Supporting Information

Molecular Responses of Human Lung Epithelial Cells to the Toxicity of Copper Oxide Nanoparticles Inferred from Whole Genome Expression Analysis

Nobutaka Hanagata1,2,*, Fei Zhuang2,3, Sarah Connolly1,**, Jie Li1, Nobuhiro Ogawa3 and Mingsheng Xu4

1Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
2Graduate School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0812, Japan
3Biomaterials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
4State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, and Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China

* Corresponding author: Nobutaka Hanagata E-mail: HANAGATA.Nobutaka@nims.go.jp

Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1:</td>
<td>2</td>
<td>Table S1:</td>
<td>9-13</td>
</tr>
<tr>
<td>Figure S2:</td>
<td>2</td>
<td>Table S2:</td>
<td>14</td>
</tr>
<tr>
<td>Figure S3:</td>
<td>3</td>
<td>Table S3:</td>
<td>15-17</td>
</tr>
<tr>
<td>Figure S4:</td>
<td>3</td>
<td>Table S4:</td>
<td>18</td>
</tr>
<tr>
<td>Figure S5:</td>
<td>4</td>
<td>Table S5:</td>
<td>19</td>
</tr>
<tr>
<td>Figure S6:</td>
<td>4</td>
<td>Table S6:</td>
<td>20,21</td>
</tr>
<tr>
<td>Figure S7:</td>
<td>5</td>
<td>Table S7:</td>
<td>22,23</td>
</tr>
<tr>
<td>Figure S8:</td>
<td>5</td>
<td>Table S8:</td>
<td>24,25</td>
</tr>
<tr>
<td>Figure S9:</td>
<td>6</td>
<td>Table S9:</td>
<td>26,27</td>
</tr>
<tr>
<td>Figure S10:</td>
<td>6</td>
<td>Table S10:</td>
<td>28</td>
</tr>
<tr>
<td>Figure S11:</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure S12:</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure S13:</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S1. Particle size distribution of CuO-NPs (25 µg/mL) in culture medium assessed by using a laser diffraction particle size analyzer.

Figure S2. Preparation and characterization of medium containing Cu ions released from CuO-NPs. (a) The culture medium with CuO-NPs (25 µg/mL) was incubated at 37°C for 24 h, and then centrifuged. The supernatant was used to estimate contribution of Cu ions released from CuO-NPs into medium to CuO-NPs toxicity. (b) Culture medium without CuO-NPs was incubated at 37°C for 24 h, and then particle size distribution was measured with a laser diffraction size analyzer. (c) CuO-NPs in water were incubated at 37°C for 24 h, and then centrifuged. No particles were detected in the supernatant.
Figure S3. Cell viability as indicated by staining of cells that were exposed to CuO-NPs and the supernatant for 24 h with calcein acetoxyethyl ester (Calcein-AM). A549 human lung epithelial cells were cultured in media containing 25 µg/mL CuO-NPs or the supernatant at 37°C for 24 h, and then the number of viable cells was compared to that of the control.

Figure S4. Damage to mitochondria by CuO-NPs. Mitochondrial damage in A549 human lung epithelial cells after exposure to H2O2 (2 mM), CuO-NPs (25 µg/mL), and CuCl2 (30 µg/mL) was measured by using 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetracyethylbenzimidazolylcarbocyanine iodide (JC-1; Invitrogen). The accumulation of JC-1 in mitochondria was measured by excitation at 543 nm and detection of fluorescence at 573–607 nm. Damaged mitochondria accumulated less JC-1, and therefore, exhibited less fluorescence. The mitochondria of cells that were exposed to CuO-NPs were damaged after 4 h. Cells that were exposed to CuCl2 also were damaged after 4 h; however, the damage was not as severe as that from CuO-NPs.
Figure S5. Effect of non-toxic dummy Al2O3-NPs on supernatant toxicity. (a) Cytotoxicity of Al2O3-NPs. The primary size of Al2O3-NPs was 50 nm and the hydrodynamic size was around 160 nm. A549 cells cultured for 48 h were exposed to Al2O3-NPs at a concentration of 25 µg/ml. After 24 h, a WST assay was performed. (b) Effect of Al2O3-NPs on the supernatant toxicity. A549 cells cultured for 48 h were exposed to supernatant and supernatant with Al2O3-NPs. The supernatant contained Cu ions released from CuO-NPs. After 24 h, a WST assay was performed. Zeta potential of Al2O3-NPs was -20.37 mV. Physicochemical character of Al2O3-NPs was previously reported (Xu et al., Biomaterials 2010, 31, 8022-8031).

Figure S6. Internalized CuO-NPs observed by TEM. Yellow arrowheads indicate single or smaller (<100 nm) aggregated NPs. Red arrowheads indicate larger (> 100 nm) aggregated NPs. Cells were cultured in medium with 25 µg/mL CuO-NPs for 24 h, and then living cells were harvested.
Figure S7. Western blotting analysis to confirm the change of gene expression. A549 cells were cultured for 48 h, and then exposed to 25 µg/mL CuO-NPs, supernatant and 30 µg/mL CuCl₂ for 24 h.

Figure S8. Cell cycle arrest due to CuO-NPs. Cells that were exposed to 25 µg/mL CuO-NPs were isolated, and then seeded in fresh culture medium that did not contain CuO-NPs at a density of 5000 cells/cm². The left graph shows the number of cells after 72 h. The dotted line shows the number of cells at the time of the seeding. Cell proliferation was not observed. However, when the cells were harvested and seeded in fresh culture medium for an additional 72 h, cell proliferation resumed (right graph). Therefore, cell cycle arrest occurred after the cells were exposed to CuO-NPs.
Figure S9. Effects of SB239063 and JNK interacting protein 1 (JIP-1), which are inhibitors of p38 and JNK, respectively. Double staining with calcein acetoxymethyl ester (calcein-AM) and propidium iodide (PI). SB239063 and CuO-NPs (CuO-NPs + SB239063) decreased the number of viable cells more than CuO-NPs alone. In the presence of SB239063, many cells that were exposed to CuO-NPs detached from the culture dish.

Figure S10. siRNA knockdown efficiency of GADD45B and NR4A1. (a) mRNA expression level of GADD45B. (b) Western blotting. The concentration of CuO-NPs was 25 μg/mL. GADD45B siRNA suppressed the expression at protein level. (c) mRNA expression level of NR4A1. (d) Western blotting. NR4A1 siRNA suppressed expression of NR4A1 at protein level.
Figure S11. Effect of siRNA knockdown on the expression of *GADD45B* and *NR4A1* on the cytotoxicity of CuO-NPs. Double staining with calcein-AM and PI. Knockdown of *GADD45B* and *NR4A1* decreased the number of viable cells after cells were exposed to CuO-NPs. The number of dead cells as indicated by PI staining is not accurate because it included dead cells that detached from the surface of the culture dish.

Figure S12. CuO-NPs in dead cell observed by TEM. Black dots indicate aggregates of CuO-NPs. Cells were cultured in medium with 25 μg/mL CuO-NPs for 24 h, and then dead cells detached from culture dish were harvested. Right panel is a magnified image of leaflet in left panel.
Figure S13. Cytotoxicity of CuO-NPs and Cu ions to primary human lung epithelial cells and change of gene expression. (a) Comparison of CuO-NPs toxicity between primary human epithelial cells (SAEC) and A549 cells. (b) Comparison of Cu ion toxicity between SAEC and A549 cells. (c-e) Expression level of genes in SAEC. Genes in (c) upregulated in CuO-NPs but not in 30 μg/mL CuCl2 in A549 cells. SAEC cells showed similar pattern. Genes in (d) upregulated in both CuO-NPs and 30 μg/mL CuCl2 in A549 cells. SAEC cells showed similar pattern. Genes in (e) downregulated in both CuO-NPs and 30 μg/mL CuCl2 in A549 cells. SAEC cells showed similar pattern in CCNB1, AURKA and TPX2, but not PCNA, CDC2 and AURKB. For gene expression analysis, SAEC cells were exposed to media containing 25 μg/mL CuO-NPs or 30 μg/mL CuCl2 for 24 h.
<table>
<thead>
<tr>
<th>Gene name</th>
<th>Description</th>
<th>Fold-change (log ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRC</td>
<td>Homo sapiens acidic repeat containing (ACRC), mRNA [NM_052957]</td>
<td>2.82</td>
</tr>
<tr>
<td>AFF1</td>
<td>Homo sapiens AF4/FMR2 family, member 1 (AFF1), mRNA [NM_005935]</td>
<td>2.18</td>
</tr>
<tr>
<td>ALS2</td>
<td>Homo sapiens amyotrophic lateral sclerosis 2 (juvenile) (ALS2), transcript variant 2, mRNA [NM_001135745]</td>
<td>2.00</td>
</tr>
<tr>
<td>ARC</td>
<td>Homo sapiens activity-regulated cytoskeleton-associated protein (ARC), mRNA [NM_015193]</td>
<td>3.06</td>
</tr>
<tr>
<td>ATF1</td>
<td>Homo sapiens activating transcription factor 1 (ATF1), mRNA [NM_005171]</td>
<td>1.11</td>
</tr>
<tr>
<td>ATF3</td>
<td>Homo sapiens activating transcription factor 3 (ATF3), transcript variant 4, mRNA [NM_001040619]</td>
<td>4.22</td>
</tr>
<tr>
<td>ATP6V1A</td>
<td>Homo sapiens ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A (ATP6V1A), mRNA [NM_001690]</td>
<td>1.34</td>
</tr>
<tr>
<td>ATP6V1B2</td>
<td>Homo sapiens ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2 (ATP6V1B2), mRNA [NM_001693]</td>
<td>1.23</td>
</tr>
<tr>
<td>ATP6V1C1</td>
<td>Homo sapiens ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1 (ATP6V1C1), mRNA [NM_001695]</td>
<td>2.31</td>
</tr>
<tr>
<td>ATP6V1D</td>
<td>Homo sapiens ATPase, H+ transporting, lysosomal 34kDa, V1 subunit D (ATP6V1D), mRNA [NM_015994]</td>
<td>1.85</td>
</tr>
<tr>
<td>ATP6V1G1</td>
<td>Homo sapiens ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G1 (ATP6V1G1), mRNA [NM_004888]</td>
<td>1.49</td>
</tr>
<tr>
<td>ATP6V1H</td>
<td>Homo sapiens ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H (ATP6V1H), transcript variant 1, mRNA [NM_015941]</td>
<td>1.26</td>
</tr>
<tr>
<td>BLOC1S1</td>
<td>Homo sapiens biogenesis of lysosomal organelles complex-1, subunit 1 (BLOC1S1), mRNA [NM_001487]</td>
<td>1.06</td>
</tr>
<tr>
<td>BRF2</td>
<td>Homo sapiens BRF2, subunit of RNA polymerase III transcription initiation factor, BRF1-like (BRF2), mRNA [NM_018310]</td>
<td>1.86</td>
</tr>
<tr>
<td>CARD6</td>
<td>Homo sapiens caspase recruitment domain family, member 6 (CARD6), mRNA [NM_02587]</td>
<td>1.10</td>
</tr>
<tr>
<td>CCNK</td>
