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FIRST SYZYGIES OF IRREDUCIBLE
A-HYPERGEOMETRIC QUOTIENTS

MUTSUMI SAITO

Abstract. An A-hypergeometric system is not irreducible, if its
parameter vector is resonant. In this paper, we present a way of
computing a finite system of generators of the first syzygy module
of an irreducible A-hypergeometric quotient. In particular, if the
semigroup generated by A is simplicial and scored, then an explicit
system of generators is given.
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16S32, 14M25 (secondary).
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1. Introduction

Let K be a field of characteristic 0, and let A := (aij) be a d ×
n integer matrix. We assume that Zd is generated by the column
vectors of A as an abelian group. Given a parameter vector β =
t(β1, . . . , βd) ∈ Kd, theA-hypergeometric (orGKZ (after the systematic
study by Gel’fand, Kapranov, and Zelevinskii [1]-[4])) system ML(β)
with parameter vector β is defined as the left D(Kn)-module

(1) ML(β) := ML
A(β) := D(Kn)/D(Kn)IA(∂) +D(Kn)⟨Aθ − β⟩,

where D(Kn) is the nth Weyl algebra

D(Kn) = K[x1, . . . , xn]⟨∂1, . . . , ∂n⟩,
IA(∂) is the toric ideal of K[∂1, . . . , ∂n] defined by A, and D(Kn)⟨Aθ−
β⟩ is the left ideal of D(Kn) generated by

∑n
j=1 aijxj∂j − βi (i =

1, . . . , d).
The A-hypergeometric system ML(β) is not irreducible in general.

Indeed ML(β) is irreducible if and only if the parameter vector β is
nonresonant (see [4] and [12]). In the paper [12], we considered a
category OKn of right D(Kn)-modules appropriate for the study of
A-hypergeometric systems, and we considered irreducible modules in
OKn . Each modules in OKn has a weight decomposition with respect

Date: 16 April 2011.
1



2 MUTSUMI SAITO

to the torus action defined by A. We treat right D(Kn)-modules in this
paper as well. We remark that there exists a one-to-one correspondence
between right D(Kn)-modules and left D(Kn)-modules by the anti-
automorphism ι of D(Kn) defined by

(2) ι(xj) = ∂j, ι(∂j) = xj for all j.

Let β ∈ Kd satisfy Fσ(β) /∈ N for every facet σ of the cone generated
by A, where Fσ is the primitive integral support function of σ. Then

L(β) := D(Kn)/IAD(Kn) +D(Kn) ∩ ⟨Aθ − β⟩D((K×)n)

is irreducible [12, Theorem 6.4], and any irreducible module in OKn can
be described similarly [12, Theorem 6.6], where IA is the toric ideal of
K[x1, . . . , xn] defined by A, and

D((K×)n) = K[x±1
1 , . . . , x±1

n ]⟨∂1, . . . , ∂n⟩.
In this paper, we describe a finite system of generators of the right

ideal (the first syzygy module of L(β))

IAD(Kn) +D(Kn) ∩ ⟨Aθ − β⟩D((K×)n),

apart from that of IA, which can be computed by the commutative
Gröbner basis theory. To this aim, we consider generators of the right
D(Kn)-module

N :=
IAD(Kn) +D(Kn) ∩ ⟨Aθ − β⟩D((K×)n)

IAD(Kn) + ⟨Aθ − β⟩D(Kn)
.

Since the D(Kn)-module N is finitely generated, it is generated by fi-
nite number of weight spaces. In Theorem 4.7, we specify those weights.
This enables us to compute a finite system of generators of N and, in
turn, that of the first syzygy module of the irreducible module L(β).

If the semigroup is simplicial and scored, then those weights are
associated to facets, and we give explicit generators of N (Theorem
7.1).

We note that Hosono et al [5] and [6] considered L(β) (called the
extended GKZ system) for the reflexive case.

