a = 525 \text{ or } 550 \text{ °C} \)) showed \(G_p \) and \(G_{\text{AP}} \) spectra similar to those of the MTJ with \(T_a = 500 \text{ °C} \). This revealed that the discontinuous and significant increase in the TMR ratio for MTJs with \(T_a = 500 \text{ °C} \) was associated with the distinct changes in the \(G_p \) and \(G_{\text{AP}} \) spectra that featured the disappearance of the peak structures.

We will now discuss possible origins of the distinct changes in the \(G_p \) and \(G_{\text{AP}} \) spectra. First, we can reasonably attribute the existence of the peak structures in the \(G \) spectra for MTJs with \(T_a < 475 \text{ °C} \) or less to a possible existence of peak structures in the spin-dependent density of states of the electrodes or the interfacial regions of the electrodes facing a MgO barrier. Taking into consideration the abrupt disappearance of the peak structures in the \(G \) spectra caused by the annealing at \(T_a \) between 475 and 500 °C, it is improbable that the distinct changes in the \(G \) spectra were due to a possible existence of peak structures in the density of states of the CMG lower electrode. This is because that the CMG lower electrode was already in situ annealed at 500 °C right after deposition of the CMG lower electrode. The \(G_p \) and \(G_{\text{AP}} \) spectra of the reference Co2Cr0.6Fe0.4Al/MgO/Co50Fe50 MTJ, which was identically fabricated with \(T_a \) of 475 °C and showed a TMR ratio of 294% at 4.2 K (94% at RT), did not exhibit a peak structure, even though it was fabricated with \(T_a = 475 \text{ °C} \) or less. This suggests that the possibility of peak structures in the density of states of the Co50Fe50 electrode or the interfacial region of the Co50Fe50 electrode facing a MgO barrier can be excluded. Thus, it is likely that peak structures exist in the spin-dependent density of states for the interfacial region of the CMG electrode facing a MgO barrier in MTJs with \(T_a = 475 \text{ °C} \) or less.

Figure 3 shows a model of the spin-dependent density of states for the interfacial region of the CMG lower electrode...
facing a MgO barrier in MTJs with T_a of 475 °C or less that we propose to explain the G spectra of these MTJs. The model features the existence of a peak structure in the interfacial density of states for majority spins with a peak position about 0.25 eV [an intermediate value between eV_{C1+} (0.22 eV) and eV_{C2+} (0.27 eV)] below the Fermi level (E_F) and the existence of such a structure for minority spins with a peak position about 0.38 eV ($e|V_{C2-}|$) above E_F. We tentatively assumed that the peak position about 0.38 eV above E_F for minority spins is above the bottom of the conduction band for minority spins because the energy difference of 0.38 eV from E_F is too large for the conduction band edge from E_F if we compare it to one-half the theoretically predicted value of a half-metal gap of 0.21–0.54 eV for CMG.11,12 For the bulk region of the CMG lower electrode, we tentatively assumed the existence of residual states in the possible minority-spin (m-spin) band gap, although this is not critical for the model of tunneling process that we will describe.

We will now examine possible tunneling processes for $V > 0$ responsible for the peak structures in the G_P and G_{AP} spectra. A possible tunneling process for P around a positive V of $V_{C1+} \sim 0.22$ V, at which the peak structure was observed in the G_P spectrum is illustrated in Fig. 3, where electrons in the majority-spin (M-spin) band of the bulk region of the CMG lower electrode tunnel to the M-spin band of the Co$_{50}$Fe$_{50}$ upper electrode through the M-spin interface states in the interfacial region of the CMG lower electrode facing a MgO barrier. For V around 0.22 V, the G_P value is enhanced because of the existence of the peak around 0.25 eV below E_F in the M-spin interfacial density of states, resulting in a peak structure in the G_P spectrum around V of 0.22 V (V_{C1+}). The peak structure observed in the G_{AP} spectrum around 0.27 V (V_{C2+}) is similarly explained. The tunneling process for this case is essentially the same as that for the former case (for P and $V > 0$), except that electrons tunnel to the m-spin band of the Co$_{50}$Fe$_{50}$ upper electrode.

For V around -0.38 V (V_{C2-}), the G_{AP} value is also enhanced because of the existence of the peak structure in the m-spin interfacial density of states with a peak position about 0.38 eV above E_F.

According to our explanation of the peak structures in the G spectra based on the existence of peak structures in the interfacial density of states, it is most reasonable to attribute the discontinuous disappearance of the peak structures in the G spectra caused by in situ annealing at T_a between 475 and 500 °C to a possibly substantial change in the interface states at the CMG electrode-MgO barrier interface. We tentatively attribute the existence of the peak structures in the interfacial density of states for MTJs with T_a of 475 °C or less to unstable interface bonding. We suppose that these peak structures in the interfacial density of states disappeared with the change in the interface bonding to thermodynamically stable interface bonding caused by in situ annealing at T_a between 475 and 500 °C. The marked increase in the TMR ratio can consistently be attributed to the rearrangement of the spin-dependent interfacial density of states, resulting in increased spin polarization in the interfacial region of the CMG electrode facing a MgO barrier.

In summary, the TMR ratio of fully epitaxial CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs increased discontinuously and significantly from 92% at RT (244% at 4.2 K) to 160% at RT (376% at 4.2 K) when T_a was increased from 475 to 500 °C. In addition, the G_P and G_{AP} spectra changed discontinuously and markedly when T_a was increased from 475 °C or less to 500 °C or higher, and we ascribed this to a possible change in the interfacial bonding at the CMG electrode-MgO barrier interface from thermodynamically unstable bonding for MTJs with T_a of 475 °C or less to stable bonding for MTJs with T_a of 500 °C or higher. The significant increase in the TMR ratio with increasing T_a from 475 to 500 °C was consistently explained in terms of increased interfacial spin polarization at E_F associated with the change of the spin-dependent interfacial density of states.

This work was partly supported by a Grant-in-Aid for Scientific Research (A) (Grant No. 20246054) and a Grant-in-Aid for Scientific Research on Priority Area “Creation and control of spin current” (Grant No. 19048001) from the MEXT, Japan.