<td>Homo sapiens cyclin K (CCNK), transcript variant 2, mRNA [NM_003858]</td>
<td>4.88</td>
</tr>
<tr>
<td>CDC40</td>
<td>Homo sapiens cell division cycle 40 homolog (S. cerevisiae) (CDC40), mRNA [NM_015891]</td>
<td>1.32</td>
</tr>
<tr>
<td>CDKN2AIP</td>
<td>Homo sapiens CDKN2A interacting protein (CDKN2AIP), mRNA [NM_017632]</td>
<td>1.18</td>
</tr>
<tr>
<td>CEBPG</td>
<td>Homo sapiens CCAAT enhancer binding protein (CEBP), gamma (CEBPG), mRNA [NM_001806]</td>
<td>1.09</td>
</tr>
<tr>
<td>CIR</td>
<td>Homo sapiens CBF1 interacting corepressor (CIR), mRNA [NM_004882]</td>
<td>1.21</td>
</tr>
<tr>
<td>CLU</td>
<td>Homo sapiens clusterin (CLU), transcript variant 2, mRNA [NM_203339]</td>
<td>1.24</td>
</tr>
<tr>
<td>CPEB4</td>
<td>Homo sapiens cytoplasmic polyadenylation element binding protein 4 (CPEB4), mRNA [NM_030627]</td>
<td>1.57</td>
</tr>
<tr>
<td>CREM</td>
<td>Homo sapiens cAMP responsive element modulator (CREM), transcript variant 19, mRNA [NM_183013]</td>
<td>1.15</td>
</tr>
<tr>
<td>CRIPT</td>
<td>Homo sapiens cysteine-rich PDZ-binding protein (CRIPT), mRNA [NM_014171]</td>
<td>1.73</td>
</tr>
<tr>
<td>CUGBP1</td>
<td>Homo sapiens CUG triplet repeat, RNA binding protein 1 (CUGBP1), transcript variant 2, mRNA [NM_019700]</td>
<td>1.65</td>
</tr>
<tr>
<td>DHX58</td>
<td>Homo sapiens DEXH (Asp-Glu-X-His) box polypeptide 58 (DHX58), mRNA [NM_024119]</td>
<td>2.22</td>
</tr>
<tr>
<td>E2F6</td>
<td>Homo sapiens E2F transcription factor 6 (E2F6), mRNA [NM_198256]</td>
<td>1.06</td>
</tr>
<tr>
<td>EGR1</td>
<td>Homo sapiens early growth response 1 (EGR1), mRNA [NM_001964]</td>
<td>3.89</td>
</tr>
<tr>
<td>ELL</td>
<td>Homo sapiens elongation factor RNA polymerase II (ELL), mRNA [NM_006532]</td>
<td>1.46</td>
</tr>
<tr>
<td>FBXL19</td>
<td>Homo sapiens F-box and leucine-rich repeat protein 19 (FBXL19), mRNA [NM_001099784]</td>
<td>1.46</td>
</tr>
<tr>
<td>FOS</td>
<td>Homo sapiens v-fos FB1 murine osteosarcoma viral oncogene homolog (FOS), mRNA [NM_005252]</td>
<td>4.48</td>
</tr>
<tr>
<td>FOSB</td>
<td>Homo sapiens v-fos FB2 murine osteosarcoma viral oncogene homolog B (FOSB), transcript variant 1, mRNA [NM_006732]</td>
<td>5.70</td>
</tr>
<tr>
<td>FOXN3</td>
<td>Homo sapiens forkhead box N3 (FOXN3), transcript variant 2, mRNA [NM_005179]</td>
<td>1.47</td>
</tr>
<tr>
<td>FSD1L</td>
<td>Homo sapiens fibronectin type III and SPRY domain containing 1-like (FSD1L), transcript variant 2, mRNA [NM_031919]</td>
<td>1.61</td>
</tr>
<tr>
<td>GABPA</td>
<td>Homo sapiens GAB binding protein transcription factor, alpha subunit 60kDa (GABPA), mRNA [NM_002040]</td>
<td>2.89</td>
</tr>
<tr>
<td>GEM</td>
<td>Homo sapiens GTP binding protein overexpressed in skeletal muscle (GEM), transcript [NM_001487]</td>
<td>1.60</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>GRN</td>
<td>Homo sapiens granulin (GRN), mRNA</td>
<td>NM_002087</td>
</tr>
<tr>
<td>GTF2B</td>
<td>Homo sapiens general transcription factor II B (GTF2B), mRNA</td>
<td>NM_001514</td>
</tr>
<tr>
<td>HBP1</td>
<td>Homo sapiens HMG-box transcription factor 1 (HBP1), mRNA</td>
<td>NM_012257</td>
</tr>
<tr>
<td>HES1</td>
<td>Homo sapiens hairy enhancer of split 1 (Drosophila) (HES1), mRNA</td>
<td>NM_005524</td>
</tr>
<tr>
<td>HEY1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HINT3</td>
<td>Homo sapiens histidine triad nucleotide binding protein 3 (HINT3), mRNA</td>
<td>NM_138571</td>
</tr>
<tr>
<td>HIST1H2AM</td>
<td>Homo sapiens histone cluster 1, H2am (HIST1H2AM), mRNA</td>
<td>NM_003514</td>
</tr>
<tr>
<td>HIST2H2AA4</td>
<td>Homo sapiens histone cluster 2, H2a4 (HIST2H2AA4), mRNA</td>
<td>NM_001040874</td>
</tr>
<tr>
<td>HIST2H2AB</td>
<td>Homo sapiens histone cluster 2, H2ab (HIST2H2AB), mRNA</td>
<td>NM_175065</td>
</tr>
<tr>
<td>HNRNPH2</td>
<td>Homo sapiens heterogeneous nuclear ribonucleoprotein H2 (HNRNPH2), transcript variant 1, mRNA</td>
<td>NM_019597</td>
</tr>
<tr>
<td>HSF2</td>
<td>Homo sapiens heat shock transcription factor 2 (HSF2), transcript variant 1, mRNA</td>
<td>NM_004506</td>
</tr>
<tr>
<td>HUS1</td>
<td>Homo sapiens HUS1 checkpoint homolog (S. pombe) (HUS1), mRNA</td>
<td>NM_004507</td>
</tr>
<tr>
<td>ING4</td>
<td>Homo sapiens heat shock transcription factor 2 (HSF2), transcript variant 1, mRNA</td>
<td>NM_004506</td>
</tr>
<tr>
<td>ISG20</td>
<td>Homo sapiens interferon stimulated exonuclease gene 20kDa (ISG20), mRNA</td>
<td>NM_002201</td>
</tr>
<tr>
<td>ISY1</td>
<td>Homo sapiens ISY1 splicing factor homolog (S. cerevisiae) (ISY1), mRNA</td>
<td>NM_020701</td>
</tr>
<tr>
<td>JDP2</td>
<td>Homo sapiens Jun dimerization protein 2 (JDP2), transcript variant 1, mRNA</td>
<td>NM_130469</td>
</tr>
<tr>
<td>KBTBD4</td>
<td>Homo sapiens kelch repeat and BTB (POZ) domain containing 4 (KBTBD4), transcript variant 2, mRNA</td>
<td>NM_016506</td>
</tr>
<tr>
<td>KBTBD8</td>
<td>Homo sapiens kelch repeat and BTB (POZ) domain containing 8 (KBTBD8), mRNA</td>
<td>NM_032505</td>
</tr>
<tr>
<td>KIAA1627</td>
<td>Homo sapiens KIAA1627 protein (KIAA1627), mRNA</td>
<td>NM_020961</td>
</tr>
<tr>
<td>KLF7</td>
<td>Homo sapiens Kruppel-like factor 7 (ubiquitous) (KLF7), mRNA</td>
<td>NM_003709</td>
</tr>
<tr>
<td>KLHL18</td>
<td>Homo sapiens kelch-like 18 (Drosophila), mRNA (cDNA clone IMAGE:408125), partial cds. [BC015962]</td>
<td>NM_016162</td>
</tr>
<tr>
<td>KRT20</td>
<td>Homo sapiens linker for activation of T cells (LAT), transcript variant 1, mRNA</td>
<td>NM_014387</td>
</tr>
<tr>
<td>LATS2</td>
<td>Homo sapiens LATS, large tumor suppressor, homolog 2 (Drosophila) (LATS2), mRNA</td>
<td>NM_014572</td>
</tr>
<tr>
<td>MAFF</td>
<td>Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) (MAFF), transcript variant 1, mRNA</td>
<td>NM_012323</td>
</tr>
<tr>
<td>MAFG</td>
<td>Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian) (MAFG), transcript variant 1, mRNA</td>
<td>NM_002359</td>
</tr>
<tr>
<td>MAFK</td>
<td>Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene homolog K (avian) (MAFK), mRNA</td>
<td>NM_002360</td>
</tr>
<tr>
<td>MAGO1</td>
<td>Homo sapiens mago-nashi homolog, proliferation-associated (Drosophila) (MAGO1), mRNA</td>
<td>NM_002370</td>
</tr>
<tr>
<td>MED13</td>
<td>Homo sapiens mediatior complex subunit 13 (MED13), mRNA</td>
<td>NM_005121</td>
</tr>
<tr>
<td>MED21</td>
<td>Homo sapiens mediatior complex subunit 21 (MED21), mRNA</td>
<td>NM_004264</td>
</tr>
<tr>
<td>MXI1</td>
<td>Homo sapiens max interactor 1 (MXI1), transcript variant 2, mRNA</td>
<td>NM_130439</td>
</tr>
<tr>
<td>MYYNN</td>
<td>Homo sapiens myoneurin (MYYNN), mRNA</td>
<td>NM_018657</td>
</tr>
<tr>
<td>NAP1L5</td>
<td>Homo sapiens nucleosome assembly protein 1-like 5 (NAP1L5), mRNA</td>
<td>NM_153757</td>
</tr>
<tr>
<td>NFATC1</td>
<td>Homo sapiens nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATC1), transcript variant 1, mRNA</td>
<td>NM_172390</td>
</tr>
<tr>
<td>NFIL3</td>
<td>Homo sapiens nuclear factor, interleukin 3 regulated (NFIL3), mRNA</td>
<td>NM_005384</td>
</tr>
</tbody>
</table>
NR4A1 Homo sapiens nuclear receptor subfamily 4, group A, member 1 (NR4A1), transcript variant 1, mRNA [NM_002135] 5.28
NR4A3 Homo sapiens nuclear receptor subfamily 4, group A, member 3 (NR4A3), transcript variant 4, mRNA [NM_173199] 3.06
OGT Homo sapiens O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-acetylglucosamine:polypeptide-N-acetylglucosaminyl transferase) (OGT), transcript variant 1, mRNA [NM_181672] 1.38
PAIP2 Homo sapiens poly(A) binding protein interacting protein 2 (PAIP2), transcript variant 1, mRNA [NM_010133112] 1.12
PAPOLA Homo sapiens poly(A) polymerase alpha (PAPOLA), mRNA [NM_032632] 1.60
PCF11 Homo sapiens PCF11, cleavage and polyadenylation factor subunit, homolog (S. cerevisiae) (PCF11), mRNA [NM_015885] 3.27
PHC3 Homo sapiens polyhomeotic homolog 3 (Drosophila) (PHC3), mRNA [NM_024947] 1.68
PHF1 Homo sapiens PHD finger protein 1 (PHF1), transcript variant 2, mRNA [NM_024165] 1.04
PHTF1 Homo sapiens putative homeodomain transcription factor 1 (PHTF1), mRNA [NM_006608] 1.39
PLRG1 Homo sapiens pleiotropic regulator 1 (PRL1 homolog, Arabidopsis) (PLRG1), mRNA [NM_002669] 1.38
PMS2L2 Homo sapiens postmeiotic segregation increased 2-like 2 pseudogene (PMS2L2), non-coding RNA [NR_003614] 1.02
PROP1 Homo sapiens PROP paired-like homeobox 1 (PROP1), mRNA [NM_006261] 1.95
PRPF18 Homo sapiens PRP18 pre-mRNA processing factor 18 homolog (S. cerevisiae) (PRPF18), mRNA [NM_003675] 1.43
RBBP6 Homo sapiens retinoblastoma binding protein 6 (RBBP6), transcript variant 1, mRNA [NM_006910] 1.10
RIJK3 Homo sapiens RIO kinase 3 (RIJK3), mRNA [NM_003831] 2.38
RIT1 Homo sapiens Ras-like without CAAX 1 (RIT1), mRNA [NM_006912] 1.89
RLF Homo sapiens rearranged L-myc fusion (RLF), mRNA [NM_012421] 1.44
RNFL1 Homo sapiens ring finger protein 11 (RNFL1), mRNA [NM_014372] 1.15
RNFL2 Homo sapiens ring finger protein 12 (RNFL2), transcript variant 1, mRNA [NM_016120] 1.68
RNFL18 Homo sapiens ring finger protein 185 (RNFL185), transcript variant 1, mRNA [NM_152267] 1.07
RNMT Homo sapiens RNA (guanine-7-) methyltransferase (RNMT), mRNA [NM_003799] 1.27
RP2 Homo sapiens retinitis pigmentosa 2 (X-linked recessive) (RP2), mRNA [NM_006915] 1.35
RPUSD4 Homo sapiens RNA pseudouridylate synthase domain containing 4 (RPUSD4), mRNA [NM_032795] 1.06
RYBP Homo sapiens RING1 and YY1 binding protein (RYBP), mRNA [NM_012234] 1.02
SBNO1 Homo sapiens cDNA FLJ23676 fis, clone HEPO0548, highly similar to Homo sapiens mRNA for MOP-3 [AK074256] 1.19
SCML1 Homo sapiens sex comb on midleg-like 1 (Drosophila) (SCML1), transcript variant 1, mRNA [NM_001037540] 2.00
SIN3B Homo sapiens SIN3 homolog B, transcription regulator (yeast), mRNA (cDNA clone IMAGE:3923074), partial cds. [BC025026] 1.28
SIRT6 Homo sapiens sirtuin (silent mating type information regulation 2 homolog) 6 (S. cerevisiae) (SIRT6), mRNA [NM_016539] 1.68