2. Rings of differential operators

Let K denote a field of characteristic 0. Let R be a commutative
K-algebra, and let M,N be R-modules. We briefly recall the module
D(M,N) of differential operators from M to N . For details, see [16].
For k ∈ N, the subspaces Dk(M,N) of HomK(M,N) are inductively
defined by

D0(M,N) = HomR(M,N)
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and

Dk+1(M,N) = {P ∈ HomK(M,N) : [f, P ] ∈ Dk(M,N) (∀f ∈ R)},
where [ , ] denotes the commutator. Set D(M,N) :=

∪∞
k=0D

k(M,N),
and D(M) := D(M,M). Then D(M) is a K-algebra, and D(M,N) is
a (D(N), D(M))-bimodule.

The ring D(Kn) := D(K[x1, . . . , xn]) of differential operators on Kn

is the nth Weyl algebra:

D(Kn) = K[x1, . . . , xn]⟨∂1, . . . , ∂n⟩,

where ∂j =
∂

∂xj

.

The ring D((K×)n) := D(K[x±1
1 , . . . , x±1

n ]) of differential operators
on (K×)n is given by

D((K×)n) = K[x±1
1 , . . . , x±1

n ]⟨∂1, . . . , ∂n⟩
=

⊕
u∈Zn xuK[θ1, . . . , θn],

where θj = xj∂j.
Let A := {a1,a2, . . . ,an } be a finite set of column vectors in Zd.

Sometimes we identify A with the matrix (a1,a2, . . . ,an) = (aij). Let
ZA, and Q≥0A denote the abelian group, and the cone generated by
A, respectively. Throughout this paper, we assume that ZA = Zd and
that Q≥0A is strongly convex.

Let XA denote the affine toric variety defined by A, and TA its big
torus. Let NA be the semigroup generated by A. The semigroup alge-
bra K[NA] =

⊕
a∈NA Kta is the ring of regular functions on XA. Then

we have K[NA] ≃ K[x]/IA, where IA is the ideal of the polynomial
ring K[x] := K[x1, . . . , xn] generated by all xu − xv for u,v ∈ Nn

with Au = Av. Here we have used the multi-index notation, e.g.,
xu = xu1

1 xu2
2 · · · xun

n for u = t(u1, u2, . . . , un).
The ring D(TA) := D(K[t±1

1 , . . . , t±1
d ]) of differential operators on TA

is given by

D(TA) = K[t±1
1 , . . . , t±1

d ]⟨∂t1 , . . . , ∂td⟩
=

⊕
a∈Zd taK[s1, . . . , sd],

where si = ti∂ti and ∂ti =
∂

∂ti
.

The ring D(XA) := D(K[NA]) of differential operators on XA is a
subalgebra of D(TA):

D(XA) = {P ∈ D(TA) : P (K[NA]) ⊆ K[NA]}.
Let X = Kn, (K×)n, TA, or XA. For a ∈ Zd, set

D(X)a := {P ∈ D(X) : [si, P ] = aiP (i = 1, . . . , d)},
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where si =
∑n

j=1 aijxj∂j for X = Kn or (K×)n. Then

D(X) =
⊕
a∈Zd

D(X)a

is a Zd-graded algebra.
Recall from [8, Theorem 2.3] that the graded part of D(XA) is de-

scribed by

D(XA)a = taI(Ω(a)) for all a ∈ Zd,

where

Ω(a) := ΩA(a) := NA \ (−a+ NA),
I(Ω(a)) := {f(s) ∈ K[s] : f(c) = 0 for all c ∈ Ω(a)},

K[s] := K[s1, . . . , sd].

We write D(Kn, XA) instead of D(K[x], K[NA]). From [16, 1.3
(e),(f)], we have

(3) D(Kn, XA) = D(Kn)/IAD(Kn).

The algebra D(XA) can be identified with

{P ∈ D(Kn) : PIA ⊆ IAD(Kn)}/IAD(Kn).

(See e.g. [7].) We may thus consider that D(XA) is contained in
D(Kn, XA). For the following proposition, see [11, Proposition 4.1 and
Corollary 4.2].

Proposition 2.1.

D(Kn, XA) =
⊕
a∈Zd

taI(Ω̃(a)),

where

Ω̃(a) := Ω̃A(a) := {u ∈ Nn : Au /∈ −a+ NA},
I(Ω̃(a)) = {f(θ) ∈ K[θ] : f(u) = 0 for all u ∈ Ω̃(a)},

K[θ] := K[θ1, . . . , θn].

