Intramolecular Conjugate Addition of α,β-Unsaturated Lactones Having an Alkaenenitrile Side Chain: Stereocontrolled Construction of Carbocycles with Quaternary Carbon Atoms

Fumihiko Yoshimura,* Makoto Torizuka, Genki Mori, Keiji Tanino*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Fax +81(11)706-4920; E-mail: fumi@sci.hokudai.ac.jp (F.Y.); kitanino@sci.hokudai.ac.jp (K.T.)

Abstract: An efficient method for constructing carbocycles with all-carbon quaternary stereocenters has been developed on the basis of a stereoselective cyclization reaction of α,β-unsaturated lactones having an alkaenenitrile side chain. Treatment of the substrate with lithium hexamethyldisilazide (LiHMDS) in the presence of triisopropylsilyl chloride (TIPSCl) led to generation of the corresponding α-cyano carbanion species which readily underwent an intramolecular conjugate addition reaction. It was found that the combined use of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and triethylamine is also effective for the cyclization reaction without using a strong base. Interestingly, different stereochemical outcomes were observed in the two cyclization methods.

Key words: carbocycles, cyclization, Michael addition, nitriles, stereoselective synthesis

Development of an efficient method for construction of polysubstituted carbocycles in a stereoselective manner remains a considerable challenge in organic synthesis. In particular, carbocyclization reactions leading to formation of an all-carbon quaternary stereogenic center is very important in total synthesis of various natural products.1

Recently, we reported the asymmetric total synthesis of glycinoeclepin A on the basis of the cyclopentene annulation method for preparing key intermediate 2 (Scheme 1).2 The contiguous all-carbon quaternary stereogenic centers of bicyclic enone 2 were constructed by the highly stereoselective conjugate addition reaction using an α-cyano carbanion species generated from nitrile 1.

Scheme 1 The stereoselective intermolecular conjugate addition reaction of nitrile 1 under basic conditions

The result led us to investigate the intramolecular version of a conjugate addition reaction using an α-cyano carbanion species (Scheme 2).3,4 With a view to inducing selective formation of an α-cyano carbanion, α,β-unsaturated lactone 3 possessing no enolizable proton was designed as the cyclization precursor.

Scheme 2 An intramolecular conjugate addition reaction of an α,β-unsaturated lactone having an alkaenenitrile side chain

On treatment with a base, 3 would afford α-cyano carbation species which may undergo intramolecular conjugate addition reaction through transition state A or B. We envisioned that formation of bicyclic compound 4a through transition state A may be preferred, because another transition state B leading to epimer 4b suffers from the steric repulsion between the two 1,3-diaxial methyl groups. In addition, the use of a cyano group, which is much less sterically demanding than an ester group,5 in substrate 3 would be effective for increasing the energy difference between the transition states A and B.

At first, the cyclization precursor 3 was synthesized from commercially available ethyl tiglate (5) as shown in Scheme 3. Deconjugative α-alkylation of 5 with 3-chloro-1-iodopropane followed by three-step manipulation of the functional groups afforded primary alkyl iodide 7. The nitrile moiety was introduced via a substitution reaction of 7 with the carbanion species generated from propionitrile. Construction of the lactone ring was achieved through conversion of THP ether 8 to the corresponding acrylate 9 followed by ring closing metathesis (RCM) catalyzed by Umicore M2.6
With unsaturated lactone 3 in hand, we investigated the cyclization reaction mediated by an amide base (Table 1). When 3 was treated with potassium hexamethyldisilazide (KHMDS) or sodium hexamethyldisilazide (NaHMDS) in THF, a complex mixture containing small amounts of bicyclic lactones 4a and 4b along with recovery of 3 was obtained (entries 1 and 2). On the other hand, the use of lithium hexamethyldisilazide (LiHMDS) led to a rather better result, and higher conversion of the reaction was observed without formation of any side-products (entry 3). While the combination of LiHMDS and hexamethylphosphoric triamide (HMPA) was found to enhance both yield and diastereomeric ratio of the products (51%, 4a:4b=86:14), the condition also caused a considerable increase in the amount of the side-products (entry 4).

