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Transmission and re8ection times of phonon packets propagating through superlattices

Seiji Mizuno and Shin-ichiro Tamura
Department of Engineering Science, Hokkaido University, Sapporo 060, Japan

(Received 6 May 1994)

We study theoretically the asymptotic phase times of phonon packets scattered ofF the single-
and double-superlattice structures which act as opaque barriers for phonons analogous to potential
barriers for electrons. The analytical expressions for the transmission and refiection times are
derived. For the systems consisting of semiconductor superlattices of the size of 1000 A we find
that the time advance or delay of the transmitted and re8ected packets range from 10 ps for a
single-superlattice structure to 1 ns at resonances for a double-superlattice structure. These efFects
should be observable in the phonon generation and detection experiments utilizing a picosecond
laser technique.

I. INTRODUCTION

Synthetic semiconductor heterostructures or superlat-
tices are useful not only for the application to electronic
devices of nanometer dimensions but also for the design
of various phonon optics devices such as the phonon mir-

ror, the phonon reflector, the phonon resonator, and so
on. ' Stimulated by the idea for fabricating the latter
devices, we have proposed in. previous papers ' systems
for phonons based on multiple superlattice structures.
The key idea is to utilize the fact that in periodic su-
perlattices Bragg reflections occur for long wavelength
phonons, or the superlattices act as opaque barriers for
phonons within the &equency gaps induced by the peri-
odicity much longer than the lattice spacing. If a peri-
odicity of a superlattice is 30 A. or longer, the lowest fre-
quency gap of phonons is produced in the sub- THz range.
The wavelength of 1-THz phonons is typically 30—50 A
and their mean free path in pure solids is about 1 mm
or longer at low temperatures. Therefore, these high-
&equency phonons propagate ballistically through the
systems with linear dimensions in the nanometer range.

In the present work, we study the dynamical aspect of
phonons propagating in superlattices, which has not been
discussed before. On the analogy with electron systems,
the ballistic phonons propagating through a superlattice
barrier can be regarded as a tunneling if their &equen-
cies within a &equency gap are concerned. In the past
two decades, extensive studies have been conducted to
understand quantum transport properties related to the
electron tunneling through the single and multiple po-
tential barriers. Recently, the time for the completion of
a tunneling through the single- and double-barrier struc-
tures has attracted much attention ' but the situation
remains still controversial.

One of the useful concepts related to the tunneling is
the asymptotic phase times de6ned by the energy deriva-
tives of the scattering phase shifts. The phase times are
believed to be relevant to describe the motion of wave
packets narrow in the momentum space. There are sev-
eral other times such as dwell time, i.e. , the mean time

spent by an incident particle in the barrier region, traver-
sal time, and so on, which are proposed to describe the
temporal aspect of the tunneling. However, there exits
no direct comparison of these theoretical tunneling times
with experiments. This is partly because the characteris-
tic time scale for electrons to tunnel through a potential
barrier of 1 nm thickness is typically of the order of fem-
toseconds, which is shorter than the measurable time by
commonly available methods. The tunneling occurs as a
result of the wave nature of electrons. Thus, it should
also occur for classical waves, such as, light and sound
waves, and their quanta, i.e., photons and phonons.

Recently, we have studied by numerical simulations the
time evolutions of phonon packets incident on the sin-
gle and double-barrier structures for phonons realized by
semiconductor superlattices. In the asymptotic regions
far &om the barriers both the time delay and advance
are observed for the transmitted and reBected packets.
To explain these results of the simulations, we develop
in the present paper, the analytical calculations for the
transmission and reBection times associated with the in-
teraction of phonons with one-dimensional elastic bar-
riers composed of periodic superlattices. The exact and
useful approximate expressions for the phase times which
well describe the delay times for phonon packets narrow
in the wave-vector space are derived. Because phonons
travel at sound velocities much slower than the velocities
of electrons and also, as described above, their mean &ee
path is macroscopic in pure samples at sub- THz &equen-
cies, it is expected that the measurement of the time de-
lay or advance of phonon packets scattered ofF the elastic
barriers is much easier than the case of electrons.

In Sec. II, we formulate the transmission and re8ec-
tion times of phonons propagating through a single-
barrier system. In Sec. III, we examine the phase times
of phonons in a symmetric double-barrier structure, in
which the resonant transmission occurs. For both sys-
tems, numerical examples assuming Gaussian phonon
packets and GaAs/A1As superlattice systems are illus-
trated . Also, the shapes of the transmitted and re8ected
packets are studied for the case of a double-barrier struc-
ture. In Sec. IV, a summary and conclusions are given.

0163-1829/94/50(11)/7708(11)/$06. 00 50 7708 1994 The American Physical Society



50 TRANSMISSION AND REFLECTION TIMES OF PHONON. . .

II. SINGLE-BARRIER SYSTEM FOR PHONONS where

In this section, we consider a phonon packet incident
on a single-barrier system for phonons realized by a pe-
riodic superlattice. The system consists of an alternate
stacking of di8erent elastic layers A and B sandwiched
between other materials X and Y, i.e., X(AB)~Y, where

X is the substrate of the superlattice, Y denotes the sub-
stance where the detection of the transmitted phonon
packet is made, and N is the number of unit periods AB.
The transmission and reHection rates of monochromatic
phonons through the periodic superlattice with a finite
nu~ber of periodicities have been derived analytically in
a previous paper. s In Sec. II A, we brie6y summarize the
main results of Ref. 3 and in Sec. IIB, we define the
asymptotic forms of the time dependent phonon packets
scattered oE the elastic barrier as the superpositions of
the phonon fields of various wave numbers. In Sec. II C,
we introduce the asymptotic phase times for the trans-
mitted and refiected phonon packets which describe the
times needed for the completion of the transmission and
reHection. In Sec. IID, we derive the approximate ex-
pressions for the phase times to clarify the origin of these
time advance and delay. Finally, in Sec. IIE, numerical
examples for the time advance (or delay) are given for a
Gaussian phonon packet.