SLC25A44 Homo sapiens solute carrier family 25, member 44 (SLC25A44), transcript variant 1, mRNA [NM_014655] 1.12
SLU7 Homo sapiens SLU7 splicing factor homolog (S. cerevisiae) (SLU7), mRNA [NM_006425] 1.93
SNAI1 Homo sapiens snail homolog 1 (Drosophila) (SNAI1), mRNA [NM_005985] 3.18
SNIP1 Homo sapiens Smad nuclear interacting protein 1 (SNIP1), mRNA [NM_024700] 3.07
SOX8 Homo sapiens SRY (sex determining region Y)-box 8 (SOX8), mRNA [NM_014587] 1.93
SP1 Homo sapiens Sp1 transcription factor (SP1), transcript variant 1, mRNA [NM_138473] 2.03
SRBFB2 Homo sapiens steroid regulatory element binding transcription factor 2 (SRBFB2), mRNA [NM_004599] 1.32
SUPT4H1 Homo sapiens suppressor of Ty 4 homolog 1 (S. cerevisiae) (SUPT4H1), mRNA [NM_003168] 1.23
TAF13 Homo sapiens TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18kDa (TAF13), mRNA [NM_005645] 1.98
TAF7 Homo sapiens TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 55kDa (TAF7), mRNA [NM_005642] 1.41
<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAF8</td>
<td>Homo sapiens TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa, mRNA (cDNA clone IMAGE:5166848), with apparent retained intron. [BC033728]</td>
<td>1.29</td>
</tr>
<tr>
<td>TDG</td>
<td>Homo sapiens thymine-DNA glycosylase (TDG), mRNA [NM_003211]</td>
<td>1.14</td>
</tr>
<tr>
<td>TEAD1</td>
<td>Homo sapiens TEA domain family member 1 (SV40 transcriptional enhancer factor) (TEAD1), mRNA [NM_021961]</td>
<td>1.30</td>
</tr>
<tr>
<td>TFIP11</td>
<td>Homo sapiens TAF8 interacting protein 11 (TFIP11), transcript variant 1, mRNA [NM_001008697]</td>
<td>1.28</td>
</tr>
<tr>
<td>THAP1</td>
<td>Homo sapiens THAP domain containing, apoptosis associated protein 1 (THAP1), transcript variant 1, mRNA [NM_018105]</td>
<td>1.16</td>
</tr>
<tr>
<td>TTF1</td>
<td>Homo sapiens transcription termination factor, RNA polymerase II (TTF1), mRNA [NM_007344]</td>
<td>1.00</td>
</tr>
<tr>
<td>UHMK1</td>
<td>Homo sapiens U2AF homology motif (UHM) kinase 1 (UHMK1), mRNA [NM_175866]</td>
<td>2.05</td>
</tr>
<tr>
<td>USP15</td>
<td>Homo sapiens ubiquitin specific peptidase 15 (USP15), mRNA [NM_006313]</td>
<td>1.33</td>
</tr>
<tr>
<td>USP32</td>
<td>Homo sapiens ubiquitin specific peptidase 32 (USP32), mRNA [NM_032582]</td>
<td>1.52</td>
</tr>
<tr>
<td>UTP11L</td>
<td>Homo sapiens UTP11-like, U3 small nucleolar ribonucleoprotein, (yeast) (UTP11L), mRNA [NM_016037]</td>
<td>1.28</td>
</tr>
<tr>
<td>ZBTB43</td>
<td>Homo sapiens zinc finger and BTB domain containing 43 (ZBTB43), transcript variant 1, mRNA [NM_014007]</td>
<td>1.89</td>
</tr>
<tr>
<td>ZBTB5</td>
<td>Homo sapiens zinc finger and BTB domain containing 5 (ZBTB5), mRNA [NM_014872]</td>
<td>1.43</td>
</tr>
<tr>
<td>ZNF10</td>
<td>Homo sapiens zinc finger protein 10 (ZNF10), mRNA [NM_015394]</td>
<td>2.81</td>
</tr>
<tr>
<td>ZNF12</td>
<td>Homo sapiens zinc finger protein 12 (ZNF12), transcript variant 1, mRNA [NM_016265]</td>
<td>1.00</td>
</tr>
<tr>
<td>ZNF121</td>
<td>Homo sapiens zinc finger protein 121 (ZNF121), mRNA [NM_001008727]</td>
<td>1.03</td>
</tr>
<tr>
<td>ZNF143</td>
<td>Homo sapiens zinc finger protein 143 (ZNF143), mRNA [NM_003442]</td>
<td>1.90</td>
</tr>
<tr>
<td>ZNF175</td>
<td>Homo sapiens zinc finger protein 175, mRNA (cDNA clone IMAGE:4301632), partial cds. [BC007778]</td>
<td>2.43</td>
</tr>
<tr>
<td>ZNF211</td>
<td>Homo sapiens zinc finger protein 211 (ZNF211), transcript variant 2, mRNA [NM_198855]</td>
<td>1.50</td>
</tr>
<tr>
<td>ZNF222</td>
<td>Homo sapiens zinc finger protein 222 (ZNF222), transcript variant 2, mRNA [NM_013360]</td>
<td>2.06</td>
</tr>
<tr>
<td>ZNF224</td>
<td>Homo sapiens cDNA FLJ78762 complete cds, highly similar to Homo sapiens zinc finger protein 224, mRNA. [AK292500]</td>
<td>1.61</td>
</tr>
<tr>
<td>ZNF236</td>
<td>Homo sapiens zinc finger protein 236 (ZNF236), mRNA [NM_007345]</td>
<td>1.02</td>
</tr>
<tr>
<td>ZNF256</td>
<td>Homo sapiens zinc finger protein 256 (ZNF256), mRNA [NM_005773]</td>
<td>1.65</td>
</tr>
<tr>
<td>ZNF257</td>
<td>Homo sapiens zinc finger protein 257 (ZNF257), mRNA [NM_033468]</td>
<td>1.47</td>
</tr>
<tr>
<td>ZNF266</td>
<td>Homo sapiens zinc finger protein 266 (ZNF266), mRNA [NM_006631]</td>
<td>1.12</td>
</tr>
<tr>
<td>ZNF274</td>
<td>Homo sapiens zinc finger protein 274 (ZNF274), transcript variant ZNF274c, mRNA [NM_133502]</td>
<td>1.19</td>
</tr>
<tr>
<td>ZNF277</td>
<td>Homo sapiens zinc finger protein 277 (ZNF277), mRNA [NM_021994]</td>
<td>1.17</td>
</tr>
<tr>
<td>ZNF286A</td>
<td>Homo sapiens zinc finger protein 286A (ZNF286A), transcript variant 1, mRNA [NM_020652]</td>
<td>2.20</td>
</tr>
<tr>
<td>ZNF324</td>
<td>Homo sapiens zinc finger protein 324 (ZNF324), mRNA [NM_014347]</td>
<td>1.09</td>
</tr>
<tr>
<td>ZNF331</td>
<td>Homo sapiens zinc finger protein 331 (ZNF331), transcript variant 1, mRNA [NM_018555]</td>
<td>1.48</td>
</tr>
<tr>
<td>ZNF34</td>
<td>Homo sapiens zinc finger protein 34 (ZNF34), mRNA [NM_030580]</td>
<td>1.40</td>
</tr>
<tr>
<td>ZNF37A</td>
<td>Homo sapiens zinc finger protein 37A (ZNF37A), transcript variant 1, mRNA [NM_001007094]</td>
<td>1.09</td>
</tr>
<tr>
<td>ZNF383</td>
<td>Homo sapiens zinc finger protein 383 (ZNF383), mRNA [NM_152604]</td>
<td>1.08</td>
</tr>
<tr>
<td>ZNF394</td>
<td>Homo sapiens zinc finger protein 394 (ZNF394), mRNA [NM_032164]</td>
<td>1.35</td>
</tr>
<tr>
<td>ZNF436</td>
<td>Homo sapiens zinc finger protein 436 (ZNF436), transcript variant 1, mRNA [NM_001077195]</td>
<td>1.76</td>
</tr>
<tr>
<td>ZNF461</td>
<td>Homo sapiens zinc finger protein 461 (ZNF461), mRNA [NM_153257]</td>
<td>1.68</td>
</tr>
<tr>
<td>ZNF473</td>
<td>Homo sapiens zinc finger protein 473 (ZNF473), transcript variant 1, mRNA [NM_015428]</td>
<td>1.92</td>
</tr>
<tr>
<td>ZNF484</td>
<td>Homo sapiens zinc finger protein 484 (ZNF484), transcript variant 2, mRNA [NM_001007101]</td>
<td>1.16</td>
</tr>
<tr>
<td>ZNF507</td>
<td>Homo sapiens zinc finger protein 507 (ZNF507), transcript variant 2, mRNA [NM_014910]</td>
<td>1.19</td>
</tr>
<tr>
<td>ZNF557</td>
<td>Homo sapiens zinc finger protein 557 (ZNF557), transcript variant 1, mRNA [NM_024341]</td>
<td>1.78</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ZNF558</td>
<td>Homo sapiens zinc finger protein 558 (ZNF558), mRNA [NM_144693]</td>
<td>1.05</td>
</tr>
<tr>
<td>ZNF565</td>
<td>Homo sapiens zinc finger protein 565 (ZNF565), transcript variant 1, mRNA [NM_001042474]</td>
<td>1.23</td>
</tr>
<tr>
<td>ZNF625</td>
<td>Homo sapiens zinc finger protein 625 (ZNF625), mRNA [NM_145233]</td>
<td>1.20</td>
</tr>
<tr>
<td>ZNF626</td>
<td>Homo sapiens zinc finger protein 626 (ZNF626), transcript variant 2, mRNA [NM_145297]</td>
<td>1.31</td>
</tr>
<tr>
<td>ZNF669</td>
<td>Homo sapiens zinc finger protein 669 (ZNF669), transcript variant 1, mRNA [NM_024804]</td>
<td>3.33</td>
</tr>
<tr>
<td>ZNF707</td>
<td>Homo sapiens zinc finger protein 707 (ZNF707), transcript variant 1, mRNA [NM_173831]</td>
<td>1.63</td>
</tr>
<tr>
<td>ZNF721</td>
<td>Homo sapiens zinc finger protein 721 (ZNF721), mRNA [NM_133474]</td>
<td>1.17</td>
</tr>
<tr>
<td>ZNF780B</td>
<td>Homo sapiens zinc finger protein 780B (ZNF780B), mRNA [NM_001005851]</td>
<td>1.14</td>
</tr>
<tr>
<td>ZNF79</td>
<td>Homo sapiens zinc finger protein 79 (ZNF79), mRNA [NM_007135]</td>
<td>1.08</td>
</tr>
<tr>
<td>ZNF8</td>
<td>Homo sapiens zinc finger protein 8 (ZNF8), mRNA [NM_021089]</td>
<td>2.14</td>
</tr>
<tr>
<td>ZRANB2</td>
<td>Homo sapiens zinc finger, RAN-binding domain containing 2 (ZRANB2), transcript variant 1, mRNA [NM_203350]</td>
<td>2.14</td>
</tr>
<tr>
<td>ZRSR2</td>
<td>Homo sapiens zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2 (ZRSR2), mRNA [NM_005089]</td>
<td>1.42</td>
</tr>
<tr>
<td>ZSCAN2</td>
<td>Homo sapiens zinc finger and SCAN domain containing 2 (ZSCAN2), transcript variant 2, mRNA [NM_017894]</td>
<td>1.12</td>
</tr>
<tr>
<td>ZSCAN20</td>
<td>Homo sapiens zinc finger and SCAN domain containing 20 (ZSCAN20), mRNA [NM_145238]</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Table S2. List of genes upregulated by CuO-NPs classified into the GO category of “response to stress”. Fold-change is represented by logarithmic ratio (log_ratio) to expression level in control.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Description</th>
<th>Fold-change (log_ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF1</td>
<td>Homo sapiens activating transcription factor 1 (ATF1), mRNA [NM_005171]</td>
<td>1.11</td>
</tr>
<tr>
<td>CDKL3</td>
<td>Homo sapiens cyclin-dependent kinase-like 3 (CDKL3), transcript variant 2, mRNA [NM_016508]</td>
<td>2.37</td>
</tr>
<tr>
<td>CLK1</td>
<td>Homo sapiens CDC-like kinase 1 (CLK1), mRNA [NM_004071]</td>
<td>2.18</td>
</tr>
<tr>
<td>CREM</td>
<td>Homo sapiens cAMP responsive element modulator (CREM), transcript variant 19, mRNA [NM_183013]</td>
<td>1.15</td>
</tr>
<tr>
<td>CRYAB</td>
<td>Homo sapiens crystallin, alpha B (CRYAB), mRNA [NM_001885]</td>
<td>4.36</td>
</tr>
<tr>
<td>DNAJA1</td>
<td>Homo sapiens DnaJ (Hsp40) homolog, subfamily A, member 1 (DNAJA1), mRNA [NM_001539]</td>
<td>1.33</td>
</tr>
<tr>
<td>DNAJA4</td>
<td>Homo sapiens PRO1472 mRNA, complete cds. [AF116663]</td>
<td>5.65</td>
</tr>
<tr>
<td>DNAJB1</td>
<td>Homo sapiens DnaJ (Hsp40) homolog, subfamily B, member 1 (DNAJB1), mRNA [NM_006145]</td>
<td>2.94</td>
</tr>
<tr>
<td>DNAJB6</td>
<td>Homo sapiens DnaJ (Hsp40) homolog, subfamily B, member 6 (DNAJB6), transcript variant 1, mRNA [NM_058246]</td>
<td>2.17</td>
</tr>
<tr>
<td>DNAJB9</td>
<td>Homo sapiens DnaJ (Hsp40) homolog, subfamily B, member 9 (DNAJB9), mRNA [NM_012328]</td>
<td>1.55</td>
</tr>
<tr>
<td>DNAJC3</td>
<td>Homo sapiens DnaJ (Hsp40) homolog, subfamily C, member 3, mRNA (cDNA clone IMAGE:5218144), with apparent retained intron. [BC033823]</td>
