Direct Synthesis of Phenol from Benzene over Platinum-loaded Tungsten(VI) Oxide Photocatalysts with Water and Molecular Oxygen

Osamu Tomita,1 Ryu Abe,1,2 and Bunsho Ohtani1,2
1Graduate School of Environmental Science, Hokkaido University, North10, West5, Kita-ku, Sapporo 060-0810
2Catalysis Research Center, Hokkaido University, North21, West10, Kita-ku, Sapporo 001-0021

(Received <Month> <Date>, <Year>; CL-<No>; E-mail: ryu-abe@cat.hokudai.ac.jp)

Tungsten(VI) oxide loaded with nanoparticulate platinum (Pt/WO3) was demonstrated for the first time to exhibit photocatalytic activity for direct synthesis of phenol from benzene using water and molecular oxygen as reactants under ultraviolet or visible light irradiation; the selectivity for phenol (e.g., 74% at 69% of benzene conversion) on Pt/WO3 photocatalysts was much higher than those on platinum-loaded titanium(IV) oxide (Pt/TiO2) photocatalysts.

Hydroxylated aromatic compounds are the most important raw materials in chemical industry. For example, phenol is the major source of phenol resins, which are utilized in many commodities throughout the world. However, its industrial production still requires multistep reaction processes, namely cumene method, which consumes considerably large energy and yields a by-product, acetone.1 Direct synthesis of phenol from benzene in a one-step reaction, especially using environmentally benign oxidants such as molecular oxygen (O2) or water, is highly desirable, and thus have been extensively studied.2–4 However there have been few catalytic process that enables high benzene conversion with high phenol selectivity by using such environmentally benign oxidants (O2 and/or water). Photocatalysis on semiconductor materials may be one of the candidates for such clean and direct synthesis of phenol from benzene. Although several research groups have reported direct synthesis of phenol from benzene using titanium(IV) oxide (TiO2) photocatalysts suspended in a water-benzene mixture in the presence of molecular O2,5–10 the selectivity for phenol was generally low mainly due to the occurrence of subsequent peroxidation on photocatalyst. Yoshida et al. have demonstrated that the selectivity for phenol can be significantly improved by applying deaerated condition, i.e., the absence of O2, to Pt-loaded TiO2 photocatalyst system, however the efficiency was not so high possibly due to the lower capability of water (or proton) to capture the photoexcited electrons compared to O2.11

In the present study, we report highly selective phenol production (ca. 74% at 69% of benzene conversion) on a Pt-loaded tungsten(VI) oxide (Pt/WO3), which was recently developed as a highly efficient visible-light-responsive photocatalyst,12 in an aqueous solution containing benzene and O2 under the irradiation of ultraviolet or visible light irradiation. The Pt/WO3 photocatalysts showed much higher selectivity for phenol production than platinized (or bare) TiO2 photocatalysts. The different reactivity between WO3 and TiO2 photocatalysts toward benzene oxidation is discussed.

Commercially available WO3 powders such as WO3-K (Kojundo Chemical Laboratory, monoclinic, 2.2 m2·g−1), WO3-Y (Yamanaka Chemical Industries, monoclinic, 2.2 m2·g−1), and WO3-S (Soekawa Chemicals, monoclinic, 1.6 m2·g−1) were used. Since the WO3-K sample consists of mixture of fine and large aggregated particles, fine particulate WO3 with a particle size of 50–200 nm was separated from WO3-K by the method reported previously,12 which will be denoted as WO3-K (10 m2·g−1) hereafter. TiO2 powders such as TiO2-P25 (Degussa (Evonik) P 25, 59 m2·g−1), TiO2-M (Merck, anatase, 11 m2·g−1), and TiO2-J (JRC-TIO-8 donated from the Catalysis Society of Japan, anatase, 338 m2·g−1) were also used for comparison. The modification of photocatalysts with nanoparticulate Pt metal cocatalysts (0.1 wt%) was accomplished by photodeposition from hexachloroplatinic acid (H2PtCl6·6H2O) according to the method reported previously, which affords a highly uniform dispersion of platinum particles (average size, 5 nm) on the photocatalyst surface.12 Photocatalytic oxidation (hydroxylation) of benzene was carried out in a Pyrex reaction cell with internal volume of 15 mL containing a suspension of the photocatalyst powder (50 mg) in an aerated aqueous benzene solution (2.5 mmol L−1, 7.5 mL) with continuous stirring using a magnetic stirrer. The reaction temperature was kept at 279 K by circulating cooling water around the cell. Sample aliquots were withdrawn from the reactor cell after each irradiation and filtered through a PVDF filter to remove photocatalyst particles. Quantitative analysis of solution was carried out using a high performance liquid chromatograph (Shimadzu, LC-10AT VP) equipped with a C-18 column (Shodex, ODP2 HP4E) and a photodiode-array detector. Generation of carbon dioxide (CO2) in the gas phase was analyzed by gas chromatography.