A. Stationary scattering problem

We study the case where the wave vector of phonons is
perpendicular to the interfaces of the layering structure
and three phonon modes are decoupled from each other,
i.e., we treat only one mode, e.g. , the longitudinal mode.
Also, the continuum model which should be valid for sub-
THz phonons is assumed.

We formulate the transmission or reHection of phonons
in a superlattice as a stationary scattering problem in one
dimension. Suppose the case where the displacement field
of incident phonons in the substrate is represented by the
plane wave e'~* (k = kx) of unit amplitude. The inci-
dent phonons are scattered from the interfaces between
dissimilar layers constituting the superlattice. The dis-
placement fields of the transmitted and refiected phonons
in the substrate and the detector layer are expressed as
t(k)ei™and r(k)e '", respectively Here, t(k). and r(k)
are the transmission and reHection amplitudes, respec-
tively, and we assume that the substrate and the detector
layer consist of the same material, i.e., X = Y.

For a superlattice with N periodicities, the trans-
mission and reHection amplitudes are calculated
analytically. The expressions of t and r for phonons of
&equency a are given by

2~~
—ikND

[(Zx./Zg)o. —(Zg/Zx)(] S(N) + 2iC(N) '

( p+ A ) + sinhN8SN
()@+A~j sinh8 ' (2.3)

N

C(N) =
~ ~

coshN8,
&lv + AI)

(2.4)

cosh8 =— p+A
2

(2 5)

and

ZA
~ = c» kA"A c» kB"B—Z»n kA "»i»B"B

ZB
(2.6)

0 = sinkAdA cos kBdB + cos kAdA sin kBdB)
ZB

(2.7)

ZB( = —sin k~d~ cos kgdg — cos kgdg sin kgd g, (2.8)
ZA

ZB
p = cos k~d~ cos k~d~ — sin kid~ sin k~d~

A
(2.9)

In these equations, dg and d~ are the thicknesses of A
and B layers, respectively; D(= dg + d~) is the unit
period of the superlattice; Z; = p;v; (i = A, B, and X) is
the acoustic impedance given by the product of the mass
density p; and the sound velocity v;; k; = ur/v; is the wave
number. The above expressions (2.3)—(2.5) are applicable
to phonons inside the &equency gap of the superlattice,
i.e. , ~p+ Ai/2 ) 1. The energy transmission rate T and
reHection rate R are defined by (valid for X = Y)

T = gati', R= iri . (2.10)

B. Asymptotic forms of transmitted
and reflected wave packets

We consider the phonon wave packets scattered off the
barrier realized by a periodic superlattice. The time-
dependent wave packet of transmitted phonons can be
constructed as a superposition of the stationary solu-
tions,

@t(x, t) = —P(k)t(k)e'"*dk

2'

y(k)t (k) ik(x —vt)
2' (2.11)

where v = vx is the sound velocity in the detector region
(and also in the substrate) and P(k) is the Fourier trans-
form of the phonon displacement describing the initial
packet g;(x, t = 0),

[(Zx./Z~)o + (Z~/Zx)( —i(A —p)] S(N)
[(Zx/Zx)o. —(Z~/Zx)(] S(N) + 2iC(N) '

(2.1)

(2.2)

g(k) = f de e ' e);(e, o). (2.12)

The phonon packet P(k) in the wave-vector space (k
space) is assumed to have a peak at k = ko. The in-
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tensity of the transmitted wave packet is defined by

I (»t) = I& (»t)I'. (2.13)

Similarly, the reQected wave packet can be constructed
as

d~ & ( dPx=v t- x= —v t-
d~ i.)

(2.22)

respectively. From Eq. (2.21) we see that the peaks of
the transmitted and reHected packets move according to

g„(x,t) = —P(k)r(k)e
dk

2' (2.i4) Thus, the scattering by the barrier causes temporal de-
lays for the transmitted and reHected packets,

and the corresponding intensity is

I„(z,t) = lg„(x, t)l'. (2.i5)
'T

dc'
dP

and 7
kd

(2.23)

The above expressions can be used only asymptotically.
This means that these formulas are valid only if the pack-
ets are well separated &om the barrier region.

C. Asymptotic phase times

g, (z, t) = —P(k) lt(k) le*~"*--'+-l,dk
(2.16)

(2.i7)

In these equations we have introduced the phases n(k)
and P(k) of the transmitted and reflected amplitudes de-
fined by t(k) = lt(k)le' ~"~, r(k) = lr(k)le'~~"l. With the
use of Eqs. (2.1) and (2.2), these phases are written more
explicitly as

Now, we derive the expression of the asymptotic phase
times for phonon packets defined in Sec. II B. The phase
time (the transmission time), i.e., the time that it takes
the peak of a wave packet to appear on the other side of
the barrier, as given by the stationary phase method, was
originally introduced by Wigner for electrons tunneling
through potential barriers. ii is The phase time related
to the reflected packet (the reflection time) is also intro-
duced in a similar way.

