Influence of annealing on spin-dependent tunneling characteristics of fully epitaxial Co$_2$MnGe/MgO/Co$_{50}$Fe$_{50}$ magnetic tunnel junctions

Tomoyuki Taira, Takayuki Ishikawa, Naoki Itabashi, Ken-ichi Matsuda, Tetsuya Umura, and Masafumi Yamamoto

Division of Electronics for Informatics, Hokkaido University, Sapporo 060-8014, Japan

(Received 16 December 2008; accepted 28 January 2009; published online 20 February 2009)

We found that the tunnel magnetoresistance ratio of fully epitaxial Co$_2$MnGe/MgO/Co$_{50}$Fe$_{50}$ magnetic tunnel junctions (MTJs) increased discontinuously and significantly from 92% at room temperature (RT) (244% at 4.2 K) for T_a of 475 °C to 160% at RT (376% at 4.2 K) for T_a of 500 °C, where T_a is the temperature at which the MTJ trilayer was in situ annealed right after deposition of the upper electrode. We also found that the dI/dV versus V characteristics for the parallel and antiparallel magnetization configurations changed discontinuously and markedly with increasing T_a from 475 °C or less to 500 °C or higher. These significant changes are discussed in terms of a possible change in the spin-dependent interfacial density of states. © 2009 American Institute of Physics. [DOI: 10.1063/1.3083559]

Co-based Heusler alloys (Co$_2$YZ) attracted much interest as promising ferromagnetic electrode materials for spintronic devices, including magnetic tunnel junctions (MTJs), giant magnetoresistance devices, and for spin injection from ferromagnetic electrodes into semiconductors. This is because of the half-metallic ferromagnetic nature theoretically predicted for many of these alloys and because of their high Curie temperatures, which are well above room temperature (RT). We recently developed fully epitaxial Co$_2$YZ-based MTJs with a MgO tunnel barrier and demonstrated high tunnel magnetoresistance (TMR) ratios of 179% at RT and 683% at 4.2 K for fully epitaxial Co$_2$MnSi/MgO/Co$_2$MnSi MTJs. These high TMR ratios at both a low temperature of 4.2 K and RT show that our approach of growing fully epitaxial MTJ layer structures with Co$_2$YZ thin films and a MgO barrier is highly advantageous for fully utilizing high spin polarizations of potentially half-metallic Co$_2$YZ electrodes.

One Co$_2$MnGe Heusler alloy, in particular, Co$_2$MnGe (CMG), features a theoretically predicted half-metallic nature and a high Curie temperature of 905 K. It also features a small lattice mismatch of −3.6% with MgO for a 45° in-plane rotation within the (001) plane. This small lattice mismatch, compared to, for example, that of −5.1% between Co$_2$MnSi and MgO is preferable for realizing high-performance CMG-based MTJs with a single-crystalline MgO barrier. By comparison, previously reported CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs showed lower TMR ratios of 83% at RT and 185% at 4.2 K. Our purpose in the present study has been to clarify the key factors that determine the spin-dependent tunneling characteristics of CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs. To do this, we investigated the effects that in situ annealing immediately after preparation of the MTJ trilayer, i.e., just after preparation of the interfaces in the MTJ trilayer had on the spin-dependent tunneling characteristics through a possible improvement of the electronic structure; in particular, that of the interfacial region.

The fabrication procedure was essentially the same as for the exchange-biased CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs previously reported, but we introduced in situ annealing just after deposition of the Co$_{50}$Fe$_{50}$ upper electrode. The fabricated MTJ layer structure was as follows: (from the substrate side) MgO buffer (10 nm)/CMG (50 nm)/MgO barrier (0.8–3.4 nm)/Co$_{50}$Fe$_{50}$ (3 nm)/Ru (0.8 nm)/Co$_{50}$Fe$_{10}$ (2 nm)/Ir$_{22}$Mn$_{78}$ (10 nm)/Ru cap (5 nm), grown on a MgO(001) substrate. The CMG lower electrode was deposited at RT using magnetron sputtering and subsequently annealed in situ at 500 °C for 15 min. The Co$_{50}$Fe$_{50}$ upper electrode was also deposited at RT. The MTJ trilayer was in situ annealed right after deposition of the Co$_{50}$Fe$_{50}$ upper electrode at various temperatures (T_a). TMR characteristics were investigated as a function of T_a along with dI/dV versus V characteristics. We determined through inductively coupled plasma analysis that the CMG film composition used in this study was Co$_2$Mn$_{0.77}$Ge$_{0.42}$ with an accuracy of 2%–3% for each element. The fabricated junction size was $10 \times 10 \mu$m2. We defined the TMR ratio as $(R_{AP}−R_{AP})/R_{AP}$, where R_{AP} and R_{AP} are the respective resistance-area products for the parallel (P) and antiparallel (AP) magnetization configurations. We measured the differential conductance (dI/dV) versus V characteristics of the fabricated MTJs using a conventional lock-in method with a typical modulation peak-to-peak voltage of 10 mV and a modulation frequency of 317 Hz. The bias voltage (V) was defined with respect to the CMG lower electrode, i.e., electrons tunnel from the CMG lower electrode to the Co$_{50}$Fe$_{50}$ upper electrode at a positive V.