Figure 1 shows the time-course curves of photocatalytic reactions over Pt/WO3-K and Pt/TiO2-P25 in aqueous solutions of benzene (2.5 mmol L−1, 7.5 mL) in the presence of molecular oxygen under the full arc irradiation with a 300-W xenon lamp (λ > 300 nm).

Figure 1. Time courses of photocatalytic oxidation of benzene over (a) Pt/WO3-K and (b) Pt/TiO2-P25 in aerated aqueous solutions of benzene (18.8 µmol) under ultraviolet and visible light (300 < λ < 500 nm).
Table 1. Photocatalytic oxidation of benzene by WO3 and TiO2 photocatalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sample</th>
<th>Conditions</th>
<th>Conversion [%] (irradiation time)</th>
<th>Selectivity [%]</th>
<th>Amount of CO2 / mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pt/WO3-K</td>
<td>k=300, O2</td>
<td>22.2 (60)</td>
<td>79.3</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k=300, Ar</td>
<td>69.9 (240)</td>
<td>73.7</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>Pt/WO3-K</td>
<td>k=400, O2</td>
<td>26.6 (60)</td>
<td>83.8</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>WO3</td>
<td>k=300, O2</td>
<td>16.4 (240)</td>
<td>84.6</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>Pt/WO3-Y</td>
<td>k=300, O2</td>
<td>40.6 (60)</td>
<td>58.8</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>Pt/WO3-S</td>
<td>k=300, O2</td>
<td>32.4 (60)</td>
<td>48.7</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>Pt/TiO2-P25</td>
<td>k=300, O2</td>
<td>38.0 (60)</td>
<td>25.9</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Pt/TiO2-P25</td>
<td>k=400, Ar</td>
<td>13.3 (60)</td>
<td>60.8</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>TiO2-P25</td>
<td>k=300, O2</td>
<td>82.5 (240)</td>
<td>20.6</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>Pt/TiO2-M</td>
<td>k=400, Ar</td>
<td>43.0 (60)</td>
<td>31.0</td>
<td>2.8</td>
</tr>
<tr>
<td>10</td>
<td>Pt/TiO2-J</td>
<td>k=300, O2</td>
<td>48.9 (60)</td>
<td>26.5</td>
<td>1.3</td>
</tr>
<tr>
<td>11</td>
<td>Pt/TiO2-J</td>
<td>k=400, Ar</td>
<td>11.5 (15)</td>
<td>63.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k=300, Ar</td>
<td>38.6 (60)</td>
<td>35.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

(a) Initial concentration of benzene : 2.5 mmol L−1, Solvent: H2O 7.5 mL, Light source : 300 W Xe lamp, (b) Conversion : (%conversion/total benzene) x 106, (c) Selectivity : Cphenol(Cphenol + Cbenzene) x 103.

As seen in Fig. 1-a, phenol was produced with almost constant rate over Pt/WO3-K photocatalyst after 30 min of irradiation along with the consumption of benzene. Small amounts of di-hydroxylated benzenes such as catechol or hydroquinone were also produced (see entry 1 in Table 1). Although appreciable generation of CO2 (ca. 1.4 µmol) was observed in gas phase after the prolonged irradiation (240 min), the amount of CO2 produce was much smaller than that of phenol (ca. 9.5 µmol). The production of phenol was also observed over the Pt/TiO2-P25 as seen in Fig. 1-b, while the phenol production was saturated within 60 min of irradiation accompanied by significant increase of CO2 generation, suggesting that the once-produced phenol was subsequently oxidized over the photocatalyst.13-17