Table 1 Intramolecular conjugate addition reactions of lactone 3 under basic conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>base</th>
<th>additive</th>
<th>yield (%)</th>
<th>4a/4b (%)</th>
<th>recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KHMDS</td>
<td>−</td>
<td>11%</td>
<td>1:99</td>
<td>35%</td>
</tr>
<tr>
<td>2</td>
<td>NaHMDS</td>
<td>−</td>
<td>20%</td>
<td>15:85</td>
<td>25%</td>
</tr>
<tr>
<td>3</td>
<td>LiHMDS</td>
<td>−</td>
<td>29%</td>
<td>50:50</td>
<td>49%</td>
</tr>
<tr>
<td>4</td>
<td>LiHMDS</td>
<td>HMPA</td>
<td>51%</td>
<td>86:14</td>
<td>7%</td>
</tr>
</tbody>
</table>

*a Typical reaction conditions: lactone 3 (0.2 mmol), base (0.3 mmol), THF (2 mL), −78 °C.

These results suggested that the lactone enolate formed by the intramolecular conjugate addition reaction may undergo degradation or an intermolecular addition reaction. In order to exclude these possibilities, the reactions in the presence of a silylating reagent for trapping of the lactone enolate were examined. We were pleased to find that the use of trisopropylsilyl chloride (TIPSCI) gave good result as shown in Scheme 4.

Thus, upon treatment of 3 with LiHMDS (2 eq.) and TIPSCI (1.5 eq.) in the presence of HMPA (5 eq.) at −78 °C, the intramolecular conjugate addition reaction proceeded smoothly to afford the cyclic ketene silyl acetal. Treatment of the reaction mixture with 1 M HCl in one-pot gave a diastereomeric mixture of bicyclic lactones 4a and 4b in 93% isolated yield. Similarly, substrates 10 and 11, possessing a different α-substituent on the nitrile moiety, were transformed into the corresponding bicyclic lactones 12 and 13, respectively.

The steric effect of the α-substituent plays an important role to control the diastereoselectivity in the cyclization reactions (Scheme 4). Thus, increasing the steric hindrance of the α-substituent in the cyclization precursor (H < Me < i-Pr) tends to increase the diastereomeric ratio of the product (72:28 < 90:10 < 92:8). It is noteworthy that these stereochemical outcomes are consistent with that supposed from the transition state models A and B in Scheme 2.

During the course of the studies to find a suitable silylating reagent in the carbocyclization reaction, we realized that a similar transformation can be achieved without using a strong base such as LiHMDS (Scheme 5). Thus, when 3 was treated with TMSOTf (2 eq.) in the presence of Et3N (4 eq.) in 1,2-dichloroethane at 50 °C for 1.5 h, carbocyclization proceeded smoothly to afford 4a and 4b in 84% yield. Interestingly, this new method showed complementary sterochemical outcome on the newly formed quaternary stereogenic center as compared to LiHMDS/TIPSCI system; As a result, 4b was obtained.
as a major isomer in a 67:33 ratio to 4a. The reaction mechanism of this cyclization would require further analysis; mechanistic investigations are currently ongoing in our laboratory.14

\begin{center}
\includegraphics[width=\textwidth]{Scheme_5.png}
\end{center}

Scheme 5 Alternative method for carbocyclization of lactone 3

Having established the efficient carbocyclization procedures, the scope of these reactions was investigated by using several substrates as shown in Scheme 6. While LiHMDS/TIPSCI-mediated cyclization of the precursor 1411 having a \(\gamma \)-lactone moiety afforded the cis-fused cyclohexane derivative 15 in 94\% yield, the diastereomeric ratio of 15 was lower than that of bicyclic lactone 4. The cyclization of 14 by using TMSOTf/Et\(_3\)N system provided 15 in excellent yield with complementary stereochemistry on the newly formed quaternary stereogenic center similar to the case of 4. Formation of a five-membered ring was examined by the reaction of 1611 having a shorter side chain. Although the carbocyclization reaction proceeded smoothly in both procedures to afford 17, poor stereoselectivity was observed in these cases, suggesting that the rigid chair-like six-membered transition state as depicted in Scheme 2 is essential in high stereoselectivity.