We write the transmitted and reHected phonon packets
defined in Eqs. (2.11) and (2.14) as

which can be calculated from Eqs. (2.18) and (2.19).
Here, we have followed the motions of the peaks of the
narrow phonon packets and derived the formal expres-
sions of the phase times, Eq. (2.23). In the electron
tunneling problem, Hauge et al. ' examined in detail
the asymptotic time dependence of the centers of grav-
ity of the transmitted and reHected wave packets and
derived the corrections to Eq. (2.23). Those corrections
are important for the packets with large widths in the
k space. In the present study, however, we consider the
case where the phonon packets have finite but suKciently
small widths in the k space for which Eq. (2.23) holds in
a good approximation.

D. Approximate expressions for the phase times

(yi)N2 kl Ns- —o —C' l .

(2sinh8)
(2.24)

Here, we derive approximate expressions for the phase
times which are useful in understanding the physics in-
volved. (We further assume X = A, for simplicity. )
Suppose that the number of periods of the superlat-
tice is large, so that eN )) e ~e is satisfied, where
8 is the positive solution of Eq. (2.5). In this case,
sinh N8 cosh N8 eNs/2, and the transmission am-
plitude, Eq. (2.1), becomes

and

(A —y,)h S(N) +. 2h+C(N)
h+h S(N) —2(A —IJ)C(N)

' (2.19)

h S(N) cos (kND) —2C(N) sin (kND)
h S(N) sin (kND) + 2C(N) cos (kND)

'

(2.is)

where the upper sign corresponds to the case (p+ A)/2 )
1 and the lower sign to the case (p + A)/2 ( —1, and
I = ND is the thickness of the superlattice. It should
be noted that the factor e '"~ in Eq. (2.24) is a kinemat-
ical one characteristic of the transmitted wave and the
exponentially small factor e Ne is indicative of Bragg
reHection. The phase of the transmission amplitude is
calculated from Eq. (2.24) as

where a=+tan
l

.
l

—kL
(2sinh8)

(2.25)

h~ = (Zx/Z~)o. + (Z~/Zx)(. (2.20)
Similarly, for the reHected phonon packet, we obtain

In the stationary phase approximation, the dominant
contributions to the integrals of (2.16) and (2.17) come
from the regions around k's satisfying

dO! dpi dP d(u

dk dk
+x — t=0, and ——+x+ t =0,

dk dk

(2.21)

o. + ( —i(A —y)
o' —( + 2isinh8'

, fo —(l vr

p = —(u+tan
vA g2sinh8 j 2

(2.26)

(2.27)
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fd~ dB&
Cafp = Ir

i
+

EvA vB)
(2.28)

Inside the frequency gap, H defined by Eq. (2.5) is close
to zero and changes very slowly. Thus, putting H = Ho =
H(~p), we have an approximated expression for Hp (see
Appendix A)

~Z~ —ZBi . rd~
Hp —— sin

/

cup
i

V'ZA ZB E VA )
(2.29)

The first term of Eq. (2.27) arises from the fact that we

have chosen X = A. If we choose X = B, d~&u/v~ is
replaced by —dBu/VB. Thus, this term represents the
eEect of the boundary between the substrate and the
superlattice. The second term which also exists in the
expression of 0; is attributed to the periodic structure.

Now, we focus on the &equency gap due to the 6rst
order Bragg reHection where (p + A)/2 ( —1 holds. We
de6ne the kequency (do at the center of this frequency gap
by the equation cos (k~d~ + kBdB) = —1. Explicitly,

dP d~ QZ~ZB . /d~
~7 + sin 4)p

X +
V~ VB

(2.35)

As we shall show in the next subsection these expres-
sions for the delay times are in good agreement with those
obtained by the numerical calculations using the exact
formulas, Eqs. (2.18) and (2.19). From Eq. (2.35), it is
seen that rj" for the re8ected packet depends only on the
parameters describing the constituent layers and takes a
positive value, that is, the time delay is always found for
the relected phonon packet. For the transmitted packet,
however, the width, of the barrier L = N(d~ + dB) plays
an important role in determining v&. For a large number
of period N Eq. (2.34) becomes negative and the time
advance should be found. However, as N increases the
transmission rate decreases as T e [see Eq. (2.24)],
so the phonon packet cannot be transmitted efFectively
through the system.

(d~ dB'l
t,
" —o = —2sin

(vA vB)

(Z~ —ZB) (dg ) . (dB
cos (dp sin 4)0

ZAZB E VA ) E,VB

=2K
M —(do

(do
(2.30)

where we have assumed that (Z~ —ZB) /Z~ZB is much
smaller than unity. Since sinhH Ho, we get

Next, we consider a frequency cu close to uo. Keep-
ing terms up to the first order in u —~p, we find from
Eqs. (2.7) and (2.8),

E. Numerical example

As a numerical example we consider a superlattice con-
sisting of GaAs (A) and A1As (B) layers. Figure 1 illus-
trates the frequency dependence of the phonon transmis-
sion rate in the (100)AlAs/GaAs superlattice ass»med.
In this example, the unit period is (A1As)Is(GaAs)Is
(D = 85 A.) and the number of periods is N = 12, or
L = 1020 A.. The substrate (X) and detector layer (Y)
are assumed to be GaAs, for simplicity. A large trans-
mission dip in Fig. 1 corresponds to the lowest frequency
gap (phonon stop band) associated with the first-order
Bragg reBection of phonons in the present system. The
frequencies inside this &equency gap are determined kom
the condition (p, + A)/2 ( —1 and their range is 286 to

( —o. l 'Ir
tan I

~
.