<td>1.60</td>
</tr>
<tr>
<td>FOS</td>
<td>Homo sapiens v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), mRNA [NM_005252]</td>
<td>4.48</td>
</tr>
<tr>
<td>FOSB</td>
<td>Homo sapiens FBJ murine osteosarcoma viral oncogene homolog B (FOSB), transcript variant 1, mRNA [NM_006732]</td>
<td>5.70</td>
</tr>
<tr>
<td>FSD1L</td>
<td>Homo sapiens fibronectin type III and SPRY domain containing 1-like (FSD1L), transcript variant 2, mRNA [NM_031919]</td>
<td>1.61</td>
</tr>
<tr>
<td>GADD45B</td>
<td>Homo sapiens growth arrest and DNA-damage-inducible, beta (GADD45B), mRNA [NM_015675]</td>
<td>2.96</td>
</tr>
<tr>
<td>GADD45G</td>
<td>Homo sapiens growth arrest and DNA-damage-inducible, gamma (GADD45G), mRNA [NM_006705]</td>
<td>3.59</td>
</tr>
<tr>
<td>HRH1</td>
<td>Homo sapiens histamine receptor H1 (HRH1), transcript variant 4, mRNA [NM_008681]</td>
<td>1.00</td>
</tr>
<tr>
<td>HSF2</td>
<td>Homo sapiens heat shock transcription factor 2 (HSF2), transcript variant 1, mRNA [NM_004506]</td>
<td>1.28</td>
</tr>
<tr>
<td>HSP90AA1</td>
<td>Homo sapiens heat shock protein 90kDa alpha (cytosolic), class A member 1 (HSP90AA1), transcript variant 2, mRNA [NM_005348]</td>
<td>1.20</td>
</tr>
<tr>
<td>HSPA13</td>
<td>Homo sapiens heat shock protein 70kDa family, member 13 (HSPA13), mRNA [NM_006948]</td>
<td>1.10</td>
</tr>
<tr>
<td>HSPA6</td>
<td>Homo sapiens heat shock 70kDa protein 6 (HSP70B') (HSPA6), mRNA [NM_002155]</td>
<td>4.67</td>
</tr>
<tr>
<td>HSPB8</td>
<td>Homo sapiens heat shock 22kDa protein 8 (HSPB8), mRNA [NM_014365]</td>
<td>1.99</td>
</tr>
<tr>
<td>HSPH1</td>
<td>Homo sapiens heat shock 105kDa/110kDa protein 1 (HSPH1), mRNA [NM_006644]</td>
<td>2.06</td>
</tr>
<tr>
<td>JDP2</td>
<td>Homo sapiens Jun dimerization protein 2 (JDP2), transcript variant 1, mRNA [NM_130469]</td>
<td>1.13</td>
</tr>
<tr>
<td>NLK</td>
<td>Homo sapiens nemo-like kinase (NLK), mRNA [NM_016231]</td>
<td>1.32</td>
</tr>
<tr>
<td>NR4A1</td>
<td>Homo sapiens nuclear receptor subfamily 4, group A, member 1 (NR4A1), transcript variant 1, mRNA [NM_002135]</td>
<td>5.28</td>
</tr>
<tr>
<td>NR4A3</td>
<td>Homo sapiens nuclear receptor subfamily 4, group A, member 3 (NR4A3), transcript variant 4, mRNA [NM_173199]</td>
<td>3.06</td>
</tr>
<tr>
<td>ST13</td>
<td>Homo sapiens suppression of tumorigenicity 13 (colon carcinoma) (Hsp70 interacting protein (ST13), mRNA [NM_003932]</td>
<td>1.07</td>
</tr>
<tr>
<td>TTC1</td>
<td>Homo sapiens tetrapropeptide repeat domain 1 (TTC1), mRNA [NM_003314]</td>
<td>1.32</td>
</tr>
<tr>
<td>VEGFA</td>
<td>Homo sapiens vascular endothelial growth factor A (VEGFA), transcript variant 1, mRNA [NM_00102536]</td>
<td>1.24</td>
</tr>
</tbody>
</table>
Table S3. List of genes downregulated by CuO-NPs classified into the GO category of “cell cycle”. Fold-change is represented by logarithmic ratio (log ratio) to expression level in control. *, also classified into the category of “mitosis”.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Description</th>
<th>Fold-change (log ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTR3B*</td>
<td>Homo sapiens ARP3 actin-related protein 3 homolog B (yeast) (ACTR3B), transcript variant 2, mRNA [NM_001040135]</td>
<td>-1.07</td>
</tr>
<tr>
<td>ATR</td>
<td>Homo sapiens ataxia telangiectasia and Rad3 related (ATR), mRNA [NM_001184]</td>
<td>-1.11</td>
</tr>
<tr>
<td>AURKA*</td>
<td>Homo sapiens aurora kinase A (AURKA), transcript variant 1, mRNA [NM_198433]</td>
<td>-1.21</td>
</tr>
<tr>
<td>AURKB*</td>
<td>Homo sapiens aurora kinase B (AURKB), mRNA [NM_004217]</td>
<td>-1.13</td>
</tr>
<tr>
<td>AXL</td>
<td>Homo sapiens AXL receptor tyrosine kinase (AXL), transcript variant 1, mRNA [NM_021913]</td>
<td>-1.81</td>
</tr>
<tr>
<td>BCL2A1</td>
<td>Homo sapiens BCL2-related protein A1 (BCL2A1), transcript variant 1, mRNA [NM_004049]</td>
<td>-1.11</td>
</tr>
<tr>
<td>CCNA2*</td>
<td>Homo sapiens cyclin A2 (CCNA2), mRNA [NM_001237]</td>
<td>-1.39</td>
</tr>
<tr>
<td>CCNB1*</td>
<td>Homo sapiens cyclin B1 (CCNB1), mRNA [NM_031966]</td>
<td>-1.74</td>
</tr>
<tr>
<td>CCNB2*</td>
<td>Homo sapiens cyclin B2 (CCNB2), mRNA [NM_004701]</td>
<td>-1.44</td>
</tr>
<tr>
<td>CDC2*</td>
<td>Homo sapiens cell division cycle 2, G1 to S and G2 to M (CDC2), transcript variant 1, mRNA [NM_001786]</td>
<td>-1.41</td>
</tr>
<tr>
<td>CDC20</td>
<td>Homo sapiens cell division cycle 20 homolog (S. cerevisiae) (CDC20), mRNA [NM_001255]</td>
<td>-1.23</td>
</tr>
<tr>
<td>CDK6*</td>
<td>Homo sapiens cyclin-dependent kinase 6 (CDK6), mRNA [NM_001184]</td>
<td>-1.28</td>
</tr>
<tr>
<td>CDKN1B</td>
<td>Homo sapiens cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), mRNA [NM_004064]</td>
<td>-1.30</td>
</tr>
<tr>
<td>CDKN2C</td>
<td>Homo sapiens cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) (CDKN2C), transcript variant 2, mRNA [NM_078626]</td>
<td>-1.57</td>
</tr>
<tr>
<td>CIT*</td>
<td>Homo sapiens citron (rho-interacting, serine/threonine kinase 21) (CIT), mRNA [NM_007174]</td>
<td>-1.82</td>
</tr>
<tr>
<td>CKAP5</td>
<td>Homo sapiens cytoskeleton associated protein 5 (CKAP5), transcript variant 1, mRNA [NM_001008938]</td>
<td>-1.07</td>
</tr>
<tr>
<td>DBF4</td>
<td>Homo sapiens DBF4 homolog (S. cerevisiae) (DBF4), mRNA [NM_006716]</td>
<td>-1.37</td>
</tr>
<tr>
<td>DIS3L*</td>
<td>Homo sapiens DIS3 mitotic control homolog (S. cerevisiae)-like (DIS3L), transcript variant 2, mRNA [NM_133375]</td>
<td>-1.71</td>
</tr>
<tr>
<td>DLC1</td>
<td>Homo sapiens deleted in liver cancer 1 (DLC1), transcript variant 1, mRNA [NM_182643]</td>
<td>-1.09</td>
</tr>
<tr>
<td>DNAJC5</td>
<td>Full-length cDNA clone C00DN003YL17 of Adult brain of Homo sapiens (human). [CR607484]</td>
<td>-1.38</td>
</tr>
<tr>
<td>DST</td>
<td>Homo sapiens cDNA: FLJ21489 f1s, clone COL05450. [AK025142]</td>
<td>-1.03</td>
</tr>
<tr>
<td>E2F7</td>
<td>Homo sapiens E2F transcription factor 7 (E2F7), mRNA [NM_203394]</td>
<td>-1.28</td>
</tr>
<tr>
<td>E2F8</td>
<td>Homo sapiens E2F transcription factor 8 (E2F8), mRNA [NM_024680]</td>
<td>-1.61</td>
</tr>
<tr>
<td>EFBH</td>
<td>Homo sapiens EF-hand domain family, member B (EFHB), mRNA [NM_144715]</td>
<td>-1.56</td>
</tr>
<tr>
<td>EIF2AK4</td>
<td>Homo sapiens eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4), mRNA [NM_001013703]</td>
<td>-1.17</td>
</tr>
<tr>
<td>EPHB2</td>
<td>Homo sapiens EPH receptor B2 (EPHB2), transcript variant 2, mRNA [NM_004442]</td>
<td>-1.28</td>
</tr>
<tr>
<td>ERBB2</td>
<td>Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian) (ERBB2), transcript variant 2, mRNA [NM_01005862]</td>
<td>-1.33</td>
</tr>
<tr>
<td>FBXL4</td>
<td>Homo sapiens F-box and leucine-rich repeat protein 4 (FBXL4), mRNA [NM_012160]</td>
<td>-1.09</td>
</tr>
<tr>
<td>FKBP7</td>
<td>Homo sapiens FK506 binding protein 7 (FKBP7), transcript variant 1, mRNA [NM_181342]</td>
<td>-1.06</td>
</tr>
<tr>
<td>FOXF2</td>
<td>Homo sapiens forkhead box F2 (FOXF2), mRNA [NM_004152]</td>
<td>-1.14</td>
</tr>
<tr>
<td>GPSM2*</td>
<td>Homo sapiens G-protein signaling modulator 2 (AGS3-like, C. elegans) (GPSM2), mRNA [NM_013296]</td>
<td>-1.19</td>
</tr>
<tr>
<td>GTSE1</td>
<td>Homo sapiens G-2 and S-phase expressed 1 (GTSE1), mRNA [NM_016426]</td>
<td>-1.42</td>
</tr>
<tr>
<td>JUB*</td>
<td>Homo sapiens jub, ajuba homolog (Xenopus laevis) (JUB), transcript variant 1, mRNA [NM_032876]</td>
<td>-1.41</td>
</tr>
<tr>
<td>KIAA1274</td>
<td>Homo sapiens KIAA1274 (KIAA1274), mRNA [NM_014431]</td>
<td>-1.14</td>
</tr>
<tr>
<td>KIAA1804</td>
<td>Homo sapiens mixed lineage kinase 4 (KIAA1804), mRNA [NM_032435]</td>
<td>-1.37</td>
</tr>
<tr>
<td>KIF18A*</td>
<td>Homo sapiens kinesin family member 18A (KIF18A), mRNA [NM_031217]</td>
<td>-1.17</td>
</tr>
<tr>
<td>KIF18B*</td>
<td>Homo sapiens hypothetical protein LOC146909, mRNA (cDNA clone IMAGE:4418755), partial cds. [BC048263]</td>
<td>-2.07</td>
</tr>
<tr>
<td>KIF20A*</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td>-2.05</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>mRNA Accession</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>KIF23*</td>
<td>Homo sapiens kinesin family member 23 (KIF23)</td>
<td>NM_138555</td>
</tr>
<tr>
<td>KIFC1*</td>
<td>Homo sapiens kinesin family member C1 (KIFC1)</td>
<td>NM_002263</td>
</tr>
<tr>
<td>MCM4</td>
<td>Homo sapiens minichromosome maintenance complex component 4 (MCM4)</td>
<td>NM_005914</td>
</tr>
<tr>
<td>MCM6</td>
<td>Homo sapiens minichromosome maintenance complex component 6 (MCM6)</td>
<td>NM_005915</td>
</tr>
<tr>
<td>MELK</td>
<td>Homo sapiens maternal embryonic leucine zipper kinase (MELK)</td>
<td>NM_014791</td>
</tr>
<tr>
<td>MOBKL2B*</td>
<td>Homo sapiens MOB1, Mps One Binder kinase activator-like 2B (yeast) (MOBKL2B)</td>
<td>NM_024761</td>
</tr>
<tr>
<td>MYBBP1A</td>
<td>Homo sapiens MYB binding protein (P160) 1a (MYBBP1A), transcript variant 2, mRNA</td>
<td>NM_014520</td>
</tr>
<tr>
<td>MYBL1</td>
<td>Homo sapiens v-myb myeloblastosis viral oncogene homolog (avian)-like 1 (MYBL1), mRNA</td>
<td>NM_001080416</td>
</tr>
<tr>
<td>MYC</td>
<td>Homo sapiens v-myc myelocytomatosis viral oncogene homolog (MYC), mRNA</td>
<td>NM_002467</td>
</tr>
<tr>
<td>MYH9*</td>
<td>Homo sapiens myosin, heavy chain 9, non-muscle (MYH9), mRNA</td>
<td>NM_002473</td>
</tr>
<tr>
<td>MYOSC*</td>
<td>Homo sapiens myosin VC (MYOSC), mRNA</td>
<td>NM_018728</td>
</tr>
<tr>
<td>NCAF1*</td>
<td>Homo sapiens non-SMC condensin I complex, subunit D2 (NCAPD2), mRNA</td>
<td>NM_014865</td>
</tr>
<tr>
<td>NDC80</td>
<td>Homo sapiens NDC80 homolog, kinetochore complex component (S. cerevisiae) (NDC80), mRNA</td>
<td>NM_006101</td>
</tr>
<tr>
<td>NR2F2</td>
<td>Homo sapiens nuclear receptor subfamily 2, group F, member 2 (NR2F2), mRNA</td>
<td>NM_021005</td>
</tr>
<tr>
<td>NUF2*</td>