As summarized in Table 1, photocatalytic reaction over Pt/WO3-K resulted in highly selective phenol production with 79% of selectivity at 22% of benzene conversion in initial period (30 min). Even after the long time irradiation of 240 min, a high selectivity of 74% was still obtained at 69% of benzene conversion (entry 1) along with the production of catechol (2.3%), resorcinol (0.7%) and p-benzoquinone (8.8%), resulting in 85.5% of selectivity for hydroxylated benzene or quinone products from benzene. It should be noted here that the products without aromatic ring could not be quantified in the present study. Therefore, other unidentified parts (ca. 14%) are certainly corresponding to the various intermediate compounds produced through the cleavage of aromatic ring, as well as to the final oxidative product CO2. Visible light irradiation (λ > 400 nm) afforded better phenol selectivity (entries 2) on Pt/WO3-K photocatalyst compared to the case of full arc irradiation (entries 1). Other Pt/WO3 samples also showed relatively high selectivity for phenol production above 48% (entries 4 and 5). On the other hand, all the Pt/TiO2 photocatalysts showed much lower selectivity for phenol production below 31% in the presence of O2 even at low conversions of benzene (entries 6, 9 and 10). In all cases H2 production was negligible, indicating that almost all of the photoexcited electrons were consumed to reduce molecular O2, not water (or H2). It should be noted that the Pt/WO3-K and the Pt/TiO2-M, which have similar surface areas (ca. 10 m2 g−1), showed apparently different reactivity. Thus, the factor dominating the reactivity undoubtedly rests on the difference in the composition (WO3 or TiO2) but not on the surface areas. As expected by the photoabsorption property of TiO2, visible light irradiation did not yield any appreciable products over Pt/TiO2 photocatalysts.

These results suggested that the rates of subsequent oxidations of phenol on Pt/WO3 photocatalysts are much lower than those on Pt/TiO2 photocatalysts, enabling the high selectivity of phenol to be obtained in Pt/WO3 photocatalyst systems. To examine this, the photocatalytic reactions were carried out in the co-existence of benzene and phenol. As shown in Fig. 2-a, the amount of phenol was first decreased and then increased with steady rate over Pt/WO3-K photocatalyst along with decrease of benzene. This indicates that the rate of phenol production on Pt/WO3-K is higher than that of subsequent oxidation of phenol, possibly due to the preferential reaction of benzene over phenol on Pt/WO3-K photocatalyst. On the other hand, both benzene and phenol decreased on the Pt/TiO2-P25 photocatalyst, while benzene decreased much faster than phenol. The CO2 generation on Pt/TiO2-P25 was observed from the beginning of the photolysis reaction with much higher rate compared to that of di-hydroxylated products, indicating that both the phenol and di-hydroxylated products are readily oxidized with cleavage of the aromatic ring producing various oxidized intermediates and CO2. The faster decrease of benzene suggests another possible reaction pathway on Pt/TiO2-P25; benzene molecules are directly oxidized into CO2 without forming any hydroxylated benzenes. When the photocatalytic oxidation of benzene was carried out in the absence of water, i.e., in dehydrated acetoneitrile, no hydroxylated product was obtained on Pt/WO3-K nor Pt/TiO2-P25 photocatalysts, indicating that the hydroxyl groups were originated from water molecules. It has been reported that hydroxyl radicals (·OH) are produced through the reaction of photogenerated holes with water molecules adsorbed on the photocatalyst surface.18-19

photocatalyst + hν → e− + h+

(1)

h+ + H2O → H+ + ·OH

(2)

The hydroxyl radical certainly reacts with benzene (or phenol) to generate hydroxylated benzene radical, which are then oxidized by a hole on a photocatalyst surface and deprotonated producing phenol (or di-hydroxylated benzenes), as shown below.20

\[
\begin{align*}
\text{OH} & \rightarrow \text{H}^+ + \cdot \text{OH} \\
\cdot \text{OH} & \rightarrow \text{H}_2\text{O}
\end{align*}
\]