~

= (u) —(up).
(2smhH) Hp~p

(2.31)

L
4) —(do

HpCdo V
(2.32)

This equation is valid for u close to up satisfying ur —urp ((
Hptdp/m'. Finally, inserting Eq. (2.31) into Eqs. (2.25) and
(2.27), we have the expressions for the phases ct and P at
4) ~ (do

I
6$
K
C0

~~
~
co 0.5-M

E

td
I-

Single Barrier

dQ 7i 7r
p = ~ + ((u —(up) ——,

vA HO(do 2' (2.33)
200 400

Frequency (6Hz)

and the phase times become

do,

d

QZ~ZB . (d~ l ' (d~ dB l L
sin calo +

) (» vB)

(2.34)

FIG. 1. Frequency dependence of the phonon transmission
rate T = ~t~ in a (100)AlAs/GaAs superlattice. The assumed
unit period is (AlAs) Is(GaAs)Is and the number of periods is
N=12. The parameters used are as follows: The thickness of
one monolayer is 2.83 A in the (100) direction for both GaAs
and AlAs; the mass densities and longitudinal sound velocities
are 5.36 g/cm and 4.71 km/s for GaAs, and 3.76g/cm and
5.65 km/s for AlAs. This Bgure covers the frequency range
vrhere only the transmission dip due to the Srst-order Bragg
re8ection appears.
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Q;(x, 0) = exp
(x —xp)'
4(Ex)2

(2.36)

where xo is the coordinate at the center of the initial
packet. With this form of the packet, the Fourier com-
ponent P(k) is given by

318 GHz. The transmission and re8ection rates within
this &equency gap are enlarged and shown in Fig. 2.

We assume that the initial wave packet defined in the
substrate has the Gaussian form

lg

~ 0.5-
M

0)
C

I
' I '

I
'

I
~ I I

p(k) = exp — + i(ko —k)xxi, (2.37)
2~xr (k —kp)

2

1.0I
CC

C0
O
Q)

Q)
CC

o o.5

0
M

E
fh
C
65
I-

I
I

I I
I

I I I I
I

0 0 2S0 300 310
Frequency (6Hz)

FIG. 2. Phonon transmission rate T = ]t] (dashed line)
snd re8ection rate R = ]r] (broken line) within the low-
est-frequency gap (286—318 GHz) of the single-barrier system
(same as Fig 1). @ is the .Fourier component of the assumed
initial wave packet vP, . Note that P is finite within this fre-
quency gap.

where Ak = I/(Ax). We choose vp = (up/2xr = vkp/2' =
302.0 GHz (the frequency at the minimum of the trans-
mission rate), and Av = vAk/2xr = 10.0 GHz (sound ve-

locity v of the longitudinal mode is 4.71 km/s in GaAs).
Hereafter, we put xo ——0. The corresponding ]P(k)]2 is
shown in Fig. 2, i.e., P(k) is finite within the frequency
window corresponding to the gap we consider.

Numerically integrating Eqs. (2.11) and (2.14), we

have obtained the intensities of the transmitted and re-
Qected wave packets as shown in Fig. 3. If the super-
lattice is absent, the reBected packet does not exist and
the center of the incident, or transmitted packet is lo-
cated at z = vt, which corresponds to the origin of this
6gure. The existence of the barrier introduces both the
transmitted and refiected packets (moving to the right
and left, respectively) as well as their time delay or ad-
vance. From this figure, we can measure the spatial delay
(advance) of the packets ( 500 A ) equivalent to the cor-
responding time delay (advance). Thus, we find the time
advance for the transmitted wave packet and the time
delay for the reflected packet and their magnitudes are
about 10 ps. To examine these features in more detail,
we have plotted in Fig. 4(a) the phases n and P of the
transmission and reBection amplitudes calculated numer-

ically from Eqs. (2.18) and (2.19) (solid lines) and also

-0.2 0
X+Vt (ti m)

0.2

FIG. 3. Asymptotic forms of the transmitted (thin line)
and rellected (bold line) intensities of the phonon wave
packets in the single-barrier system which are compared to
the intensity of the initial packet (dashed line). The dis-
tance between the peaks of the incident and transmitted
(reIIected) packets shows the spatial advance (delay) of the
transmitted (rellected) packet. The incident snd transmit-
ted packets move toward +x direction and the re6ected
packet moves toward —z direction. Thus, x and t satisfy-
ing x —vt = const(x+ vt = const) give an equal phase for the
transmitted (rellected) packet.