<td>Homo sapiens NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae) (NUF2), transcript variant 1, mRNA</td>
<td>NM_145697</td>
</tr>
<tr>
<td>OTUD4*</td>
<td>Homo sapiens OTU domain containing 4 (OTUD4), transcript variant 1, mRNA</td>
<td>NM_199324</td>
</tr>
<tr>
<td>PARP4</td>
<td>Homo sapiens poly (ADP-ribose) polymerase family, member 4 (PARP4), mRNA</td>
<td>NM_006437</td>
</tr>
<tr>
<td>PCNA</td>
<td>Homo sapiens proliferating cell nuclear antigen (PCNA), transcript variant 1, mRNA</td>
<td>NM_002592</td>
</tr>
<tr>
<td>PDGFA</td>
<td>Homo sapiens platelet-derived growth factor alpha polypeptide (PDGFA), transcript variant 1, mRNA</td>
<td>NM_002607</td>
</tr>
<tr>
<td>PLK2</td>
<td>Homo sapiens polo-like kinase 2 (Drosophila) (PLK2), mRNA</td>
<td>NM_006622</td>
</tr>
<tr>
<td>PMS1</td>
<td>Homo sapiens PMS1 postmeiotic segregation increased 1 (S. cerevisiae) (PMS1), transcript variant 1, mRNA</td>
<td>NM_000534</td>
</tr>
<tr>
<td>POLI*</td>
<td>Homo sapiens polymerase (DNA directed) iota (POLI), mRNA</td>
<td>NM_007195</td>
</tr>
<tr>
<td>PSKH1*</td>
<td>Homo sapiens proline serine kinase H1 (PSKH1), mRNA</td>
<td>NM_006742</td>
</tr>
<tr>
<td>PSRC1</td>
<td>Homo sapiens proline/serine-rich coiled-coil 1 (PSRC1), transcript variant 1, mRNA</td>
<td>NM_032636</td>
</tr>
<tr>
<td>PTPN13</td>
<td>Homo sapiens protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase) (PTPN13), transcript variant 4, mRNA</td>
<td>NM_080685</td>
</tr>
<tr>
<td>PTG1*</td>
<td>Homo sapiens pim1-like tumor-transforming 1 (PTG1), mRNA</td>
<td>NM_004219</td>
</tr>
<tr>
<td>RAPGEF6*</td>
<td>Homo sapiens Rap guanine nucleotide exchange factor (GEF) 6 (RAPGEF6), mRNA</td>
<td>NM_016340</td>
</tr>
<tr>
<td>RBBP8</td>
<td>Homo sapiens retinoblastoma binding protein 8 (RBBP8), transcript variant 1, mRNA</td>
<td>NM_002894</td>
</tr>
<tr>
<td>ROR1</td>
<td>Tyrosine-protein kinase transmembrane receptor ROR1 Precursor (EC 2.7.10.1) [Neurotrophic tyrosine kinase, receptor-related 1] [Source:UniProtKB/Swiss-Prot; Acc: Q01973]</td>
<td>ENST00000371079</td>
</tr>
<tr>
<td>SASS6*</td>
<td>Homo sapiens spindle assembly 6 homolog (C. elegans) (SASS6), mRNA</td>
<td>NM_194292</td>
</tr>
<tr>
<td>SPTBN1</td>
<td>Homo sapiens spectrin, beta, non-erythrocytic 1 (SPTBN1), transcript variant 1, mRNA</td>
<td>NM_003128</td>
</tr>
<tr>
<td>SRGAP2</td>
<td>Homo sapiens SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2), transcript variant 1, mRNA</td>
<td>NM_015326</td>
</tr>
<tr>
<td>TNS3</td>
<td>Homo sapiens tensin 3 (TNS3), mRNA</td>
<td>NM_022748</td>
</tr>
<tr>
<td>TOP2A*</td>
<td>Homo sapiens topoisomerase (DNA) II alpha 170kDa (TOP2A), mRNA</td>
<td>NM_001067</td>
</tr>
<tr>
<td>TPX2*</td>
<td>Homo sapiens TPX2, microtubule-associated, homolog (Xenopus laevis) (TPX2), mRNA</td>
<td>NM_012112</td>
</tr>
<tr>
<td>TRAF7</td>
<td>Homo sapiens TNF receptor-associated factor 7 (TRAF7), mRNA</td>
<td>NM_032271</td>
</tr>
<tr>
<td>TRIM14</td>
<td>Homo sapiens trypsin inhibitor motif-containing 14 (TRIM14), transcript variant 1, mRNA</td>
<td>NM_002271</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Ratio</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>TRIM59</td>
<td>Homo sapiens tripartite motif-containing 59 (TRIM59), mRNA [NM_173084]</td>
<td>-1.86</td>
</tr>
<tr>
<td>TRIM6</td>
<td>Homo sapiens tripartite motif-containing 6 (TRIM6), transcript variant 1, mRNA [NM_001003818]</td>
<td>-1.64</td>
</tr>
<tr>
<td>TUBA3D*</td>
<td>Homo sapiens tubulin, alpha 3d (TUBA3D), mRNA [NM_080386]</td>
<td>-1.20</td>
</tr>
<tr>
<td>TUBB2B*</td>
<td>Homo sapiens tubulin, beta 2B (TUBB2B), mRNA [NM_178012]</td>
<td>-1.07</td>
</tr>
<tr>
<td>TUBB6*</td>
<td>Homo sapiens tubulin, beta 6 (TUBB6), mRNA [NM_032525]</td>
<td>-1.21</td>
</tr>
<tr>
<td>UBE2T*</td>
<td>Homo sapiens ubiquitin-conjugating enzyme E2T (putative) (UBE2T), mRNA [NM_014176]</td>
<td>-1.14</td>
</tr>
<tr>
<td>UHRF1</td>
<td>Homo sapiens ubiquitin-like with PHD and ring finger domains 1 (UHRF1), transcript variant 2, mRNA [NM_013282]</td>
<td>-1.37</td>
</tr>
<tr>
<td>UTRN</td>
<td>Homo sapiens utrophin (UTRN), mRNA [NM_007124]</td>
<td>-1.01</td>
</tr>
<tr>
<td>YWHAH</td>
<td>Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, eta polypeptide (YWHAH), mRNA [NM_003405]</td>
<td>-1.34</td>
</tr>
<tr>
<td>ZFP36L1*</td>
<td>Homo sapiens zinc finger protein 36, C3H type-like 1 (ZFP36L1), mRNA [NM_004926]</td>
<td>-1.45</td>
</tr>
<tr>
<td>ZFP36L2*</td>
<td>Homo sapiens zinc finger protein 36, C3H type-like 2 (ZFP36L2), mRNA [NM_006887]</td>
<td>-1.22</td>
</tr>
<tr>
<td>Gene name</td>
<td>Description</td>
<td>Fold-change (log2 ratio)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ACTR3B</td>
<td>Homo sapiens ARP3 actin-related protein 3 homolog B (yeast) (ACTR3B), transcript variant 2, mRNA [NM_0010404135]</td>
<td>-1.069</td>
</tr>
<tr>
<td>AURKA</td>
<td>Homo sapiens aurora kinase A (AURKA), transcript variant 1, mRNA [NM_198433]</td>
<td>-1.206</td>
</tr>
<tr>
<td>AURKB</td>
<td>Homo sapiens aurora kinase B (AURKB), mRNA [NM_004217]</td>
<td>-1.129</td>
</tr>
<tr>
<td>CIT</td>
<td>Homo sapiens citron (rho-interacting, serine/threonine kinase 21) (CIT), mRNA [NM_007174]</td>
<td>-1.821</td>
</tr>
<tr>
<td>GPSM2</td>
<td>Homo sapiens G-protein signaling modulator 2 (AGS3-like, C. elegans) (GPSM2), mRNA [NM_013296]</td>
<td>-1.185</td>
</tr>
<tr>
<td>KIF18A</td>
<td>Homo sapiens kinesin family member 18A (KIF18A), mRNA [NM_031217]</td>
<td>-1.165</td>
</tr>
<tr>
<td>KIF18B</td>
<td>Homo sapiens hypothetical protein LOC146909, mRNA (cDNA clone IMAGE:4418755), partial cds. [BC048263]</td>
<td>-2.068</td>
</tr>
<tr>
<td>KIF20A</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td>-2.049</td>
</tr>
<tr>
<td>KIF20B</td>
<td>Homo sapiens kinesin family member 20B (KIF20B), mRNA [NM_016195]</td>
<td>-1.253</td>
</tr>
<tr>
<td>KIF23</td>
<td>Homo sapiens kinesin family member 23 (KIF23), transcript variant 1, mRNA [NM_138555]</td>
<td>-1.562</td>
</tr>
<tr>
<td>KIFC1</td>
<td>Homo sapiens kinesin family member C1 (KIFC1), mRNA [NM_002263]</td>
<td>-1.264</td>
</tr>
<tr>
<td>MOBKL2B</td>
<td>Homo sapiens MOB1, Mps One Binder kinase activator-like 2B (yeast) (MOBKL2B), mRNA [NM_024761]</td>
<td>-1.112</td>
</tr>
<tr>
<td>MYH9</td>
<td>Homo sapiens myosin, heavy chain 9, non-muscle (MYH9), mRNA [NM_002473]</td>
<td>-1.213</td>
</tr>
<tr>
<td>MYO5C</td>
<td>Homo sapiens myosin VC (MYO5C), mRNA [NM_018728]</td>
<td>-1.393</td>
</tr>
<tr>
<td>PSKH1</td>
<td>Homo sapiens protein serine kinase H1 (PSKH1), mRNA [NM_006742]</td>
<td>-1.281</td>
</tr>
<tr>
<td>PTPN13</td>
<td>Homo sapiens protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase) (PTPN13), transcript variant 4, mRNA [NM_080685]</td>
<td>-1.774</td>
</tr>
</tbody>
</table>
Table S5. List of genes downregulated by CuO-NPs classified into the GO category of “chromosome segregation”. Fold-change is represented by logarithmic ratio (log; ratio) to expression level in control.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Description</th>
<th>Fold-change (log; ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIF18A</td>
<td>Homo sapiens kinesin family member 18A (KIF18A), mRNA [NM_031217]</td>
<td>-1.17</td>
</tr>
<tr>
<td>KIF18B</td>
<td>Homo sapiens hypothetical protein LOC146909, mRNA (cDNA clone IMAGE:4418755), partial cds. [BC048263]</td>
<td>-2.07</td>
</tr>
<tr>
<td>KIF20A</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td>-2.05</td>
</tr>
<tr>
<td>KIF20B</td>
<td>Homo sapiens kinesin family member 20B (KIF20B), mRNA [NM_016195]</td>
<td>-1.25</td>
</tr>
<tr>
<td>KIF23</td>
<td>Homo sapiens kinesin family member 23 (KIF23), transcript variant 1, mRNA [NM_138555]</td>
<td>-1.56</td>
</tr>
<tr>
<td>KIFC1</td>
<td>Homo sapiens kinesin family member C1 (KIFC1), mRNA [NM_002263]</td>
<td>-1.26</td>
</tr>
<tr>
<td>NUF2</td>
<td>Homo sapiens NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae) (NUF2), transcript variant 1, mRNA [NM_145697]</td>
<td>-1.17</td>
</tr>
<tr>
<td>OTUD4</td>
<td>Homo sapiens OTU domain containing 4 (OTUD4), transcript variant 1, mRNA [NM_199324]</td>
<td>-1.47</td>
</tr>
<tr>
<td>POLI</td>
<td>Homo sapiens polymerase (DNA directed) iota (POLI), mRNA [NM_007195]</td>
<td>-1.58</td>
</tr>
<tr>
<td>PTTG1</td>
<td>Homo sapiens pituitary tumor-transforming 1 (PTTG1), mRNA [NM_004219]</td>
<td>-1.04</td>
</tr>
<tr>
<td>SASS6</td>
<td>Homo sapiens spindle assembly 6 homolog (C. elegans) (SASS6), mRNA [NM_194292]</td>
<td>-1.07</td>
</tr>
<tr>
<td>TOP2A</td>
<td>Homo sapiens topoisomerase (DNA) II alpha 170kDa (TOP2A), mRNA [NM_001067]</td>
<td>-2.00</td>
</tr>
<tr>
<td>TPX2</td>
<td>Homo sapiens TPX2, microtubule-associated, homolog (Xenopus laevis) (TPX2), mRNA [NM_012112]</td>
<td>-1.25</td>
</tr>
<tr>
<td>TUBA3D</td>
<td>Homo sapiens tubulin, alpha 3d (TUBA3D), mRNA [NM_080386]</td>
<td>-1.20</td>
</tr>
<tr>
<td>TUBB2B</td>
<td>Homo sapiens tubulin, beta 2B (TUBB2B), mRNA [NM_178012]</td>
<td>-1.07</td>
</tr>
<tr>
<td>TUBB6</td>
<td>Homo sapiens tubulin, beta 6 (TUBB6), mRNA [NM_032525]</td>
<td>-1.21</td>
</tr>
<tr>
<td>UBE2T</td>
<td>Homo sapiens ubiquitin-conjugating enzyme E2T (putative) (UBE2T), mRNA [NM_014176]</td>
<td>-1.14</td>
</tr>
<tr>
<td>Gene name</td>
<td>Description</td>
<td>Fold-change (log-ratio)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ACTR3B*</td>
<td>Homo sapiens ARP3 actin-related protein 3 homolog B (yeast) (ACTR3B), transcript variant 2, mRNA [NM_001040135]</td>
<td>-1.07</td>
</tr>
<tr>
<td>ANGPTL4*</td>
<td>Homo sapiens angiopoietin-like 4 (ANGPTL4), transcript variant 1, mRNA [NM_139314]</td>
<td>-1.09</td>
</tr>
<tr>
<td>ATR</td>
<td>Homo sapiens ataxia telangiectasia and Rad3 related (ATR), mRNA [NM_001184]</td>
<td>-1.11</td>
</tr>
<tr>
<td>ATRX</td>