In particular, D(Kn, XA)a = taK[θ] for all a ∈ NA.

Recall that a pair (u, σ) with σ ⊆ {1, 2, . . . , n} and u ∈ Nσc
:= {v ∈

Nn | vj = 0 for all j ∈ σ} is called a standard pair of a monomial ideal
M of K[∂1, . . . , ∂n] if the following conditions are satisfied:

(1) for any v ∈ Nσ, the monomial ∂u+v does not belong to M ;
(2) for any l /∈ σ, there exists v ∈ Nσ∪{l} such that ∂u+v belongs to

M .
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Let I(a) denote the ideal of K[∂1, . . . , ∂n] generated by the monomi-
als ∂u with Au ∈ −a + NA. Let S(I(a)) denote the set of standard
pairs of the monomial ideal I(a). Then we obtain the following theorem
from [13, Theorem 3.2.2, Corollary 3.2.3].

Theorem 2.2.

I(Ω̃(a)) = Ĩ(a) = ⟨[θ]u : ∂u ∈ I(a)⟩
=

∩
(u,σ)∈S(I(a))

⟨θi − ui : i /∈ σ⟩,

where

[θ]u :=
n∏

j=1

[θj]uj
:=

n∏
j=1

uj−1∏
k=0

(θj − k).

3. Simple objects in OKn

In this section, we briefly review simple objects in OKn from [12].
Let X = Kn, (K×)n, or TA. In [12], we defined a full subcategory OX

of the category of right D(X)-modules (cf. [9, 11]). A right D(X)-
module M is an object of OX if the support of M is contained in XA,
and M has a weight decomposition M =

⊕
λ∈Kd Mλ, where

Mλ = {x ∈ M : x.f(s) = f(−λ)x for all f ∈ K[s]}.
Recall that the preorder ≼ is defined in [9] (see also [14]):

For α,β ∈ Kd, α ≼ β ⇐⇒ I(Ω(β −α)) ̸⊆ mα,

where mα is the maximal ideal of K[s] at α. An equivalence relation
α ∼ β is defined to be α ≼ β and α ≽ β.

For β ∈ Kd, the right D(Kn)-module

MKn(β) := D(Kn)/(IAD(Kn) + ⟨s− β⟩D(Kn))

is the right D-module counterpart to the A-hypergeometric system
ML

A(β) with parameter vector β (cf. (1) and (2)). Recall that si =∑n
j=1 aijθj, where θj = xj∂j. Clearly MKn(β) ∈ OKn .

Definition 3.1 (Definition 6.2 in [12]). Let β ∈ Kd. In β+ZA, there
exists a unique minimal equivalence class with respect to ≼, which we
denote by βempty. An element belonging to the class is also denoted by
βempty.

Remark 3.2. In [10], we have defined a finite subset Eτ (α) for a face τ
and a parameter vector α ∈ Kd:

Eτ (α) = {λ ∈ K(A ∩ τ)/Z(A ∩ τ) : α− λ ∈ NA+ Z(A ∩ τ)}.
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The class βempty is described as

Eτ (β
empty) =

{
EQ≥0A(β) (τ = Q≥0A)
∅ (τ ̸= Q≥0A).

Theorem 3.3 (Theorem 6.4 in [12]). Let β = βempty ∈ Kd. Then

L(β) := LKn(TA,β)

:= D(Kn)/(IAD(Kn) +D(Kn) ∩ ⟨s− β⟩D((K×)n))

≃
⊕
a∈Zd

t−β+aK[s]/⟨s− β + a⟩ ⊗K[s] I(Ω̃(a))

is a unique simple D(Kn)-submodule of

D((K×)n)/(IAD((K×)n) + ⟨s− β⟩D((K×)n)).

Remark 3.4. Any simple object in OKn is isomorphic to some L(β) or
a similar module associated to a torus constituting the toric variety XA

[12, Theorem 6.6].

Let β = βempty, and let

NKn(TA,β) :=
IAD(Kn) +D(Kn) ∩ ⟨Aθ − β⟩D((K×)n)

(IAD(Kn) + ⟨Aθ − β⟩D(Kn))
.