1.0

I
I

I I I ~

]
I I 1 I

I
~

tg

0.0
(h
l6

CL

—1.0
I I I ~ I ~ I I ~ I I I I j I

40-
(b)

M 20-

E 0—
Q)
M -20—

CL

—40-
290 300 310

Frequency (GHz}

FIG. 4. (a) Phases versus frequency of the transmitted snd
re8ected amplitudes of phonons scattered ofF the single-barrier
system. The solid lines are calculated from the exact ex-
pressions [Eqs. (2.18) snd (2.19)] snd the dashed lines are
calculated based on the approximate expressions [Eqs. (2.32)
and (2.33)]. (b) Phase times of the transmitted and reflected
phonons in the single-barrier system. The solid lines are cal-
culated froxn the exact formulas [Eqs. (2.23) with Eqs. (2.18)
and (2.19)]. The dashed lines are calculated based on the
approxixnate expressions [Eqs. (2.34) and (2.35)].
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from the approximated formula Eqs. (2.32) and (2.33)
(dashed lines). The corresponding phase times v~ and v"
calculated are shown in Fig. 4(b). As expected the time
delay (advance) for the reiected (transmitted) wave is
about 10 ps for phonons within the frequency gap con-
sidered.

The origin of these time advance and delay is the inter-
ference between the forward and backward propagating
phonons in the barrier region. The interference generally
induces the attenuation of waves due to phase incoher-
ence. However, the wave &ont of the incident packet
is not suffered &om the interference though its later
part is suffered a lot, leading to larger attenuation of
the later part of the transmitted packet and the output
peak shifted towards earlier time as the barrier thick-
ness increases. This causes the apparent time advance of
the transmitted packet. The time delay of the reBected
packet is also expected by the similar qualitative argu-
ment. As shown in Fig. 2 the frequency dependence of
the transmission and reflection rates is very weak over
the lowest phonon stop band, so the transmitted and
reflected phonon packets Qt, and Q„are also essentially
the Gaussian for the initial packet chosen in the present
example. The numerical calculations of the transmitted
and reflected intensities shown in Fig. 3 support this re-
sult.

spectively, and N is the number of the periodicities of
the superlattices acting as the symmetric double barriers
for phonons. A characteristic feature of phonons in this
structure is the presence of the resonance. The transmis-
sion characteristics of monochromatic phonons in such a
system have been studied in Ref. 4 for the case that C
layer consists of the same material as A or B layer but
with different thickness. The phonons in a frequency gap
of the superlattices are resonantly transmitted through
the entire system when the frequency of incident phonons
coincides with one of the discrete frequency levels induced
by the sandwiched layer. This corresponds to the reso-
nant tunneling of electrons in a double-barrier quantum-
well structure 5I.n this section, we focus on the efFect
of the resonance on a phonon packet traveling through
the double-barrier structure. First, we brieBy summarize
the expressions for the transmission and reflection arn-
plitudes given in Ref. 4. Then, the phonon wave packets
scattered ofF the double-barrier structure are examined
and the expressions for the asymptotic phase times as
well as the shapes of the transmitted and. reBected pack-
ets are derived.

A. Transmission and reflection amplitudes

The transmission and reBection amplitudes of phonons
in the double-barrier structure for I = Y are given by

III. DOUBLE-BARRIER SYSTEM FOR
PHONONS

En this section, we consider the transmission and re-
Bection times of phonons through a symmetric double-
barrier system. This system is realized by a bulk ma-
terial sandwiched between periodic superlattices, e.g. ,
X(AB) C(AB) Y, where X, Y, and C denote the sub-
strate, detector, and a layer different from A and B, re- where

(
2i —iic~ L

(1"b —1"c) +~ (d+ a)

l ~ b+ ~" c
l
+ i (d —a)r= '

z b

(3 1)

(3.2)

A —p, & 2N, 1( & —p l 2Ns (& —p)(( —&)
l
1+ lG+e + —

l
Ip h8 lG+e —

2 sin 7,
2 ( 2 smh8) 2 ( 2 sinh8) 4sinh 8

(G~e —G+e ) +
l

1—2NS 2NH ~— +(~ +) ~

2 sjnh8 2 sinh 8)

(G 2NO G 2NO)
l
1+ (— )

2 sinh8 +
q 2 sinh 8)

1/ & —p t 2Ne 1 f A —p l 2Ns (& —p)(( —o')

2 q 2 sinh8) 2 q 2 sinh8) 4 sinh 8
( —0.

G~ = cosy + . sing,
2 scnh8

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

with L = 2ND + D' and p = kc D (D' is the thickness
of C layer). In Eqs. (3.3) to (3.7), the upper sign cor-
responds to the case (p, + A)/2 ) 1 and the lower sign
to (p + A)/2 ( —1. The above equations are valid if the
frequency of phonons is within the spectral gap of the
superlattices. The phases n and P of the transmission
and reBection amplitudes are given by

Q cos kxL —P+ sin kxLtana =
P+ coskxL+ Q sinkxL' (3.8)

P Q —Q+P+
Q+Q- + P+P—' (3.9)

where P~ = d 6 a and Q~ = (Zx/Z~)b 6 (Z~/Zx)c.
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Combining Eqs. (3.1), (3.2), and (2.10), we can calculate
the transmission and re8ection rates of phonons inside
the &equency gap of the double-barrier system.