<td>Homo sapiens alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. cerevisiae) (ATRX), transcript variant 1, mRNA [NM_000489]</td>
<td>-1.04</td>
</tr>
<tr>
<td>CENPA</td>
<td>Homo sapiens centromere protein A (CENPA), transcript variant 1, mRNA [NM_018089]</td>
<td>-1.80</td>
</tr>
<tr>
<td>CIT*</td>
<td>Homo sapiens citron (rho-interacting, serine/threonine kinase 21) (CIT), mRNA [NM_007174]</td>
<td>-1.82</td>
</tr>
<tr>
<td>CKAP5*</td>
<td>Homo sapiens cytoskeleton associated protein 5 (CKAP5), transcript variant 1, mRNA [NM_001008938]</td>
<td>-1.07</td>
</tr>
<tr>
<td>CLDN23*</td>
<td>Homo sapiens claudin 23 (CLDN23), mRNA [NM_194284]</td>
<td>-1.11</td>
</tr>
<tr>
<td>COCH*</td>
<td>Homo sapiens coagulation factor C homolog, cochlín (Limulus polyphemus) (COCH), transcript variant 2, mRNA [NM_004086]</td>
<td>-1.05</td>
</tr>
<tr>
<td>COL4A1*</td>
<td>Homo sapiens collagen, type IV, alpha 1 (COL4A1), mRNA [NM_001845]</td>
<td>-1.01</td>
</tr>
<tr>
<td>COL5A1*</td>
<td>Homo sapiens collagen, type V, alpha 1 (COL5A1), mRNA [NM_000993]</td>
<td>-1.30</td>
</tr>
<tr>
<td>COL5A2*</td>
<td>Homo sapiens collagen, type V, alpha 2 (COL5A2), mRNA [NM_00393]</td>
<td>-1.03</td>
</tr>
<tr>
<td>DAPK1*</td>
<td>Homo sapiens death-associated protein kinase 1 (DAPK1), mRNA [NM_004938]</td>
<td>-1.44</td>
</tr>
<tr>
<td>DCLC1*</td>
<td>Homo sapiens deleted in liver cancer 1 (DLC1), transcript variant 1, mRNA [NM_182643]</td>
<td>-1.09</td>
</tr>
<tr>
<td>DLG5*</td>
<td>Homo sapiens discs, large homolog 5 (Drosophila) (DLG5), mRNA [NM_004747]</td>
<td>-1.36</td>
</tr>
<tr>
<td>DST*</td>
<td>Homo sapiens cDNA: FLJ1489 fs, clone COL50540. [AK025142]</td>
<td>-1.03</td>
</tr>
<tr>
<td>EHM1T1</td>
<td>Homo sapiens euchromatic histone-lysine N-methyltransferase 1 (EHMT1), mRNA [NM_024757]</td>
<td>-1.18</td>
</tr>
<tr>
<td>EVIS*</td>
<td>Homo sapiens ectopic viral integration site 5 (EVIS), mRNA [NM_005665]</td>
<td>-1.08</td>
</tr>
<tr>
<td>FOXF2*</td>
<td>Homo sapiens forkhead box F2 (FOXF2), mRNA [NM_001452]</td>
<td>-1.14</td>
</tr>
<tr>
<td>GEMIN5</td>
<td>Homo sapiens gem (nuclear organelle) associated protein 5 (GEMIN5), mRNA [NM_015465]</td>
<td>-1.59</td>
</tr>
<tr>
<td>GTSE1*</td>
<td>Homo sapiens G2 and S-phase expressed 1 (GTSE1), mRNA [NM_016426]</td>
<td>-1.42</td>
</tr>
<tr>
<td>H1FX</td>
<td>Homo sapiens H1 histone family, member X (H1FX), mRNA [NM_006026]</td>
<td>-1.52</td>
</tr>
<tr>
<td>H2AFX</td>
<td>Homo sapiens H2A histone family, member X (H2AFX), mRNA [NM_002105]</td>
<td>-1.16</td>
</tr>
<tr>
<td>HMGB2</td>
<td>Homo sapiens high-mobility group box 2 (HMGB2), transcript variant 1, mRNA [NM_002129]</td>
<td>-2.06</td>
</tr>
<tr>
<td>IPP*</td>
<td>Homo sapiens intracisternal A particle-promoted polypeptide (IPP), mRNA [NM_005897]</td>
<td>-1.05</td>
</tr>
<tr>
<td>JUB*</td>
<td>Homo sapiens jub, ajuba homolog (Xenopus laevis) (JUB), transcript variant 1, mRNA [NM_032876]</td>
<td>-1.41</td>
</tr>
<tr>
<td>KIAA1804*</td>
<td>Homo sapiens mixed lineage kinase 4 (KIAA1804), mRNA [NM_032435]</td>
<td>-1.37</td>
</tr>
<tr>
<td>KIF18A*</td>
<td>Homo sapiens kinesin family member 18A (KIF18A), mRNA [NM_031217]</td>
<td>-1.17</td>
</tr>
<tr>
<td>KIF18B*</td>
<td>Homo sapiens hypothetical protein LOC146909, mRNA (cDNA clone IMAGE:448755), partial cds. [BC048263]</td>
<td>-2.07</td>
</tr>
<tr>
<td>KIF20A*</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td>-2.05</td>
</tr>
<tr>
<td>KIF20B</td>
<td>Homo sapiens kinesin family member 20B (KIF20B), mRNA [NM_016195]</td>
<td>-1.25</td>
</tr>
<tr>
<td>KIF23*</td>
<td>Homo sapiens kinesin family member 23 (KIF23), transcript variant 1, mRNA [NM_138555]</td>
<td>-1.56</td>
</tr>
<tr>
<td>KIFC1*</td>
<td>Homo sapiens kinesin family member C1 (KIFC1), mRNA [NM_002263]</td>
<td>-1.26</td>
</tr>
<tr>
<td>KLHDC5*</td>
<td>Homo sapiens kelch domain containing 5 (KLHDC5), mRNA [NM_020782]</td>
<td>-1.43</td>
</tr>
<tr>
<td>LIMK2*</td>
<td>Homo sapiens LIM domain kinase 2 (LIMK2), transcript variant 2b, mRNA [NM_016733]</td>
<td>-1.18</td>
</tr>
<tr>
<td>LMNB1*</td>
<td>Homo sapiens lamin B1 (LMNB1), mRNA [NM_005573]</td>
<td>-2.04</td>
</tr>
<tr>
<td>LMNB2*</td>
<td>Homo sapiens lamin B2 (LMNB2), mRNA [NM_032737]</td>
<td>-1.71</td>
</tr>
<tr>
<td>MELK*</td>
<td>Homo sapiens maternal embryonic leucine zipper kinase (MELK), mRNA [NM_014791]</td>
<td>-1.11</td>
</tr>
<tr>
<td>MESDC1*</td>
<td>Homo sapiens mesoderm development candidate 1 (MESDC1), mRNA [NM_022566]</td>
<td>-1.01</td>
</tr>
<tr>
<td>MYO1B*</td>
<td>Homo sapiens myosin IB (MYO1B), transcript variant 2, mRNA [NM_012223]</td>
<td>-1.30</td>
</tr>
<tr>
<td>MYOSC*</td>
<td>Homo sapiens myosin VC (MYOSC), mRNA [NM_018728]</td>
<td>-1.39</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>NCAPD2</td>
<td>Homo sapiens non-SMC condensin I complex, subunit D2 (NCAPD2), mRNA</td>
<td>NM_014865</td>
</tr>
<tr>
<td>OBSL1*</td>
<td>Homo sapiens obscurin-like 1 (OBSL1), mRNA</td>
<td>NM_015311</td>
</tr>
<tr>
<td>OLFML2A*</td>
<td>Homo sapiens olfactomedin-like 2A (OLFML2A), mRNA</td>
<td>NM_182487</td>
</tr>
<tr>
<td>PCDH9*</td>
<td>Homo sapiens protocadherin 9 (PCDH9), transcript variant 1, mRNA</td>
<td>NM_203487</td>
</tr>
<tr>
<td>PDGFA*</td>
<td>Homo sapiens platelet-derived growth factor alpha polypeptide (PDGFA), transcript variant 1, mRNA</td>
<td>NM_002607</td>
</tr>
<tr>
<td>PODXL*</td>
<td>Homo sapiens podocalyxin-like (PODXL), transcript variant 1, mRNA</td>
<td>NM_001018111</td>
</tr>
<tr>
<td>PSKH1*</td>
<td>Homo sapiens protein serine kinase H1 (PSKH1), mRNA</td>
<td>NM_006742</td>
</tr>
<tr>
<td>PSRC1*</td>
<td>Homo sapiens proline/serine-rich coiled-coil 1 (PSRC1), transcript variant 1, mRNA</td>
<td>NM_032636</td>
</tr>
<tr>
<td>SASS6</td>
<td>Homo sapiens spindle assembly 6 homolog (C. elegans) (SASS6), mRNA</td>
<td>NM_194292</td>
</tr>
<tr>
<td>SETBP1</td>
<td>Homo sapiens SET binding protein 1 (SETBP1), transcript variant 1, mRNA</td>
<td>NM_015559</td>
</tr>
<tr>
<td>SIM2</td>
<td>Homo sapiens single-minded homolog 2 (Drosophila) (SIM2), transcript variant SIM2, mRNA</td>
<td>NM_005069</td>
</tr>
<tr>
<td>SPTBN1*</td>
<td>Homo sapiens spectrin, beta, non-erythrocytic 1 (SPTBN1), transcript variant 1, mRNA</td>
<td>NM_003128</td>
</tr>
<tr>
<td>TBC1D9B*</td>
<td>Homo sapiens TBC1 domain family, member 9B (with GRAM domain) (TBC1D9B), transcript variant 1, mRNA</td>
<td>NM_198868</td>
</tr>
<tr>
<td>THSD7A*</td>
<td>Homo sapiens cDNA FLJ11022 fis, clone PLACE1003771. [AK001884]</td>
<td></td>
</tr>
<tr>
<td>TPM1*</td>
<td>Homo sapiens tropomyosin 1 (alpha) (TPM1), transcript variant 5, mRNA</td>
<td>NM_000366</td>
</tr>
<tr>
<td>TRIOBP*</td>
<td>Homo sapiens TRIO and F-actin binding protein (TRIOBP), transcript variant 6, mRNA</td>
<td>NM_001039141</td>
</tr>
<tr>
<td>TUBA3D*</td>
<td>Homo sapiens tubulin, alpha 3d (TUBA3D), mRNA</td>
<td>NM_080386</td>
</tr>
<tr>
<td>TUBB2B*</td>
<td>Homo sapiens tubulin, beta 2B (TUBB2B), mRNA</td>
<td>NM_178012</td>
</tr>
<tr>
<td>TUBB6*</td>
<td>Homo sapiens tubulin, beta 6 (TUBB6), mRNA</td>
<td>NM_032525</td>
</tr>
<tr>
<td>UTRN*</td>
<td>Homo sapiens utrophin (UTRN), mRNA</td>
<td>NM_007124</td>
</tr>
</tbody>
</table>
Table S7. List of shared genes whose expressions were upregulated in cells exposed to both CuO-NPs and released Cu ions. Fold-change is represented by logarithmic ratio (log₂ ratio) to expression level in control.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Description</th>
<th>CuO-NPs</th>
<th>Cu ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1F</td>
<td>Homo sapiens metallothionein 1F (MT1F), mRNA [NM_005949]</td>
<td>4.80</td>
<td>4.59</td>
</tr>
<tr>
<td>NR4A1</td>
<td>Homo sapiens nuclear receptor subfamily 4, group A, member 1 (NR4A1), transcript variant 1, mRNA [NM_002135]</td>
<td>5.28</td>
<td>2.71</td>
</tr>
<tr>
<td>LOC100129113</td>
<td>Homo sapiens cDNA FLJ37158 fis, clone BRACE2026293, [AK094477]</td>
<td>2.71</td>
<td>2.31</td>
</tr>
<tr>
<td>Dhrs2</td>
<td>Homo sapiens dehydrogenase/reductase (SDR family) member 2 (DHR2), transcript variant 1, mRNA [NM_182908]</td>
<td>2.45</td>
<td>2.24</td>
</tr>
<tr>
<td>CstA</td>
<td>Homo sapiens cystatin A (stefin A) (CST), mRNA [NM_005213]</td>
<td>2.15</td>
<td>2.12</td>
</tr>
<tr>
<td>Jkx3a</td>
<td>Homo sapiens variable charge, X-linked 3A (JKX3A), mRNA [NM_016379]</td>
<td>5.29</td>
<td>2.11</td>
</tr>
<tr>
<td>MT1G</td>
<td>Homo sapiens metallothionein 1G (MT1G), mRNA [NM_005950]</td>
<td>2.31</td>
<td>2.10</td>
</tr>
<tr>
<td>Nupr1</td>
<td>Homo sapiens nuclear protein 1 (NUPR1), transcript variant 1, mRNA [NM_001042483]</td>
<td>2.40</td>
<td>2.10</td>
</tr>
<tr>
<td>MT2A</td>
<td>Homo sapiens metallothionein 2A (MT2A), mRNA [NM_005953]</td>
<td>2.24</td>
<td>1.98</td>
</tr>
<tr>
<td>Cdk5r2</td>
<td>Homo sapiens cyclin-dependent kinase 5, regulatory subunit 2 (p39) (CDK5R2), mRNA [NM_009396]</td>
<td>2.06</td>
<td>1.96</td>
</tr>
<tr>
<td>Mt1E</td>
<td>Homo sapiens unknown mRNA. [AF495759]</td>
<td>2.16</td>
<td>1.95</td>
</tr>
<tr>
<td>Htra3</td>
<td>Homo sapiens HtrA serine peptidase 3 (HTRA3), mRNA [NM_053044]</td>
<td>2.51</td>
<td>1.93</td>
</tr>
<tr>
<td>Loc133874</td>
<td>Homo sapiens hypothetical gene LOC133874 (LOC133874), mRNA</td>
<td>1.92</td>
<td>1.84</td>
</tr>
<tr>
<td>S100p</td>
<td>Homo sapiens S100 calcium binding protein P (S100P), mRNA [NM_005980]</td>
<td>2.15</td>
<td>1.84</td>
</tr>
<tr>
<td>Mt1a</td>
<td>Homo sapiens metallothionein 1A (MT1A), mRNA [NM_005946]</td>
<td>2.19</td>
<td>1.75</td>
</tr>
<tr>
<td>Mt1x</td>
<td>Homo sapiens metallothionein 1X (MT1X), mRNA [NM_005952]</td>
<td>1.98</td>
<td>1.71</td>
</tr>
<tr>
<td>Spnxd</td>
<td>Homo sapiens SPANX family, member D (SPANXD), mRNA [NM_032417]</td>
<td>2.54</td>
<td>1.68</td>
</tr>
<tr>
<td>Gabarapl1</td>