It is noteworthy that a base-sensitive substrate could be efficiently cyclized by the combination of TMSOTf and Et\(_3\)N. For example, carbocyclization of coumarin derivative 18, which was readily synthesized from 2,6-dihydroxybenzaldehyde in three steps,11 proceeded smoothly to afford the tricyclic lactones 19 in 76\% yield in a stereoselective manner (86:14). On the other hand, LiHMDS/TIPSCI-mediated cyclization of 18 did not give satisfactory results, where 19 was obtained only in 11\% yield (19a:19b=50:50).

To conclude, an efficient method for constructing carbocycles with all-carbon quaternary stereocenters has been developed on the basis of a stereoselective cyclization reaction of \(\alpha,\beta \)-unsaturated lactones having an alkaneitrile side chain. Treatment of the substrate with LiHMDS in the presence of TIPSCI and HMPA led to generation of the corresponding \(\alpha \)-cyano carbannan species which readily underwent an intramolecular conjugate addition reaction. It was found that the combined use of TMSOTf and Et\(_3\)N is also effective for the cyclization reaction without using a strong base. Interestingly, different stereochemical outcomes were observed in the two cyclization methods. Application of this methodology to natural product synthesis is in progress, and will be reported in due course.

\begin{center}
\includegraphics[width=\textwidth]{Scheme_6.png}
\end{center}

Scheme 6 Carbocyclization of various substrates

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgement

We acknowledge Dr. Eri Fukushi and Mr. Kenji Watanabe (GC-MS & NMR Laboratory, Graduate School of Agriculture, Hokkaido University) for their mass spectral measurements. This work was supported by a Grant-in-Aid for Young Scientists (B) (No. 22710206) and the Global COE Program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and Notes

The configurations of 4a and 4b were unambiguously determined by 1H NMR NOE experiments. See supporting information for details.

(8) The use of sterically demanding silylating reagent is of critical importance in this reaction. For example, the reaction in the presence of less bulky triethylsilyl chloride (TESCl) was accompanied by formation of the α-silyl nitrile through trapping of the α-cyano carbanion before cyclization.

(9) It should be noted that the use of a nitrile group was indispensable for the LiHMDS/TIPSCI-mediated cyclization. For example, when a nitrile group was replaced to an ester group, the reaction did not proceed efficiently; the bicyclic lactone was obtained only in 15% yield along with the recovery of the starting material in 63% yield.

(10) General experimental procedure for carbocyclization by using LiHMDS/TIPSCI system: To a cooled mixture of α,β-unsaturated lactone 3 (32.4 mg, 0.156 mmol), TIPSCI (49.8 μL, 0.235 mmol), and HMPA (136 μL, 0.782 mmol) in THF (1.6 mL) was slowly added a freshly prepared 1.0 M THF solution of LiHMDS (312 μL, 0.312 mmol) at −78 °C. After stirred at this temperature for 7 h, the reaction was quenched with 1M HCl (aq.) (1.6 mL). The mixture was stirred at room temperature for 1.5 h and then diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic layers were washed successively with water and brine, dried over MgSO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc=5:1~1:1) to afford 4a (27.3 mg, 84%) and 4b (2.9 mg, 9%).

(11) Controlled experiments showed that neither TMSOTf nor Et3N alone promoted this carbocyclization.

(12) General experimental procedure for carbocyclization by using TMSOTf/Et3N system: To a mixture of α,β-unsaturated lactone 3 (18.5 mg, 89.0 μmol) and Et3N (50.2 μL, 0.357 mmol) in 1,2-dichloroethane (0.45 mL) was added TMSOTf (32.3 μL, 0.179 mmol) at room temperature. After stirred at 50 °C for 1.5 h, the mixture was cooled to room temperature and a saturated aqueous NaHCO3 solution was added. The layers were separated, and then the aqueous layer was extracted with EtOAc. The combined organic layers were dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc=5:1~1:1) to afford 4a (5.1 mg, 28%) and 4b (10.3 mg, 56%).

(13) When monitoring the reaction by 1H and 13C NMR. In this connection, Denmark and Wilson have recently reported the Lewis base catalyzed intermolecular conjugate addition of silyl ketene imines to α,β-unsaturated carbonyl compounds, see: Denmark, S. E.; Wilson, T. W. *Synlett* 2010, 1723–1728.