B. Approxixnate expressions for the phase times

As in the single-barrier system we assume X = A and
suppose the case that the number of periods N of the
superlattices is large and e ~~ )) e ~ is satisfied. In
this case, we can also derive approximate expressions for
both the phases and amplitudes of the transmitted and
refiected packets around the resonant &equencies. Ne-

glecting the terms of the order of e 2 8 in Eqs. (3.3)—
(3.6), we have

Similarly, from Eq. (3.2) we also find for the reHection
amplitude

'r
~reso + &r ) (3.i9)

where +0 [i(~1 pl) —((i + a i)]»upi/(2 sinhi 1)
Ai ——A(uri) and pi ——p(~i). As the number of period-
icities N of the superlattice increases, the width of the
resonant peak in transmission becomes narrow accord-
ing to Eq. (3.16) and the frequency u„, approaches ~i.
Thus, changing the number of periods, we can control
the width of the resonant peak of the system.

From Eq. (3.1S), the phase of the transmission coeffi-
cient becomes

a+ d = Gge'~', (3.io)
, ( ra = —pi —kl —tan I+-

~reso )
(3.2o)

b —c = + Gye + 2+ 2 sing. (3.11)2N8 (+ ~)
2 slnh0 2 sinh 8

1
'kL

f(u)) Gpe2N8 —2if((u) sing' (3.12)

By using Eqs. (3.10) and (3.11) and putting kx. = k, the
transmission amplitude becomes

This result is valid in the vicinity of the resonance but
does not reproduce the phase cr in the form of Eq. (2.2S),
which is expected at a f!Lequency outside the narrow res-
onance. More elaborated calculation gives

r
cr =+tan

! . !
—kl, —tan

l2 sinh8) ~reso

(3.21)

where

f(~) = 1 pi (3.13)

Here, we apply Eq. (3.21) to phonons within the lowest
frequency gap and retain the lower sign in Eq. (3.21).
In this case, &orn Eqs. (2.29) and (2.31), the phase n is
approximated as

and f is the complex conjugate of f Now, we. expand
Gy (ur) e2N8 around a &equency ui satisfying Gy(uri) = 0
and keep only the term linear in ~ —cu1,

QZAZB . f'dA l ' t'dA dB 5
sin! uo ! ! +

!ZA —ZB! lvA ) lvA vB )

Gp (u)) e' G~((ui) e' ' ((u —(ui), (3.14) , ( r
!

——ur —tan '!
~reso )

(3.22)

where G+(ui) = (dGy/du)!~ —~, , Hi ——8(~i) and &ui is a
resonant &equency in the limit of large ¹ Keeping the
terms of the order of e2 ' and 1, we find &om Eq. (3.12)

—i(yi +kL)e )
~reso + &F

(3.is)

where ki ——ui/v, pi ——p(ui), and we have introduced
the width F of the resonant peak,

and the expression of the phase time becomes

do, F
d(u ((u —(u„, )2+ I'2 (3.23)

The first term of Eq. (3.23) is identical to the phase time
in the single-barrier system [Eq. (2.34)] and the second
term has the form characteristic of the resonance.

Similarly, for the reHected phonons, we obtain
1

F 2 slIl pl
2N8r Gr

QJreso = 401 + I cot jt'1.

and the resonant frequency

(3.16)

(3.17)

dA, t' ~ —(l, /' I'
P = sr+ tan '! . !

—tan '!
VA l2 sinh8) ~reso )

(3.24)

In the lowest-frequency gap, this phase is reduced to
In deriving Eq.(3.15), we have used the relation [see (3.7)]

01 1
COS p1 = + Sln )I'1,

2 slnh 01
(3.16)

dA V'ZAZB . f dA~ + sin
IZA —ZB! lv„

where o'i ——cr(ui) and gi —g(ui). Here, we note that
the width I' defined by Eq. (3.16) is positive as shown in
Appendix B.

f dA dBA r
x

! + ! (cu —ceo) —tan ! I
+

lVA VB) ~reso )
(3.2s)



50 TRANSMISSION AND REFLECTION TIMES OF PHONON. . . 7715

From this equation, we have the similar expression for
the phase time for the reflected phonons:

(3.26)

As in the case of the transmission the extra time delay
associated with the resonance is added to 7z in the single
barrier system. Equations (3.23) and (3.26) tell us that
the maximum of the time delay I/I' is obtained at the
resonant frequency u = u„, for both the transmitted
and reSected packets and its magnitude increases as the
width of the resonance becomes smaller, or equivalently
the number of periods of the superlattices becomes larger.
This indicates that the time delay in the double-barrier
structure is yielded as the result of the finite lifetime of
the resonant level (or the time for phonons trapped in
the layer between the barriers) in addition to the delay
induced by the barrier itself.

1.0-
l5
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C
O

co 0.5-
E
Co

6$
I-

00——————

290 292 294

Frequency (6Hz)

[2

tO
~~
C
D

JD
CO

296

FIG. 6. Phonon transmission rate T =
~t~ (solid line) ver-

sus frequency around the lowest resonant &equency (293.2
GHz) in the double-barrier system. The dots are the trans-
mission rate calculated based on the approximate expressions
(3.15). The broken line shows the square of the Fourier com-
ponent P of the initial wave packet, where the frequency at
the peak of P is chosen to up„, .

C. Numerical example

For a numerical example, we assume that two periodic
superlattices, i.e., symmetric double barriers for phonons,
have the same structures as the one used for the single-
barrier case considered in the previous section. The sand-
wiched layer C is assumed to be A1As and its thickness D'
is the same as the size of each superlattice, i.e. , D' = ND
and L = 3ND. Figure 5 shows the frequency dependence
of the phonon transmission rate through the assumed
structure. We Snd two sharp peaks (at about 293 GHz
and 309 GHz) within the lowest-frequency gap of the su-
perlattice. These peaks in transmission stem from the
resonances characteristic of the double-superlattice sys-
tem. The transmission rate around the lowest resonant
peak is enlarged in Fig. 6.