<td>Homo sapiens GABA(A) receptor-associated protein like 1 (GABARAP1), mRNA [NM_031412]</td>
<td>4.44</td>
<td>1.62</td>
</tr>
<tr>
<td>Mt1b</td>
<td>Homo sapiens metallothionein 1B (MT1B), mRNA [NM_005947]</td>
<td>2.24</td>
<td>1.60</td>
</tr>
<tr>
<td>Insig1</td>
<td>Homo sapiens insulin induced gene 1 (INSIG1), transcript variant 2, mRNA [NM_198336]</td>
<td>2.42</td>
<td>1.58</td>
</tr>
<tr>
<td>Mt1h</td>
<td>Homo sapiens metallothionein 1H (MT1H), mRNA [NM_005951]</td>
<td>1.98</td>
<td>1.57</td>
</tr>
<tr>
<td>Spanxa1</td>
<td>Homo sapiens sperm protein associated with the nucleus, X-linked, family member A1 (SPANXA1), mRNA [NM_013453]</td>
<td>2.18</td>
<td>1.55</td>
</tr>
<tr>
<td>Mt1l</td>
<td>Homo sapiens metallothionein 1L (gene/pseudogene) (MT1L), non-coding RNA [NR_001447]</td>
<td>1.79</td>
<td>1.52</td>
</tr>
<tr>
<td>Bex2</td>
<td>Homo sapiens brain expressed X-linked 2 (BEX2), mRNA [NM_032621]</td>
<td>3.29</td>
<td>1.49</td>
</tr>
<tr>
<td>Spanxb2</td>
<td>Homo sapiens SPANX family, member B2 (SPANXB2), mRNA [NM_145664]</td>
<td>2.20</td>
<td>1.48</td>
</tr>
<tr>
<td>Snx8</td>
<td>Homo sapiens sorting nexin 8 (SNX8), mRNA [NM_013321]</td>
<td>1.80</td>
<td>1.45</td>
</tr>
<tr>
<td>Kiaa0430</td>
<td>Homo sapiens KIAA0430 (KIAA0430), mRNA [NM_014647]</td>
<td>1.47</td>
<td>1.44</td>
</tr>
<tr>
<td>Igf2</td>
<td>Homo sapiens insulin-like growth factor 2 (somatotropin A) (IGF2), transcript variant 1, mRNA [NM_0060612]</td>
<td>1.36</td>
<td>1.47</td>
</tr>
<tr>
<td>Clcn6</td>
<td>Homo sapiens chloride channel 6 (CLCN6), transcript variant CIC-6a, mRNA [NM_001286]</td>
<td>1.73</td>
<td>1.32</td>
</tr>
<tr>
<td>Asns</td>
<td>Homo sapiens asparagine synthetase, mRNA (cDNA clone IMAGE:5266877), **** WARNING: chimeric clone ****. [BC030024]</td>
<td>1.58</td>
<td>1.32</td>
</tr>
<tr>
<td>Pnpla8</td>
<td>Homo sapiens patatin-like phospholipase domain containing 8 (PNPLA8), mRNA [NM_015723]</td>
<td>2.06</td>
<td>1.27</td>
</tr>
<tr>
<td>Taf8</td>
<td>Homo sapiens TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa, mRNA (cDNA clone IMAGE:5166848), with apparent retained intron. [BC033729]</td>
<td>1.29</td>
<td>1.24</td>
</tr>
<tr>
<td>Trib3</td>
<td>Homo sapiens tribbles homolog 3 (Drosophila) (TRIB3), mRNA [NM_021158]</td>
<td>1.57</td>
<td>1.20</td>
</tr>
<tr>
<td>Sec61a2</td>
<td>Homo sapiens Sec61 alpha 2 subunit (S. cerevisiae) (SEC61A2), transcript variant 1, mRNA [NM_018144]</td>
<td>1.72</td>
<td>1.15</td>
</tr>
<tr>
<td>Or5l2</td>
<td>Homo sapiens olfactory receptor, family 5, subfamily L, member 2 (OR5L2), mRNA [NM_001004739]</td>
<td>1.36</td>
<td>1.14</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>NM_012192</td>
<td>NM_004331</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>FXC1</td>
<td>Homo sapiens fracture callus 1 homolog (rat) (FXC1), nuclear gene encoding mitochondrial protein, mRNA</td>
<td>1.13</td>
<td>1.14</td>
</tr>
<tr>
<td>BNIP3L</td>
<td>Homo sapiens BCL2/adenovirus E1B 19kDa interacting protein 3-like (BNIP3L), mRNA</td>
<td>2.17</td>
<td>1.11</td>
</tr>
<tr>
<td>PPP1R3B</td>
<td>Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit 3B (PPP1R3B), mRNA</td>
<td>1.14</td>
<td>1.10</td>
</tr>
<tr>
<td>SIRT6</td>
<td>Homo sapiens sirtuin (silent mating type information regulation 2 homolog) 6 (S. cerevisiae) (SIRT6), mRNA</td>
<td>1.68</td>
<td>1.10</td>
</tr>
<tr>
<td>CYB5R2</td>
<td>Homo sapiens cytochrome b5 reductase 2 (CYB5R2), mRNA</td>
<td>1.08</td>
<td>1.11</td>
</tr>
<tr>
<td>GDF15</td>
<td>Homo sapiens growth differentiation factor 15 (GDF15), mRNA</td>
<td>1.08</td>
<td>1.95</td>
</tr>
<tr>
<td>CTS1</td>
<td>Homo sapiens cathepsin L2 (CTSL2), mRNA</td>
<td>1.44</td>
<td>1.07</td>
</tr>
<tr>
<td>SOD2</td>
<td>Homo sapiens superoxide dismutase 2, mitochondrial (SOD2), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA</td>
<td>1.28</td>
<td>1.07</td>
</tr>
<tr>
<td>C1S</td>
<td>Homo sapiens complement component 1, s subcomponent (C1S), transcript variant 1, mRNA</td>
<td>1.06</td>
<td>1.21</td>
</tr>
<tr>
<td>MSI2</td>
<td>Homo sapiens musashi homolog 2 (Drosophila) (MSI2), transcript variant 2, mRNA</td>
<td>1.52</td>
<td>1.06</td>
</tr>
<tr>
<td>SREBF2</td>
<td>Homo sapiens sterol regulatory element binding transcription factor 2 (SREBF2), mRNA</td>
<td>1.32</td>
<td>1.06</td>
</tr>
<tr>
<td>LARP4</td>
<td>Homo sapiens La ribonucleoprotein domain family, member 4 (LARP4), transcript variant 2, mRNA</td>
<td>1.76</td>
<td>1.05</td>
</tr>
<tr>
<td>MVD</td>
<td>Homo sapiens mevalonate (diphospho) decarboxylase (MVD), mRNA</td>
<td>1.04</td>
<td>1.61</td>
</tr>
<tr>
<td>SEC14L1</td>
<td>Homo sapiens SEC14-like 1 (S. cerevisiae) (SEC14L1), transcript variant 1, mRNA</td>
<td>1.72</td>
<td>1.03</td>
</tr>
<tr>
<td>NFATC1</td>
<td>Homo sapiens nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATC1), transcript variant 1, mRNA</td>
<td>1.83</td>
<td>1.03</td>
</tr>
<tr>
<td>TBC1D15</td>
<td>Homo sapiens TBC1 domain family, member 15 (TBC1D15), mRNA</td>
<td>1.98</td>
<td>1.02</td>
</tr>
<tr>
<td>SAT1</td>
<td>Homo sapiens spermidine/spermine N1-acetyltransferase 1 (SAT1), mRNA</td>
<td>1.53</td>
<td>1.02</td>
</tr>
<tr>
<td>C10orf35</td>
<td>Homo sapiens chromosome 10 open reading frame 35 (C10orf35), mRNA</td>
<td>1.37</td>
<td>1.02</td>
</tr>
<tr>
<td>RNF12</td>
<td>Homo sapiens ring finger protein 12 (RNF12), transcript variant 1, mRNA</td>
<td>1.68</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Table S8. List of shared genes whose expressions were downregulated in cells exposed to both CuO-NPs and released Cu ions.
Fold-change is represented by logarithmic ratio (log₂ ratio) to expression level in control.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Description</th>
<th>CuO-NPs</th>
<th>Cu ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM83D</td>
<td>Homo sapiens family with sequence similarity 83, member D (FAM83D), mRNA [NM_030919]</td>
<td>-2.40</td>
<td>-2.25</td>
</tr>
<tr>
<td>HMGB2</td>
<td>Homo sapiens high-mobility group box 2 (HMGB2), transcript variant 1, mRNA [NM_002129]</td>
<td>-2.06</td>
<td>-1.83</td>
</tr>
<tr>
<td>IGFBP3</td>
<td>Homo sapiens insulin-like growth factor binding protein 3 (IGFBP3), transcript variant 1, mRNA [NM_001013398]</td>
<td>-2.40</td>
<td>-1.81</td>
</tr>
<tr>
<td>CENPA</td>
<td>Homo sapiens centromere protein A (CENPA), transcript variant 1, mRNA [NM_001809]</td>
<td>-1.80</td>
<td>-2.04</td>
</tr>
<tr>
<td>TRIM59</td>
<td>Homo sapiens tripartite motif-containing 59 (TRIM59), mRNA [NM_173084]</td>
<td>-1.86</td>
<td>-1.59</td>
</tr>
<tr>
<td>KIF20A</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td>-2.05</td>
<td>-1.53</td>
</tr>
<tr>
<td>MYBL1</td>
<td>Homo sapiens v-myb myeloblastosis viral oncogene homolog (avian)-like 1 (MYBL1), mRNA [NM_001080416]</td>
<td>-1.84</td>
<td>-1.48</td>
</tr>
<tr>
<td>CKAP2</td>
<td>Homo sapiens cytoskeleton associated protein 2 (CKAP2), transcript variant 1, mRNA [NM_018204]</td>
<td>-1.76</td>
<td>-1.44</td>
</tr>
<tr>
<td>LOC338620</td>
<td>Homo sapiens hypothetical protein LOC338620, mRNA (cDNA clone IMAGE:6023208), partial cds. [BC043009]</td>
<td>-2.01</td>
<td>-1.42</td>
</tr>
<tr>
<td>TOP2A</td>
<td>Homo sapiens topoisomerase (DNA) II alpha 170kDa (TOP2A), mRNA [NM_001067]</td>
<td>-2.00</td>
<td>-1.41</td>
</tr>
<tr>
<td>CCND1</td>
<td>Homo sapiens coiled-coil domain containing 80 (CCND80), transcript variant 1, mRNA [NM_199511]</td>
<td>-1.40</td>
<td>-1.41</td>
</tr>
<tr>
<td>BARD1</td>
<td>Homo sapiens BRCA1 associated RING domain 1 (BARD1), mRNA [NM_000465]</td>
<td>-1.35</td>
<td>-1.55</td>
</tr>
<tr>
<td>CCNB1</td>
<td>Homo sapiens cyclin B1 (CCNB1), mRNA [NM_031966]</td>
<td>-1.74</td>
<td>-1.33</td>
</tr>
<tr>
<td>G0S2</td>
<td>Homo sapiens G0/G1switch 2 (G0S2), mRNA [NM_015714]</td>
<td>-1.33</td>
<td>-1.56</td>
</tr>
<tr>
<td>NFE2L3</td>
<td>Homo sapiens nuclear factor (erythroid-derived 2)-like 3 (NFE2L3), mRNA [NM_004289]</td>
<td>-1.99</td>
<td>-1.32</td>
</tr>
<tr>
<td>ZNF185</td>
<td>Homo sapiens zinc finger protein 185 (LM domain) (ZNF185), mRNA [NM_007150]</td>
<td>-1.28</td>
<td>-1.77</td>
</tr>
<tr>
<td>ALPK2</td>
<td>Homo sapiens alpha-kinase 2 (ALPK2), mRNA [NM_052947]</td>
<td>-1.58</td>
<td>-1.28</td>
</tr>
<tr>
<td>PABPC3</td>
<td>Homo sapiens poly(A) binding protein, cytoplasmic 3 (PABPC3), mRNA [NM_030979]</td>
<td>-1.71</td>
<td>-1.26</td>
</tr>
<tr>
<td>SLC27A2</td>
<td>Homo sapiens solute carrier family 27 (fatty acid transporter), member 2 (SLC27A2), mRNA [NM_003645]</td>
<td>-1.26</td>
<td>-1.57</td>
</tr>
<tr>
<td>HN1</td>
<td>Homo sapiens hematological and neurological expressed 1 (HN1), transcript variant 3, mRNA [NM_010002033]</td>
<td>-1.25</td>
<td>-1.32</td>
</tr>
<tr>
<td>C15orf23</td>
<td>Homo sapiens chromosome 15 open reading frame 23 (C15orf23), transcript variant 2, mRNA [NM_00142761]</td>
<td>-1.63</td>
<td>-1.24</td>
</tr>
<tr>
<td>CDC20</td>
<td>Homo sapiens cell division cycle 20 homolog (S. cerevisiae) (CDC20), mRNA [NM_001255]</td>
<td>-1.23</td>
<td>-1.42</td>
</tr>
<tr>
<td>EFEMP1</td>
<td>Homo sapiens EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1), transcript variant 1, mRNA [NM_004105]</td>
<td>-1.78</td>
<td>-1.22</td>
</tr>
<tr>
<td>RACGAP1</td>
<td>Homo sapiens Rac GTPase activating protein 1 (RACGAP1), transcript variant 1, mRNA [NM_013277]</td>
<td>-1.56</td>
<td>-1.22</td>
</tr>
<tr>
<td>KIF23</td>
<td>Homo sapiens kinesin family member 23 (KIF23), transcript variant 1, mRNA [NM_138555]</td>
<td>-1.56</td>
<td>-1.21</td>
</tr>
<tr>
<td>TUBA3D</td>
<td>Homo sapiens tubulin, alpha 3d (TUBA3D), mRNA [NM_080386]</td>
<td>-1.20</td>
<td>-1.32</td>
</tr>
<tr>
<td>LOC100128974</td>
<td>PREDICTED: Homo sapiens miscre (LOC100128974), miscreRNA [XR_037045]</td>
<td>-1.31</td>
<td>-1.19</td>
</tr>