Here and hereafter we interchangeably use s and Aθ. The D(Kn)-
module NKn(TA,β) is the kernel of the natural surjection

MKn(β) → LKn(TA,β) = L(β).

Our aim of this paper is to find a finite system of generators of the
D(Kn)-module NKn(TA,β). For a different choice of βempty, we have
the following proposition.

Proposition 3.5. Let β = βempty ∼ β′. Then there exists P,Q ∈
D(XA) such that

NKn(TA,β) = PNKn(TA,β
′)

NKn(TA,β
′) = QNKn(TA,β).

Proof. Since β ∼ β′,

I(Ω(β − β′)) ̸⊆ mβ′ , I(Ω(β′ − β)) ̸⊆ mβ.

Take p(s) ∈ I(Ω(β − β′)) \ mβ′ and q(s) ∈ I(Ω(β′ − β)) \ mβ, and

let P := tβ−β′
p(s) and Q := tβ

′−βq(s). Then clearly PNKn(TA,β
′) ⊆

NKn(TA,β) and QNKn(TA,β) ⊆ NKn(TA,β
′).

Moreover, since PQ = p(s+ β′ − β)q(s) /∈ mβ and QP = q(s+ β −
β′)p(s) /∈ mβ′ , PQNKn(TA,β) = NKn(TA,β) and QPNKn(TA,β

′) =
NKn(TA,β

′). Hence the assertion follows. �
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4. Weights of generating relations of L(β)

Let β = βempty ∈ Kd. In this section, we choose a finite set J of
weights of N := NKn(TA,β) such that the weight spaces with weight
in J generate N (Theorem 4.7). This enables us to compute a finite
system of generators of N and, in turn, that of the irreducible module
L(β).

We recall the primitive integral support function of a facet (maximal
proper face) of the cone Q≥0A. Let F denote the set of facets of Q≥0A.
Given a facet σ ∈ F , we denote by Fσ the primitive integral support
function of σ, i.e., Fσ is the uniquely determined linear form on Qd

satisfying

(1) Fσ(Q≥0A) ≥ 0,
(2) Fσ(σ) = 0,
(3) Fσ(Zd) = Z.

Then we know, by [10, Proposition 2.2] and Remark 3.2,

(4) β = βempty ⇔ Fσ(β) /∈ Fσ(NA) for all facets σ ∈ F .

Set

F(β) := {σ ∈ F |Fσ(β) ∈ Z}.
From now on, we fix β ∈ Kd satisfying Fσ(β) < 0 for all σ ∈ F(β).
Then β = βempty by (4). Let N := N(β) := NKn(TA,β). Then, for
a ∈ Zd, by the definition of N , (3), and Proposition 2.1,

N−β−a =
t−a

(
I(Ω̃(−a)) ∩ ⟨Aθ − β − a⟩

)
t−a

(
I(Ω̃(−a))⟨Aθ − β − a⟩

) .

Proposition 4.1 (Lemma 8.2 (1) in [12]). Let a ∈ Zd. If β + a ∼ β,
then N−β−a = {0}.

Choose β̃ ∈ Qd such that F(β̃) = F(β) and Fσ(β̃) = Fσ(β) for all

σ ∈ F(β). (Such β̃ exists by Cramer’s rule.) Set

C(β̃) := (−β̃ −Q≥0A) ∩ Zd.

Proposition 4.2. The right D(Kn)-module N is generated by
⊕

a∈∂C(β̃)N−β−a,

where we put ∂C(β̃) =
∪

σ∈F(β){a ∈ C(β̃) |Fσ(β + a) = 0}.

Proof. Let σ be a facet of the cone Q≥0A. Then

Fσ(β + a)N−β−a = N−β−a(
n∑

j=1

Fσ(aj)xj∂j) ⊆
∑
aj /∈σ

N−β−(a−aj)∂j.
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Hence N is generated by
⊕

a∈C(β̃) N−β−a. By (4) and Proposition 4.1,

N−β−a = 0 if a ∈ C(β̃) \ ∂C(β̃). �

Since a ∈ C(β̃) implies that Fσ(β + a) = Fσ(β̃ + a) ≤ 0 for all

σ ∈ F(β), and that Fσ′(β̃ + a) < 0 for all σ′ /∈ F(β), we see that

∂C(β̃) is decomposed according to the decomposition of Q≥0A:

∂C(β̃) =
⨿
τ

(−β̃ − ◦
τ) ∩ C(β̃),

where τ runs over all proper faces of the cone Q≥0A such that σ ∈ F(β)

for all facets σ ≽ τ , and
◦
τ denotes the relative interior of τ .