Figure 1(a) shows typical MgO barrier thickness (t_{MgO}) dependence of R_{AP} and TMR ratios at RT for a t_{MgO} range from 1.2 to 3.0 nm for CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs with T_a of 475 °C fabricated on a $20 \times 20 \mu$m2 MgO(001) substrate. R_{AP} showed clear exponential dependence on t_{MgO} for a relatively wide t_{MgO} range from 1.8 to 3.0 nm (region-I), but deviated from the exponential dependence in the t_{MgO} range below 1.8 nm (region-II). Note that, even though the values of R_{AP} changed by about four orders of magnitude in the t_{MgO} range from 1.8 to 3.0 nm, the TMR ratios were...
almost constant at 93% ± 2% (the absolute mean deviation) for this region, but decreased with decreasing t_{MgO} below 1.8 nm. Taking into consideration this dependence of the TMR ratio on t_{MgO}, we will focus in the following on MTJs having t_{MgO} values from region-I to discuss the influence of annealing on spin-dependent tunneling characteristics without t_{MgO} being a factor.

Figures 1(c) and 1(d) show typical magnetoresistance curves at RT and 4.2 K for fabricated epitaxial CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs with t_{MgO} of 3.0 nm and for those with t_{MgO} of 2.0 nm and t_{MgO} of 3.0 nm. The MTJs exhibited clear exchange-biased TMR characteristics. Note that the TMR ratio increased markedly with increasing T_a, rising from typical values of 92% at RT and 244% at 4.2 K for T_a of 475 °C to 160% at RT and 376% at 4.2 K for T_a of 500 °C. Furthermore, a plot of the TMR ratio at RT as a function of T_a shows clearly that the TMR ratio increased discontinuously and significantly with increasing T_a from 475 to 500 °C. The TMR ratio decreased, however, as T_a increased beyond 500 °C and the MTJ with T_a of 550 °C showed a smaller TMR ratio of 104% at RT. We will mainly concern ourselves with the possible origin of the abrupt increase in the TMR ratio for MTJs with T_a between 475 and 500 °C in the following.

To further investigate spin-dependent tunneling characteristics of CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs, we measured $dI/dV (=G)$ versus V characteristics for P and AP (G_p and G_{AP} spectra, respectively) at 4.2 K and RT. Figure 2 shows typical G_p and G_{AP} spectra at 4.2 K for CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs with T_a of 475 °C and t_{MgO} of 2.0 nm (the same MTJ as for Fig. 1(c)) and for those with T_a of 500 °C and t_{MgO} of 2.9 nm showing a TMR ratio of 322% at 4.2 K (144% at RT). The G spectra of the MTJs with T_a of 475 °C (Fig. 2(a)) exhibited distinct peak structures (1) at a characteristic voltage (V_{C1+}) of ~0.22 V (for $V > 0$) for P, and (2) at V_{C2-} of ~0.38 V (for $V < 0$) and V_{C2+} of ~0.27 V (for $V > 0$) for AP. These pronounced peak structures were also observed at RT with almost the same characteristic voltages of V_{C1+}, V_{C2-}, and V_{C2+}. Furthermore, these peak structures in G_p and G_{AP} spectra were commonly observed with almost the same characteristic voltages for MTJs fabricated with T_a of 475 °C or less.