(3)
Interestingly, stoichiometric amount of CO₂ to the decreased benzene was found to generate from benzene-acetonitrile solution with a relatively high rate when Pt/TiO₂-P25 photocatalyst was irradiated in the presence of O₂, while no CO₂ gas was generated on Pt/WO₃-K in a same time scale of irradiation (~120 min). This result indicates the presence of reaction pathway of direct oxidation of benzene on Pt/TiO₂-P25 surface by photogenerated holes into CO₂ without forming any hydroxylated benzenes. It appears that the direct oxidation of benzene occurs preferentially on Pt/TiO₂-P25 photocatalyst even in aqueous solution, resulting in the significant generation of CO₂ from the initial period (see Fig. 1-b). On the other hand, the holes generated on Pt/WO₃ photocatalysts possibly react with water preferentially over benzene, resulting in the preferential generation of OH that can produce phenol from benzene without cleavage of aromatic ring. The different participation of molecular oxygen (O₂) to the reactions seems to be another reason for the different reactivity between WO₃ and TiO₂ photocatalysts. It is well known that bare WO₃ is not an efficient photocatalyst for oxidation of organic compounds in the presence of O₂ because the conduction band (CB) bottom (ca. +0.5 V vs NHE) potential is insufficient for the reduction of O₂ [E⁰(O₂/O₂•-) = -0.33 V vs NHE and E⁰(O₂/H₂O••) = -0.05 V vs NHE] in a one-electron process. The incapability of O₂ to scavenge the electrons in CB of WO₃ results in the fast recombination and the lower photocatalytic activity. Indeed, bare WO₃ photocatalyst showed much lower conversion for the photocatalytic reaction with benzene (entry 3) compared to that on Pt/WO₃, while the selectivity for phenol production was high. We have also demonstrated that Pt-loaded WO₃ exhibits high photocatalytic activity for decomposition of various aliphatic compounds due to the formation of multi-electron reduction of O₂ on the Pt cocatalysts. It was also confirmed that the reduction product of O₂ was mainly hydrogen peroxide (H₂O₂) generated via two-electron process [E⁰(O₂/H₂O₂) = +0.55 V vs NHE]. Negligible reaction occurred by the simple mixture of benzene and H₂O₂ in water, indicating that the H₂O₂ itself cannot participate to the oxidation (hydroxylation) of benzene. On the other hand, TiO₂ photocatalysts possess sufficiently negative CB bottom for one-electron reduction of O₂. Therefore TiO₂ can reduce O₂ even without Pt cocatalyst resulting in efficient oxidation of organic compounds by holes. Interestingly, bare TiO₂-P25 showed higher rate for benzene oxidation than Pt/TiO₂-P25 (see entries 6 and 8), implying that most of the photoexcited electrons were consumed on the TiO₂ surface, not on Pt, via single electron processes producing radical species of O₂ (e.g., O₂• or HO₂••). It has been suggested that the presence of O₂ enhances the oxidation of organic compounds in some TiO₂ photocatalysis systems via radical chain reaction mechanism. It therefore appears that such radical species of O₂ also enhances the oxidative decomposition, especially the cleavage of aromatic ring, of benzene, resulting in low selectivity of phenols. Indeed, the reaction of Pt/TiO₂-P25 in the absence of O₂ (entry 7), in which an appreciable amount of H₂ was produced during the photoirradiation, showed much higher selectivity for phenol (60.7% at 13.3% of conversion) than that in the presence of O₂, while the reaction rate was lowered considerably due to the lower capability of H₂O (or H³) to capture the photoexcited electrons compared to that of O₂. These results strongly suggest that the different behavior of O₂ in the reactions is one of the reasons for the different reactivity in benzene oxidation between WO₃ and TiO₂ photocatalysts. However, the selectivity for phenol drastically decreased in prolonged reactions on the Pt/TiO₂ photocatalyst even in the absence of O₂ (entries 7, 11), indicating that the different behavior of O₂ is not the sole reason for the different reactivity between WO₃ and TiO₂ photocatalysts. As suggested above, the different reactivity of holes toward benzene and water certainly may contribute to the different reactivity. Further investigation is now under way to clarify the reaction mechanism for hydroxylation of benzene on Pt/WO₃ photocatalysts.

In conclusion, it was first demonstrated that Pt/WO₃ photocatalysts showed activity for direct production of phenol from benzene using water and O₂ as reactants under UV or visible light. The selectivity for phenol on Pt/WO₃ photocatalysts was much higher than those on Pt/TiO₂ (or TiO₂) photocatalysts. These results demonstrate the potential of Pt/WO₃ photocatalysts for highly selective organic synthesis with environmentally benign oxidants such as water and/or O₂ using abundant visible light included in solar radiation. This study was supported by the 2007 Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References and Notes

Textual Information

<table>
<thead>
<tr>
<th>Description (if any)</th>
<th>Direct Synthesis of phenol from benzene over platinum-loaded tungsten(VI) oxide photocatalyst with water and molecular oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Direct Synthesis of phenol from benzene over platinum-loaded tungsten(VI) oxide photocatalyst with water and molecular oxygen</td>
</tr>
<tr>
<td>Authors’ Names</td>
<td>Osamu Tomita, Ryu Abe, and Bunsho Ohtani</td>
</tr>
</tbody>
</table>

Graphical Information

Pt/WO₃ powder photocatalyst

- **O₂**
- **H₂O₂ (or H₂O)**
- **hv**
- **e⁻**
- **h⁺**

Chemical Reaction:

\[
\text{C₆H₆} + \text{H}_2\text{O} \xrightarrow{\text{Pt/WO₃, hv, O}_2} \text{C₆H₅OH}
\]

Selectivity: 74% (at 69% of benzene conversion)