Notation 4.3. As in [15], let

NA = Q≥0A ∩ Zd \
∪
i

(bi + N(A ∩ τi)),

and

(5) M := max
σ,i

Fσ(bi) + 1.

We agree M = 0 if NA = Q≥0A ∩ Zd (NA is said to be normal (or
saturated) in this case).

Lemma 4.4. Let τ be a face of Q≥0A. Assume Fσ(a) ≤ −M for every
facet σ ̸≽ τ . Then the following hold.

(1) The support of each minimal generator of the Nn-set Nn∩f−1
A (a+

NA) is contained in τ c := {j |aj /∈ τ}, where fA is the linear
map from Zn to Zd defined by A.

(2)

Nn \ f−1
A (a+ NA) =

∪
σ≽τ

{(u, σ) |Fσ(Au) < Fσ(a)}

∪
∪
τi≽τ

{(u, τi) |Au ∈ a+ bi + Z(A ∩ τi)},

where (u, σ) := u+ Nσ, and

Nσ := {v ∈ Nn | vj = 0 for all aj /∈ σ}.

Proof. It is enough to prove (1) that, if u ∈ Nn and Au /∈ a + NA,
then A(u+ v) /∈ a+ NA for any v ∈ Nτ .

Suppose that Au /∈ a+ NA. Then one of the following two holds:

(1) Fσ(Au) < Fσ(a) for some facet σ ≽ τ .
(2) Au ∈ a+ bi + N(A ∩ τi) for some i.
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In the first case, we clearly have A(u+ v) /∈ a+ NA for any v ∈ Nτ .
Suppose that Au ∈ a + bi + N(A ∩ τi) for some i. Then we prove

τi ≽ τ . For this, we prove σ ≽ τ for all facets σ ≽ τi. Suppose that
σ ≽ τi but σ ̸≽ τ . Then Fσ(Au) = Fσ(a + bi) ≤ −M + Fσ(bi) < 0,
which is a contradiction. We have thus proved τi ≽ τ . Hence we have
A(u + v) /∈ a + NA for any v ∈ Nτ in the second case, too. We also
have proved the second statement of the lemma. �

Lemma 4.5. Let a ∈ Zd, and let τ be a face of Q≥0A. Let β̃ + a
be in the relative interior of −τ , and b ∈ N(A ∩ τ). Assume that
Fσ(a+ b) ≤ −M for all facets σ ̸≽ τ . Then

(1) D(Kn, XA)−a−bx
u = D(Kn, XA)−a for any u ∈ Nτ with Au =

b.
(2) N−β−a−bx

u = N−β−a for any u ∈ Nτ with Au = b.

Proof. By Theorem 2.2 and Lemma 4.4 (1), the minimal generators of

I(Ω̃(−a)) do not have variables θi for ai ∈ τ . Moreover, by Lemma 4.4

(2), I(Ω̃(−a)) = I(Ω̃(−a− b)). Hence the assertions follow. �
Notation 4.6. Let τ be a face of Q≥0A such that all facets containing
τ belong to F(β), and let mτ := [Zd ∩Qτ : Z(A ∩ τ)].

Choose βτ,j ∈ Zd (j = 1, . . . ,mτ ) so that β̃ + βτ,j form a set of

representatives of (Qτ ∩ (β̃+Zd))/Z(A∩ τ), and that Fσ(βτ,j) ≤ −M
for every facet σ with σ ̸≽ τ . Whenmτ = 1, we simply write βτ instead
of βτ,1.

Theorem 4.7. The right D(Kn)-module N is generated by⊕
τ

mτ⊕
j=1

N−β−βτ,j
,

where τ ranges over all faces of Q≥0A such that all facets containing τ
belong to F(β).