We examine the time evolution of the phonon wave
packet whose average wave number in the initial state
coincides with the resonant frequency. As in the single-
barrier system, we assume the Gaussian form [Eq. (2.37)]
for the incident wave packet. Numerically, vo ——v„,

293.2 GHz, and hv = 5.0 GHz. Figure 6 also shows
the corresponding frequency distribution P(k). In this
example, the width of the chosen packet in the frequency
domain is larger than the intrinsic width of the double-
barrier resonance but both the transmitted and reSected
packets are sizable.

The intensities of the transmitted and reSected packets
calculated with the exact expressions for the transmission
and reSection amplitudes (3.1) and (3.2) are shown in
Fig. 7. It is seen that the asymptotic forms of the trans-
mitted and reSected phonon packets are quite difFerent
from that of the incident packet. One of the most notice-
able features is that the transmitted packet has a long
tail followed by the peak, which decreases exponentially
with a time constant ~ 0.69 ns.

The reSected packet exhibits the similar behavior as

I I I I i I I I I

10-

~'VQ) ) ~

' ' 't' ('Pw%"v'v

(0
C

J3
l5

~ 1-
~~
lO

C)
C

$ p-2

incident

4

Double Barrier

0 200 400
Frequency (6Hz)

0 4 —2 0 2
x+vt (p m)

flected

FIG. 5. Frequency dependence of phonon transmission rate
in the double-barrier system. The superlattices assumed are
the same as in Fig. 1 and an AlAs layer with the same thick-
ness as that of the single superlattice is sandwiched between
the superlat tice barriers.

FIG. 7. Asymptotic forms of the transmitted (thin line)
and reSected (bold line) intensities of the phonon wave pact-
ets in the double-barrier structure calculated from the exact
expressions [Eqs. (2.16) and (2.17) with (3.1) and (3.2)] which
are compared to that of the Gaussian initial packet (dashed
line). Inset shows the logarithmic plot of these intensities.
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larger than the phase times v& and 7.
z for the single-

barrier system.

D. Expressions for the amplitudes
of the transmitted and reflected packets

As we have seen, the asymptotic shapes of the trans-
mitted and re6ected packets scattered ofF the double bar-
riers are quite different from the shape of the incident
packet. Here we consider the shapes of these packets by
analytically calculating Qq and Q„with the transmission
and reflection amplitudes (3.15) and (3.19). Assuming
the Gaussian form Eq. (2.37) with ko ——k„„—:~„„/v
for the initial packet, we can express the transmitted and
refiected packets as

FIG. 8. Phases {a) and phase time (b) versus frequency of
the transmitted phonons scattered ofF the double-barrier sys-
tem. The solid lines are calculated from the exact expressions
[Eqs. (2.23) and (3.8)] and the dots are calculated based on
the approximate expressions [Eqs. {3.22) and (3.23)].

(3.27)

the transmitted packet but it has double peaks. The
same kind of features are also found in the simulations
of the resonant tunneling of electrons. ~ The long tails
associated with the resonant phonons are interpreted as
the result of multiple refiections from double barriers of
phonons trapped within the sandwiched layer. The ap-
pearance of the double peaks for the refiected packet is
explained based on the analytical calculation given in the
next subsection.

Figures 8 and 9 show the phases cr and P and the cor-
responding phase times rz and v2. We find large time de-
lays of the packets around the resonant frequency, which
become about 0.6 0.7 ns in the present example, much

—(A:—k„, ) /(Ak) —iIc(a+vs)gk (3.28)

xerfc(1'/bk+ b kzq/2), (3.29)

where I' = I'/v. The integrals in these equations are
performed analytically and the results are expressed in
terms of the complementary error function as shown in
Appendix C,

- (a)
2.0-

Q)
M
6$

CL
0.0-

N coo- (b)

~ 4OO-E
I-
~~ 200-
l5

o-,

I I I I I I I I

I I I I I I I I

Reflected

290 295
Frequency (GHz)

300

FIG. 9. Phase {a) and phase time {b) versus f'requency of
the re8ected phonons in the double-barrier system. The solid
lines are calculated from the exact expressions [Eqs. (3.26)
and {3.9)] and dots are calculated based on the approximate
expressions [Eqs. {3.25) and {3.26)].

e ") " rfce(1'/Ak —Akz„/2)
Ak

(3.30)

where zt ——z —vt —I and z„= x + vt The intensiti. es
I, = ~@q] and I, = ~Q„]2 calculated &om Eqs. (3.29)
and (3.30) are plotted in Fig. 10. They coincide well
with the numerical results with the exact expressions for
the transmission and reBection amplitudes. Noting that
erfc(x) e /(~ex) for a large x [(C9)],we see that for
large negative xq and positive x„both Q& and vP„decay
exponentially with the same slope given by I' (see the
inset of Fig. 7). This can be physically understood as
follows: the frequency distribution of the incident packet;
covering u, , induces a resonant state of phonons within
the layer sandwiched between double barriers. This state
is not stable due to the small but 6nite width and decays
with the time constant 1 by emitting the phonons of
the same frequency ~, , in the forward and backward
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0.2

