Improved tunnel magnetoresistance characteristics of magnetic tunnel junctions with a Heusler alloy thin film of Co$_2$MnGe and a MgO tunnel barrier

Shinya Hakamata,a Takayuki Ishikawa, Takao Marukame, Ken-ichi Matsuda, Tetsuya Uemura, Masashi Arita, and Masafumi Yamamoto

Division of Electronics for Informatics, Graduate School of Information Science and Technology, Hokkaido University, N14, W9, Kita-ku, Sapporo 060-0814, Japan

(Received 31 October 2006; accepted 5 January 2007; published online 9 May 2007)

We fabricated magnetic tunnel junctions (MTJs) with a Co-based full-Heusler alloy thin film of Co$_2$MnGe (CMG) and a MgO tunnel barrier. The microfabricated MTJs with a Co-rich CMG film showed relatively high tunnel magnetoresistance ratios of 83% at room temperature and 185% at 4.2 K. These values are much higher than those previously obtained for CMG/MgO MTJs with a Co-deficient CMG film. © 2007 American Institute of Physics.
We observed the surface morphologies of the 45-nm-thick CMG films deposited on MgO buffer layers (10 nm) using atomic force microscopy. The root mean square (rms) values of the surface roughness increased with postdeposition annealing, from a rms roughness of 0.16 nm for the as-deposited film to 0.26 nm for the 600 °C annealed film. The substrate was a MgO (001) single crystal. The arrows indicate streak patterns corresponding to CMG (110) reflection. The streaks of the as-deposited CMG, obtained previously for an as-deposited Co-deficient CMG film annealed at 600 °C after deposition (t_CMG = 2.4 nm). The junction size was 8 × 8 μm². TMR ratios were 83% at RT and 185% at 4.2 K. (b) TMR ratio, as well as RA_P and RA_AP, at V = 5 mV for the same MTJ shown in Fig. 2(a) as a function of temperature from 4.2 K to RT, where RA_AP and RA_P are the respective resistance-area products for the antiparallel and parallel magnetization configurations between the upper and lower electrodes.

Next, we will describe the spin-dependent tunneling characteristics of fabricated epitaxial MTJs. Figure 2(a) shows typical magnetoresistance curves at a bias voltage (V) of 5 mV at RT and 4.2 K for an as-fabricated CMG/MgO/Co_50Fe_50 MTJ, having a 2.4-nm-thick MgO tunnel barrier, where the lower CMG electrode was in situ annealed at 600 °C after deposition. The junction size was 8 × 8 μm². Exchange-biased TMR characteristics were obtained with relatively high TMR ratios of 83% at RT and 185% at 4.2 K. These values are comparable to the TMR ratios of 90% at RT and 192% at 4.2 K previously obtained for CMS/MgO/Co_50Fe_50 MTJs with a Co-rich CMS film, of which the film composition was Co_2Mn_0.8Si_0.2 (Ref. 22); these are significantly enhanced from the lower TMR ratios of 14% at RT and 70% at 7 K previously reported for CMG/MgO/Co_50Fe_50 MTJs with a Co-deficient CMG film, of which the film composition was Co_2Mn_1.05Ge_1.17.18

Figure 2(b) plots the TMR ratio, as well as RA_AP and RA_P, at V = 5 mV for the same MTJ shown in Fig. 2(a) as a function of temperature (T) from 4.2 K to RT. As T decreased from RT to 4.2 K, the TMR ratio increased by a factor of 2.2. If we use parameter γ = α/RT, where α is the TMR ratio, to represent the degree of T dependence of the TMR ratio, γ for CMG/MgO/Co_50Fe_50 MTJs was 2.2. This value is comparable to the previously obtained γ = 2.1 for CMS/MgO/Co_50Fe_50 MTJs (a TMR ratio of 192% at 4.2 K and 90% at RT)23 and significantly lower than γ = 5.0, which was previously obtained for CMG/MgO/Co_50Fe_50 MTJs (a TMR ratio of 70% at 7 K
and 14% at RT).17,18 As shown in Fig. 2(b), RA_{AP} also increased with decreasing T, while RA_{AP} was almost independent of T. These behaviors were similar to those previously observed for CCFA/MgO/Co$_{50}$Fe$_{50}$ MTJs (Ref. 24) and CMS/MgO/Co$_{50}$Fe$_{50}$ MTJs.22 These behaviors were also observed for Co$_{50}$Fe$_{50}$/MgO/Co$_{50}$Fe$_{50}$ MTJs.25

Figure 3 plots RA_{P} and the TMR ratio at RT (measured at $V=5$ mV) as a function of t_{MgO} for the fabricated CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs where the CMG lower electrode was in situ annealed at 500 °C after deposition. The junction size was $10 \times 10 \mu m^2$. A clear exponential dependence of RA_{P} on t_{MgO} was observed for the t_{MgO} range of 2.0–2.8 nm, indicating typical tunnel junction behavior. Relatively high TMR ratios from 72% to 88% were obtained at RT for this wide range of t_{MgO} from (2.0–2.8 nm).

We estimated the spin polarization for the CMG electrodes by using Jullière’s model for the TMR ratio:26 $TMR = 2P_{1}P_{2}/(1 - P_{1}P_{2})$, where P_{1} and P_{2} are the spin polarizations at the Fermi level (E_F) of the ferromagnetic electrodes in MTJs. We first estimated the effective spin polarization for the Co$_{50}$Fe$_{50}$ electrode from the TMR ratio of 146% at 4.2 K (96% at RT) obtained for the identically fabricated epitaxial Co$_{50}$Fe$_{50}$/MgO/Co$_{50}$Fe$_{50}$ MTJs by using Jullière’s model. Thus, the effective spin polarization value obtained for the Co$_{50}$Fe$_{50}$ electrode (P_{CoFe}) was 0.65 at 4.2 K (0.57 at RT). Then, we estimated the effective spin polarization of the CMG film (P_{CMG}) from the TMR ratio of 185% at 4.2 K (83% at RT) for the epitaxial CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs by using Jullière’s model with P_{CoFe} of 0.65 at 4.2 K (0.57 at RT). The obtained effective spin polarization or tunneling spin polarization values of P_{CMG} were 0.74 at 4.2 K and 0.51 at RT. These P_{CMG} values are comparable to previously obtained values of 0.75 at 4.2 K and 0.54 at RT for the CMS films.22

The enhanced TMR ratios for the CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs fabricated with a Co-rich CMG film demonstrated that the lower TMR ratios observed previously for the CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs with a Co-deficient CMG film17,18 were not due to an intrinsic property of the Co-based full-Heusler alloy of Co$_2$MnGe. The improved TMR characteristics in terms of the TMR ratio or the effective spin polarization at E_F are probably related to the improved structural properties of the CMG film in terms of the degree of structural order.

In summary, we fabricated epitaxial MTJs with a Co-based full-Heusler alloy thin film of CMG and a MgO tunnel barrier. The microfabricated MTJs with a Co-rich CMG film demonstrated relatively high tunnel magnetoresistance ratios of 83% at RT and 185% at 4.2 K. These values are much higher than those previously obtained for CMG/MgO/Co$_{50}$Fe$_{50}$ MTJs with a Co-deficient CMG film.

This work was partly supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 18360143), a Grant-in-Aid for Creative Scientific Research (Grant No. 14GS0301), and a Grant-in-Aid for Young Scientists (B) (Grant No. 17760267) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

3X. Y. Dong et al., Appl. Phys. Lett. 86, 102107 (2005).
24M. Jullière, Phys. Lett. 54A, 225 (1975).