Proof. Let β̃+a be in the relative interior of −τ . By Proposition 4.2, it
is enough to prove that N−β−a is generated by

⊕
τ ′≽τ

⊕mτ ′
j=1 N−β−βτ ′,j

.
We prove this by induction on the codimension of τ .

There exists βτ,j such that βτ,j − a ∈ Z(A ∩ τ). Take a′ so that
βτ,j − a′,a− a′ ∈ N(A ∩ τ).

We claim that

(6) β + a ∼ β + a′.

Since a−a′ ∈ Z(A∩τ), we have, by definition, Eτ ′(β+a) = Eτ ′(β+a′)
for τ ′ ≽ τ . For τ ′ ̸≽ τ , there exists a facet σ ≽ τ ′ with σ ̸≽ τ . Since
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β̃ + a ∈ −◦
τ and a− a′ ∈ N(A ∩ τ), we have, for σ ∈ F(β),

Fσ(β + a) = Fσ(β̃ + a) < 0,

Fσ(β + a′) = Fσ(β̃ + a)− Fσ(a− a′) < 0.

For σ /∈ F(β), of course Fσ(β+a), Fσ(β+a′) /∈ N. Hence Eσ(β+a) =
∅ = Eσ(β + a′) by [10, Proposition 2.2 (3)]. Then Eτ ′(β + a) = ∅ =
Eτ ′(β+a′) by [10, Proposition 2.2 (4)]. We have thus proved the claim
(6).

By [14, Lemma 4.1.4] and Theorem 2.2, there exists a b-function
ba−a′(θ) := ba−a′(Aθ) =

∑
u aux

u∂u with ba−a′(β + a) ̸= 0 and Au ∈
a− a′ + NA for au ̸= 0. Then

N−β−a = N−β−aba−a′(β + a) = N−β−aba−a′(θ) ⊆
∑
u

N−β−a+Au∂
u.

Here a−Au ∈ a′−NA. If a−Au /∈ a′−N(A∩τ), then β̃+a−Au is in
the relative interior of a larger face, and hence the induction hypothesis
would do. If a−Au ∈ a′−N(A∩ τ), then βτ,j − (a−Au) ∈ N(A∩ τ),
and by Lemma 4.5 N−β−a+Au is generated by N−β−βτ,j

. �

We may rephrase Theorem 4.7 as follows:

Corollary 4.8. The irreducible module L(β) is described as

D(Kn)/

(
IAD(Kn) + ⟨Aθ − β⟩D(Kn)

+
⊕

τ

⊕mτ

j=1 t
−βτ,j(I(Ω̃(−βτ,j)) ∩ ⟨Aθ − β − βτ,j⟩)D(Kn)

)
.

Example 4.9. Let A =

(
2 3 0 1
0 0 1 1

)
. Then Q≥0A = Q2

≥0 has two

facets: σ12 := Q≥0a1 = Q≥0a2 and σ3 := Q≥0a3; Fσ12(s) = s2 and

Fσ3(s) = s1. We have NA = N2 \
(
1
0

)
, M = 2, and mσ12 = mσ3 =

m{0} = 1. Let β =

(
−1
−1

)
. Note that

s1 = 2θ1 + 3θ2 + θ4, s2 = θ3 + θ4.

Let βσ12
:= −a2 − β =

(
−2
1

)
. Then β + βσ12

=

(
−3
0

)
, and

I(Ω̃(−βσ12
)) = ⟨θ3, θ4⟩.

I(Ω̃(−βσ12
)) ∩ ⟨s1 + 3, s2⟩ ≡ ⟨θ3 + θ4⟩,

where ≡ denotes the equality modulo I(Ω̃(−βσ12
))⟨s1 + 3, s2⟩.

Since −βσ12
= a1 − a3 = a2 − a4,
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(7) t−βσ12 (θ3 + θ4) = x1∂3 + x2∂4.

Let βσ3
:= −2a3 − β =

(
1
−1

)
. Then β + βσ3

=

(
0
−2

)
.

I(Ω̃(−βσ3
)) = ⟨θ1, θ2, θ4⟩.

I(Ω̃(−βσ3
)) ∩ ⟨s1, s2 + 2⟩ ≡ ⟨2θ1 + 3θ2 + θ4⟩.