- (a) Transmitted

0.1

X)
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Q
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I I

I I I I I

l I I 1 l I l l I Finally, we remark that the measurement of tunnel-
ing times of photons through a one-dimensional photonic
band material similar to the single-barrier system for
phonons considered here has been reported recently. The
measured time advance 1.5 fs for l.l-pm-thick barrier
has been explained in terms of the phase time of the
transmitted light pulse.
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FIG. 10. Comparison of the approximated intensities of (a)
transmitted and (b) reBected packets in the double-barrier
system (dashed lines) with the exact results calculated from
Eqs. (3.1) and (3.2) (solid lines).

directions. Thus the time delay of 1/I' at the resonant
frequency is refiected to the slope of the intensities of
both the transmitted and reflected packets rather than
the positions of their peaks.

The double-peak structure in I„= ~Q„~ arises from
the fact that the reSection rate has a sharp dip at the
resonant frequency. More explicitly, the shape of the re-
fiected packet in the coordinate space should be the initial
Gaussian minus the transmitted packet decreasing expo-
nentially with the decay length 1/I'. The spatial decrease
of the latter function is much slower than the Gaussian
and hence the refiected packet has a zero, giving rise to
the double-peak structure for the refiected phonon inten-
sity.

IV. SUMMARY AND CONCLUDING REMARKS

In the present work, we have theoretically studied the
asymptotic phase times of the phonon packets propa-
gating through the one-dimensional systems with elastic
barriers consisting of semiconductor superlattices. Both
the single- and double-barrier structures are considered.
The analytical expressions for the transmission and re-
flection times for the phonon packets in these systems
are derived. We have found the time advance for the
transmitted wave packet (when the barrier thickness is
appropriately large) and the time delay for the refiected
packet in the single-barrier system. In the double-barrier
system, are find large time delays for both the transmit-
ted and reflected packets mhen the &equency distribution
of the initial packet in the I(,' space involves the resonant
frequency. The numerical values of these time delays in
the double-barrier structure are found to be 0.1 1 ns for
the system of O. l-pm dimension. These magnitudes sug-
gest the possibility for observing of the time delays in the
double-barrier structure by a phonon generation and de-
tection experiment utilizing picosecond laser technique.

APPENDIX A

= cos (kgdA + kgdg) j~—ago

(Z~ —Za)'
sin(k~dg) sin(kgydgy)~~ ~,

2 A B

= —1 — sin (k~d~)~~ ~, . (Al)(Z~ —Z~)
2' ZB

Hence,

ZA ZB
8 = sin(kid~)~

ZA ZB

Zx —Z~ . fdh
sin (dp

V ZAZB EVA )

APPENDIX B

We show I' (width of the resonance) defined by
Eq. (3.16) is positive in the lowest-frequency gap. In
this frequency range, G is relevant in Eq. (3.16) and
G (urq) is calculated as

G ((ui) =—
V~ SlIl

( t,
' —o. i'

sinter,

(Bl)
2 S1Ilh 8)

where we have used the relation G (uq) = 0. At a fre-
quency ~ around the frequency uo defined by Eq. (2.28),
Eq. (2.30) and sinh8 8o hold and we have

( —o
(~ —~o)-

2 slnh 8 HpQJp
(B2)

Here we derive Eq. (2.29). For u = uo [the frequency at
the center of the lowest frequency gap given by Eq.(2.28)j,
Eq. (2.5) together with Eqs. (2.6) and (2.9) becomes

1—cosh8p = —1 ——8p
2
p
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Thus, we find the expression for the width of the resonant
peak,

connecting ( R—, 0) to ( R—, —iK) and (R, —iK) to (R, 0)
vanish in the limit of R —+ oo. Thus, for B ~ oo

1 1 2~s ( D 7r—= —e '
2 + /

) 0.
(vc sin pq Oo~o )

(B3) I. = J—
2 k2

dkk+ i(b+ K)

APPENDIX C

In this appendix we shall calculate the following inte-
gral I which is used for deriving Eqs. (3.29) and (3.30):

OO

I= —a (k —ko) ikzdk
k —ko+ib

—2&ie
0

Here, we note that

2 k2

dkk+ i(b+ K)

for
for

K( —6
K ) —6. (C4)

z' 1= exp ikox — . e '~" ' )'dk,
4a2 0 +ib

X2:—exp ikox — J,4a2 (Cl)
where

—a k

( )e (5+K) f ( ~b+K~)
JbyKJ

(C5)

where a, b ) 0, K = z/(2a~) and

OO

J= (k —'K)
k+ib

OO

erfc(z) —= e ' dt
'Ir x

(C2)
is the complementary error function. Hence,

(C6)

The integral J is calculated by considering the contour
integral in the complex k plane

2 k2

I = . dk,
~ k+ i(b+ K)

(C3)

where the contour C is the rectangle with four corners
at (R, O), ( R, O), ( R—, —iK), (R—, —iK) and the integral
should be taken in counterclockwise if K ) 0 but clock-
wise if K ( 0. The integrals along two vertical paths

J = —erie + ) erfc[a(b+ K)],

where we have used the relation for x & 0,

erfc(z) = 2 —erfc(~z~).

We also note that for a large positive x

2
e

erfc(z)

(C7)

(CS)

(C9)
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