Most importantly, these characteristic voltages existed for MTJs with T_a of 475 °C or less completely disappeared for MTJs with T_a of 500 °C at both 4.2 K [Fig. 2(b)] and RT (not shown). Furthermore, MTJs with T_a higher than 500 °C (i.e., T_a of 525 or 550 °C) showed G_p and G_{AP} spectra similar to those of the MTJ with T_a of 500 °C. This revealed that the discontinuous and significant increase in the TMR ratio for MTJs with T_a of 500 °C was associated with the distinct changes in the G_p and G_{AP} spectra that featured the disappearance of the peak structures.

We will now discuss possible origins of the distinct changes in the G_p and G_{AP} spectra. First, we can reasonably attribute the existence of the peak structures in the G spectra for MTJs with T_a of 475 °C or less to a possible existence of peak structures in the spin-dependent density of states of the electrodes or the interfacial regions of the electrodes facing a MgO barrier. Taking into consideration the abrupt disappearance of the peak structures in the G spectra caused by the annealing at T_a between 475 and 500 °C, it is improbable that the distinct changes in the G spectra were due to a possible existence of peak structures in the density of states of the CMG lower electrode. This is because the CMG lower electrode was already in situ annealed at 500 °C right after deposition of the CMG lower electrode. The G_p and G_{AP} spectra of the reference Co$_2$Cr$_{0.8}$Fe$_{0.2}$Al/MgO/Co$_{50}$Fe$_{50}$ MTJ, which was identically fabricated with T_a of RT and showed a TMR ratio of 294% at 4.2 K (94% at RT), did not exhibit a peak structure, even though it was fabricated with T_a of RT, like those observed for the CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs with T_a of 475 °C or less. This suggests that the possibility of peak structures in the density of states of the Co$_{50}$Fe$_{50}$ electrode or the interfacial region of the Co$_{50}$Fe$_{50}$ electrode facing a MgO barrier can be excluded. Thus, it is likely that peak structures exist in the spin-dependent density of states for the interfacial region of the CMG electrode facing a MgO barrier in MTJs with T_a of 475 °C or less.

Figure 3 shows a model of the spin-dependent density of states for the interfacial region of the CMG lower electrode.
facing a MgO barrier in MTJs with T_a of 475 °C or less that we propose to explain the G spectra of these MTJs. The model features the existence of a peak structure in the interfacial density of states for majority spins with a peak position about 0.25 eV [an intermediate value between eV_{C1+} (0.22 eV) and eV_{C2+} (0.27 eV)] below the Fermi level (E_F) and the existence of such a structure for minority spins with a peak position about 0.38 eV (eV_{C2-}) at E_F. We tentatively assumed that the peak position about 0.38 eV above E_F for minority spins is above the bottom of the conduction band for minority spins because the energy difference of 0.38 eV from E_F is too large for the conduction band edge from E_F if we compare it to one-half the theoretically predicted value of a half-metallic gap of 0.21–0.54 eV for CMG.11,12 For the bulk region of the CMG lower electrode, we tentatively assumed the existence of residual states in the possible minority-spin (m-spin) band gap, although this is not critical for the model of tunneling process that we will describe.

We will now examine possible tunneling processes for $V>0$ responsible for the peak structures in the G_P and G_{AP} spectra. A possible tunneling process for P around a positive V of $V_{C1+} \sim 0.22$ V, at which the peak structure was observed in the G_P spectrum is illustrated in Fig. 3, where electrons in the majority-spin (M-spin) band of the bulk region of the CMG lower electrode tunnel to the M-spin band of the Co$_{50}$Fe$_{50}$ upper electrode through the M-spin interface states in the interfacial region of the CMG lower electrode facing a MgO barrier. For V around 0.22 V, the G_P value is enhanced because of the existence of the peak around 0.25 eV below E_F in the M-spin interfacial density of states, resulting in a peak structure in the G_P spectrum around V of 0.22 V (V_{C1+}). The peak structure observed in the G_{AP} spectrum around 0.27 V (V_{C2-}) is similarly explained. The tunneling process for this case is essentially the same as that for the former case (for P and $V>0$), except that electrons tunnel to the m-spin band of the Co$_{50}$Fe$_{50}$ upper electrode.

For V around -0.38 V (V_{C2-}), the G_{AP} value is also enhanced because of the existence of the peak structure in the m-spin interfacial density of states with a peak position about 0.38 eV above E_F, as shown in Fig. 3. This work was partly supported by a Grant-in-Aid for Scientific Research (A) (Grant No. 20246054) and a Grant-in-Aid for Scientific Research on Priority Area “Creation and control of spin current” (Grant No. 19048001) from the MEXT, Japan.