<tr>
<td>LMNB2</td>
<td>Homo sapiens lamin B2 (LMNB2), mRNA [NM_032737]</td>
<td>-1.71</td>
<td>-1.19</td>
</tr>
<tr>
<td>PLAGL1</td>
<td>Homo sapiens pleiomorphic adenoma gene-like 1 (PLAGL1), transcript variant 2, mRNA [NM_006718]</td>
<td>-1.18</td>
<td>-1.50</td>
</tr>
<tr>
<td>CCNA2</td>
<td>Homo sapiens cyclin A2 (CCNA2), mRNA [NM_001237]</td>
<td>-1.39</td>
<td>-1.18</td>
</tr>
<tr>
<td>PRSS23</td>
<td>Homo sapiens protease, serine, 23 (PRSS23), mRNA [NM_007173]</td>
<td>-1.80</td>
<td>-1.17</td>
</tr>
<tr>
<td>TPX2</td>
<td>Homo sapiens TPX2, microtubule-associated, homolog (Xenopus laevis) (TPX2), mRNA [NM_012112]</td>
<td>-1.25</td>
<td>-1.17</td>
</tr>
<tr>
<td>PIF1</td>
<td>Homo sapiens PIF1 5′-to-3′ DNA helicase homolog (S. cerevisiae) (PIF1), mRNA [NM_025049]</td>
<td>-1.65</td>
<td>-1.16</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>NM/Accession Number</td>
<td>Log2FoldChange</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CDC2</td>
<td>Homo sapiens cell division cycle 2, G1 to S and G2 to M (CDC2), transcript variant 1, mRNA</td>
<td>NM_001786</td>
<td>-1.41</td>
</tr>
<tr>
<td>RRM2</td>
<td>Homo sapiens ribonucleotide reductase M2 polypeptide (RRM2), mRNA</td>
<td>NM_001034</td>
<td>-1.38</td>
</tr>
<tr>
<td>SFRP1</td>
<td>Homo sapiens secreted frizzled-related protein 1 (SFRP1), mRNA</td>
<td>NM_003012</td>
<td>-1.14</td>
</tr>
<tr>
<td>TMEM171</td>
<td>Homo sapiens transmembrane protein 171 (TMEM171), mRNA</td>
<td>NM_173490</td>
<td>-1.15</td>
</tr>
<tr>
<td>GPSM2</td>
<td>Homo sapiens G-protein signaling modulator 2 (AG83-like, C. elegans) (GPSM2), mRNA</td>
<td>NM_013296</td>
<td>-1.19</td>
</tr>
<tr>
<td>TRIM14</td>
<td>Homo sapiens tripartite motif-containing 14 (TRIM14), transcript variant 1, mRNA</td>
<td>NM_014788</td>
<td>-1.87</td>
</tr>
<tr>
<td>TRAM1</td>
<td>Homo sapiens translocation associated membrane protein 1 (TRAM1), mRNA</td>
<td>NM_014294</td>
<td>-1.11</td>
</tr>
<tr>
<td>LOC389842</td>
<td>PREDICTED: Homo sapiens similar to RanBP1 (LOC389842), mRNA</td>
<td>XM_372200</td>
<td>-1.44</td>
</tr>
<tr>
<td>TPM1</td>
<td>Homo sapiens tropomyosin 1 (alpha) (TPM1), transcript variant 5, mRNA</td>
<td>NM_000266</td>
<td>-1.09</td>
</tr>
<tr>
<td>HYLS1</td>
<td>Homo sapiens hydrolethalus syndrome 1 (HYLS1), transcript variant 1, mRNA</td>
<td>NM_145014</td>
<td>-1.25</td>
</tr>
<tr>
<td>TMSB4X</td>
<td>Homo sapiens thymosin beta 4, X-linked (TMSB4X), mRNA</td>
<td>NM_021109</td>
<td>-1.13</td>
</tr>
<tr>
<td>IRS1</td>
<td>Homo sapiens insulin receptor substrate 1 (IRS1), mRNA</td>
<td>NM_005544</td>
<td>-2.21</td>
</tr>
<tr>
<td>ABCB10</td>
<td>Homo sapiens ATP-binding cassette, sub-family B (MDR/TAP), member 10 (ABCB10), nuclear gene encoding mitochondrial protein, mRNA</td>
<td>NM_012089</td>
<td>-1.70</td>
</tr>
<tr>
<td>KIF18B</td>
<td>Homo sapiens hypothetical protein LOC146909, mRNA (cDNA clone IMAGE-4418755), partial cds. [BC048263]</td>
<td>-2.07</td>
<td>-1.07</td>
</tr>
<tr>
<td>LOC100132658</td>
<td>PREDICTED: Homo sapiens misc_rna (LOC100132658), miscRNA [XR_038952]</td>
<td>-1.15</td>
<td>-1.07</td>
</tr>
<tr>
<td>FBXO5</td>
<td>Homo sapiens F-box protein 5 (FBXO5), transcript variant 1, mRNA</td>
<td>NM_012177</td>
<td>-1.17</td>
</tr>
<tr>
<td>TGF2</td>
<td>Homo sapiens transforming growth factor, beta 2 (TGF2), transcript variant 1, mRNA</td>
<td>NM_001135599</td>
<td>-2.11</td>
</tr>
<tr>
<td>CDCA3</td>
<td>Homo sapiens cell division cycle associated 3 (CDCA3), mRNA</td>
<td>NM_031299</td>
<td>-1.34</td>
</tr>
<tr>
<td>AREG</td>
<td>Homo sapiens amphiregulin (AREG), mRNA</td>
<td>NM_001657</td>
<td>-1.50</td>
</tr>
<tr>
<td>ZFP36L1</td>
<td>Homo sapiens zinc finger protein 36, C3H type-like 1 (ZFP36L1), mRNA</td>
<td>NM_004926</td>
<td>-1.45</td>
</tr>
<tr>
<td>DLGAP5</td>
<td>Homo sapiens discs, large (Drosophila) homolog-associated protein 5 (DLGAP5), mRNA</td>
<td>NM_014750</td>
<td>-1.34</td>
</tr>
<tr>
<td>BCAR3</td>
<td>Homo sapiens breast cancer anti-estrogen resistance 3 (BCAR3), mRNA</td>
<td>NM_003567</td>
<td>-1.10</td>
</tr>
</tbody>
</table>
Table S9. Shared downregulated genes by CuO-NPs and released Cu ions, which fall into the categories of “mitosis”, chromosome segregation”, and “cell cycle”.

<table>
<thead>
<tr>
<th>GO category</th>
<th>Gene name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mitosis</td>
<td>CCNA2 Homo sapiens cyclin A2 (CCNA2), mRNA</td>
<td>[NM_001237]</td>
</tr>
<tr>
<td></td>
<td>CCNB1 Homo sapiens cyclin B1 (CCNB1), mRNA</td>
<td>[NM_031966]</td>
</tr>
<tr>
<td></td>
<td>CDC2 Homo sapiens cell division cycle 2, G1 to</td>
<td>mRNA [NM_001786]</td>
</tr>
<tr>
<td></td>
<td>G2 and G2 to M (CDC2), transcript variant 1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mRNA [NM_001786]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPSM2 Homo sapiens G-protein signaling modulator 2</td>
<td>[NM_013296]</td>
</tr>
<tr>
<td></td>
<td>KIF18B Homo sapiens hypothetical protein LOC146909, mRNA</td>
<td>(cDNA clone IMAGE:4418755), partial cds. [BC048263]</td>
</tr>
<tr>
<td>chromosome segregation</td>
<td>KIF18B Homo sapiens hypothetical protein LOC146909, mRNA</td>
<td>(cDNA clone IMAGE:4418755), partial cds. [BC048263]</td>
</tr>
<tr>
<td></td>
<td>KIF20A Homo sapiens kinesin family member 20A (KIF20A), mRNA</td>
<td>[NM_005733]</td>
</tr>
<tr>
<td></td>
<td>KIF23 Homo sapiens kinesin family member 20A (KIF20A), mRNA</td>
<td>[NM_005733]</td>
</tr>
<tr>
<td></td>
<td>TOP2A Homo sapiens topoisomerase (DNA) II alpha 170kDa (TOP2A), mRNA</td>
<td>[NM_001067]</td>
</tr>
<tr>
<td></td>
<td>TPX2 Homo sapiens TPX2, microtubule-associated, homolog (Xenopus laevis) (TPX2), mRNA</td>
<td>[NM_012112]</td>
</tr>
<tr>
<td></td>
<td>TUBA3D Homo sapiens tubulin, alpha 3d (TUBA3D), mRNA</td>
<td>[NM_080386]</td>
</tr>
<tr>
<td></td>
<td>ZFP36L1 Homo sapiens zinc finger protein 36, C3H type-like 1 (ZFP36L1), mRNA</td>
<td>[NM_004926]</td>
</tr>
<tr>
<td>cell cycle</td>
<td>CCNA2 Homo sapiens cyclin A2 (CCNA2), mRNA</td>
<td>[NM_001237]</td>
</tr>
<tr>
<td></td>
<td>CCNB1 Homo sapiens cyclin B1 (CCNB1), mRNA</td>
<td>[NM_031966]</td>
</tr>
<tr>
<td></td>
<td>CDC2 Homo sapiens cell division cycle 2, G1 to</td>
<td>mRNA [NM_001786]</td>
</tr>
<tr>
<td></td>
<td>G2 and G2 to M (CDC2), transcript variant 1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mRNA [NM_001786]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC20 Homo sapiens cell division cycle 20 homolog (S. cerevisiae) (CDC20), mRNA</td>
<td>[NM_001255]</td>
</tr>
<tr>
<td></td>
<td>GPSM2 Homo sapiens G-protein signaling modulator 2</td>
<td>(AGS3-like, C. elegans) (GPSM2), mRNA [NM_013296]</td>
</tr>
<tr>
<td></td>
<td>KIF18B Homo sapiens hypothetical protein LOC146909, mRNA</td>
<td>(cDNA clone IMAGE:4418755), partial cds.</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>KIF20A</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td></td>
</tr>
<tr>
<td>KIF23</td>
<td>Homo sapiens kinesin family member 20A (KIF20A), mRNA [NM_005733]</td>
<td></td>
</tr>
<tr>
<td>MYBL1</td>
<td>Homo sapiens v-myb myeloblastosis viral oncogene homolog (avian)-like 1 (MYBL1), mRNA [NM_001080416]</td>
<td></td>
</tr>
<tr>
<td>TOP2A</td>
<td>Homo sapiens topoisomerase (DNA) II alpha 170kDa (TOP2A), mRNA [NM_001067]</td>
<td></td>
</tr>
<tr>
<td>TPX2</td>
<td>Homo sapiens TPX2, microtubule-associated, homolog (Xenopus laevis) (TPX2), mRNA [NM_012112]</td>
<td></td>
</tr>
<tr>
<td>TRIM14</td>
<td>Homo sapiens tripartite motif-containing 14 (TRIM14), transcript variant 1, mRNA [NM_014788]</td>
<td></td>
</tr>
<tr>
<td>TRIM59</td>
<td>Homo sapiens tripartite motif-containing 59 (TRIM59), mRNA [NM_173084]</td>
<td></td>
</tr>
<tr>
<td>TUBA3D</td>
<td>Homo sapiens tubulin, alpha 3d (TUBA3D), mRNA [NM_080386]</td>
<td></td>
</tr>
<tr>
<td>ZFP36L1</td>
<td>Homo sapiens zinc finger protein 36, C3H type-like 1 (ZFP36L1), mRNA [NM_004926]</td>
<td></td>
</tr>
</tbody>
</table>

cell cycle
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Forward sequence (5'→3')</th>
<th>Reverse sequence (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>GADD45A</td>
<td>ctgaacgggtgatggcatctg</td>
<td>ccccttggcactagttctg</td>
</tr>
<tr>
<td>GADD45B</td>
<td>tacggtgtttgcaacactt</td>
<td>ggcagagaccaaaacctt</td>
</tr>
<tr>
<td>GADD45G</td>
<td>gtctgtgactgctggcagta</td>
<td>gctgtgctttccggaactgt</td>
</tr>
<tr>
<td>PCNA</td>
<td>ggttgtggagggcactcaagg</td>
<td>ccaacagagacgtgggacagag</td>
</tr>
<tr>
<td>CDC2</td>
<td>ttgctcctcctgctttggtctc</td>
<td>gggatctctggtcctggctt</td>
</tr>
<tr>
<td>CCNB1</td>
<td>aclgcagcggctaaaatgccta</td>
<td>agggctcggttccgcaactg</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>tcctctacgtctgggaaggggttga</td>
<td>aaggtctggttgacagatttga</td>
</tr>
<tr>
<td>FOS</td>
<td>ccggctactcaacccgcatc</td>
<td>tgggtaggagcaaggtgact</td>
</tr>
<tr>
<td>FOSB</td>
<td>caagaggtacagcgcgccatcc</td>
<td>caacgcctgccttccaaacaat</td>
</tr>
<tr>
<td>ATF3</td>
<td>tgggtcctggagaactatgtcc</td>
<td>aaactgcggttctgagcacaag</td>
</tr>
<tr>
<td>JDP2</td>
<td>cctgctgtccaggtacagagag</td>
<td>tcatggctcttctgcagct</td>
</tr>
<tr>
<td>ATR</td>
<td>gctctgtccagacgggttgctg</td>
<td>accctcagctggtgtccat</td>
</tr>
<tr>
<td>TP53</td>
<td>gtcgaccaacgaatggtgatg</td>
<td>tggcatctggtccccagct</td>
</tr>
<tr>
<td>NR4A1</td>
<td>gcctccatgtgacgctcactc</td>
<td>ctgagggcatgtgctggact</td>
</tr>
<tr>
<td>NR4A2</td>
<td>tgtacacatgtgccctgttgc</td>
<td>gatgtggccatgctgtctc</td>
</tr>
<tr>
<td>NR4A3</td>
<td>agccttcctgtgccaccaaa</td>
<td>aatggatggctgctgtatgct</td>
</tr>
<tr>
<td>AURKA</td>
<td>tcacgggttgctgtgtctctc</td>
<td>aacggtctgtgactgagaga</td>
</tr>
<tr>
<td>AURKB</td>
<td>ccaccatgccttctgcttctc</td>
<td>tgtgaagttgctggttctc</td>
</tr>
<tr>
<td>TPX2</td>
<td>cccctggagcttctcaaat</td>
<td>tgtgctcttctccaaaaaca</td>
</tr>
</tbody>
</table>