単トレーサーガス法によるパッシブ換気住宅の多数室換気量測定手法の検討
その3 妥当な換気量算定時間帯における最小二乗法と積分法による換気量算定

1. はじめに

本研究は、単トレーサーガス法を用いた多数室換気量測定によって、換気量の妥当性を検証し、測定手法の有用性を探ることを目的とする。本報では、前報の1、2(1)で行った換気量算定結果の妥当な換気量算定時間帯における最小二乗法と積分法による換気量算定を行う。

2. 実験概要

対象建物は、北海道大学構内にあるローエネルギーハウス（以下、LEH）である。間取面積は0.81[m²]で、主換気システムは、室内温度差を自動とするパッシブ換気である。

CO₂をトレーサーガスとして用い、瞬時換気量を前提条件とし、一定換気量で従来の換気量測定を行った（图1）。測定手法には、重ね合わせを用いた。2階→1階→地下1階の順にそれぞれ各階4点からCO₂を0.1[m³/h]供給し、室平均濃度を得るために、供給されたCO₂を拡散促進用ファンで摂取し、各階6点からサンプリングを行った。また、1階と2階に設置されている給気用のファン（約40[m³/h]）を稼働させ、階段室への空気の流れは考えない。実験は2007年9月26日、10月4日、12月15日計3回行った（表1）。

3. 算定方法

3.1 妥当な換気量

微分法のCO₂供給時の算定結果より、妥当な換気量が算定された時間帯を見極めた。その条件として、原形モデルの場合、外気導入量F_aと全排気量のF_e+F_i+F_fで計算し、F_e+F_i+F_f かつ F_e+F_i+F_f と F_i+F_f が風圧で約40[m³/h]であることが前提である（图2）。また、簡易化モデルの場合、F_e+F_i+F_f かつ F_e+F_i+F_f と F_i+F_f が40~50[m³/h]であることにより、全排気量がF_aよりやや小さく算定された。これは、室内温度差が小さく十分な外気導入がなかったためと考えられる。

2) 2階の風圧

以上の条件で重ね合わせができた9、12月の実測では、原形モデル、簡易化モデルの最小二乗法と積分法の算定結果は、前提条件を満たしている。しかし、9月の実測では、原形モデル、簡易化モデルの最小二乗法と積分法の算定結果は、外気導入量が全排気量よりもやや小さく算定された。これは、室内温度差が小さく十分な外気導入がなかったためであると考えられる。

表1 実測データ

<table>
<thead>
<tr>
<th>実測日</th>
<th>9月26日</th>
<th>10月4日</th>
<th>12月15日</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均外気温度(℃)</td>
<td>13.9</td>
<td>18.45</td>
<td>18.45</td>
</tr>
<tr>
<td>平均内外温度差(℃)</td>
<td>6.1</td>
<td>8.2</td>
<td>29.5</td>
</tr>
<tr>
<td>妥当な換気量</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>室内温度(℃)</td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2階</td>
<td>21-39℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1階</td>
<td>21-39℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下1階</td>
<td>21-39℃</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A New Trial for Measuring Multiple Interzonal Airflows in a Passive Ventilation House by Using Single Tracer Gas Technique
Part3 Estimation of Interzonal Airflows in the Time Zone Suitable for Data Analysis by the Least-square Method and the Integral Method

---725---
4.3 内外温度差による換気量の考察

内外温度差が大きくなると、負荷で計算される換気量の数が減少する傾向が見られた。これは、内外温度差の増大すると外気流入の影響が増大し、全体的に有効な空気流動が得られるようになったからである。

5. まとめ

換気量の妥当性を検討するためには、確率論的方法を用いることが必要である。外気条件は十分に変動するから、そのような条件で外気流入が見られる場合には、外気流入の重要性が確認された。