Since −βσ3
= a4 − a1 = a1 + a3 − a2 = 2a3 − a4,

(8) t−βσ3 (2θ1 + 3θ2 + θ4) = 2x4∂1 + 3x1x3∂2 + x2
3∂4.

Let β{0} := −β. Then

I(Ω̃(−β{0})) = ⟨θ4, θ2θ3, [θ1]2θ3, θ1[θ3]2⟩.

I(Ω̃(−β{0})) ∩ ⟨s1, s2⟩ ≡

⟨ θ2(θ3 + θ4),
[θ1]2(θ3 + θ4), θ1(θ3 − 1)(θ3 + θ4),
[θ3]2(2θ1 + 3θ2 + θ4),
(θ1 − 1)θ3(2θ1 + 3θ2 + θ4),
θ3(2θ1 + 3θ2 + θ4)− 2θ1(θ3 + θ4)
= 3θ2θ3 + (θ3 − 2θ1)θ4

⟩
.

Since −β{0} = −a4 = a1−a2−a3 = a2−2a1−a3 = a4−a1−2a3,

t−β{0}θ2(θ3 + θ4) = x1∂2∂3 + x2∂2∂4,

t−β{0} [θ1]2(θ3 + θ4) = x2∂
2
1∂3 + x2

1∂
2
1∂4,

t−β{0}θ1(θ3 − 1)(θ3 + θ4) = x4∂1∂
2
3 + θ1(θ3 − 1)∂4,

t−β{0} [θ3]2(2θ1 + 3θ2 + θ4)

= 2x4∂1∂
2
3 + 3x1(θ3 − 1)∂2∂3 + [θ3]2∂4,

t−β{0}(θ1 − 1)θ3(2θ1 + 3θ2 + θ4)

= 2x2∂
2
1∂3 + 3x1(θ1 − 1)∂2∂3 + (θ1 − 1)θ3∂4,

t−β{0}(3θ2θ3 + (θ3 − 2θ1)θ4) = 3x1∂2∂3 + (θ3 − 2θ1)∂4.

(9)

Hence N is generated by the operators (7), (8), and (9) by Theorem
4.7.

5. Scored case for a facet

Recall that a semigroup NA is said to be scored if

NA =
∩
σ∈F

{a ∈ ZA : Fσ(a) ∈ Fσ(NA)}.
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(See [14].) Clearly a normal semigroup is scored. Note that, if NA is
scored, then mτ = 1 for all faces τ [11, Lemma 7.11]. In this section,
we assume that NA is scored, and we give an explicit generator of
K[s]-module N−β−βσ

for a facet σ (Theorem 5.3).

Remark 5.1. In the scored case, we can refine some previous statements
without changing proofs.

In Lemma 4.4, the condition Fσ(a) ≤ −M can be replaced by the
condition −Fσ(a) ∈ Fσ(NA). In Lemma 4.5, the condition Fσ(a +
b) ≤ −M can be replaced by the condition −Fσ(a + b) ∈ Fσ(NA).
In Notation 4.6, we take βτ so that −Fσ(βτ ) ∈ Fσ(NA) instead of
Fσ(βτ ) ≤ −M ; Theorem 4.7 is valid for this choice of βτ .

Lemma 5.2. Assume that NA is scored. Let σ ∈ F(β). Then

(1) S(I(−βσ)) = {(u, σ) |u ∈ Nσc
, Fσ(Au) /∈ −Fσ(β) + Fσ(NA)}.

(2) I(Ω̃(−βσ)) =
∩

(u,σ)∈S(I(−βσ))

⟨θi − ui | i /∈ σ⟩.

(3)

N−β−βσ
≡ t−βσ(I(Ω̃(−βσ)) : Fσ(Aθ)) · Fσ(Aθ)

≡ t−βσ

∩
(u,σ)∈S(I(−βσ)),u ̸=0

⟨θi − ui | i /∈ σ⟩ · Fσ(Aθ).

Here Nσc
= {u ∈ Nn |uj = 0 for all aj ∈ σ}. We sometimes write

j ∈ σ instead of aj ∈ σ.

Proof. Recall from Notation 4.6 and Remark 5.1 that we have chosen
βσ so that −Fσ′(βσ) ∈ Fσ′(NA) for all σ′ ̸= σ.

(1) follows from Lemma 4.4 (2), and (2) follows from (1) and Theo-
rem 2.2.

To prove (3), by renumbering if necessary, we assume that a1, . . . ,ad

are linearly independent with a1 /∈ σ and a2, . . . ,ad ∈ σ. Let Fi(s) be
a linear form such that, for j ≤ d, Fi(aj) ̸= 0 if and only if i = j. Take
F1 = Fσ. Then

⟨Aθ − (β + βσ)⟩ = ⟨Fi(Aθ)− Fi(β + βσ) | i = 1, . . . , d⟩.

Note that Fσ(Aθ) = F1(Aθ) ∈ ⟨Aθ−(β+βσ)⟩ since Fσ(β+βσ) = 0 by
definition. Hence ⊇ of the first equality is clear, and ⊇ of the second
equality follows from (2).

Suppose that

(10)
d∑

i=1

fi(Fi(θ)− Fi(β + βσ)) ∈ I(Ω̃(−βσ)).
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Here and hereafter, we sometimes write F (θ) instead of F (Aθ). Since
Fi(θ) contains θi but not θj(j ̸= i, j ≤ d), we may assume that fi ∈
K[θj | j ≤ i or j > d].

Let (u, σ) satisfy u ∈ Nσc
and Fσ(u) /∈ −Fσ(β) + Fσ(NA). Then

(11)
d∑

i=1

fi(u, θσ)(Fi(u, θσ)− Fi(β + βσ)) = 0,

where F (u, θσ) denotes the function obtained from F by replacing θj
by uj for j /∈ σ. By looking at the variables θi (i = d, . . . , 2), we see

fi(u, θσ) = 0 (i = d, . . . , 2). Hence fi ∈ I(Ω̃(−βσ)) for i = d, . . . , 2.
In turn, f1(u, θσ)F1(u, θσ) = 0. (Note that F1(β + βσ) = 0.) Since
F1(u, θσ) = F1(u) = Fσ(Au), we have

f1 ∈
∩

u ∈ Nσc

; u ̸= 0
Fσ(Au) /∈ −Fσ(β) + Fσ(NA)

⟨θi − ui | i /∈ σ⟩,

since, for u ∈ Nσc
, Fσ(Au) ̸= 0 if and only if u ̸= 0. �

Theorem 5.3. Assume that NA is scored. Let σ ∈ F(β). For j /∈ σ,
put

mj := mσ,j = max{uj ∈ N |Fσ(aj)uj /∈ −Fσ(β) + Fσ(NA)}.

Then

N−β−βσ
≡ t−βσ⟨

∏
j /∈σ

mj∏
k=1

(θj − k)⟩ · Fσ(Aθ)

Proof. By Lemma 5.2, it is enough to show

(12)
∩

u ∈ Nσc

, Fσ(Au) ̸= 0
Fσ(Au) /∈ −Fσ(β) + Fσ(NA)

⟨θj −uj | j /∈ σ⟩ = I(Ω̃(−βσ))+ ⟨
∏
j /∈σ

mj∏
k=1

(θj −k)⟩.

We know I(Ω̃(−βσ)) =
∩

u∈Nσc , Fσ(Au)/∈−Fσ(β)+Fσ(NA)

⟨θj − uj | j /∈ σ⟩ by Lemma 5.2.

Since each ideal in (12) is generated by elements in K[θj | j /∈ σ], we
only need to check (12) in K[θj | j /∈ σ]. Then the zero set of each side
of (12) equals the finite set {u ̸= 0 | (u, σ) ∈ S(I(−βσ))}. By localizing
at each zero point, we see that both sides are equal. �

Corollary 5.4. Assume that NA is normal. Let σ ∈ F(β).
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Then

N−β−βσ
≡ t−βσ⟨

∏
j /∈σ

⌊−Fσ(β)−1
Fσ(aj)

⌋∏
k=1

(θj − k)⟩ · Fσ(Aθ)

Proof. In this case, the mj in Theorem 5.3 equals ⌊−Fσ(β)− 1

Fσ(aj)
⌋. �

6. Scored case for a simple face

In this section, we keep to assume that NA is scored. Furthermore
we assume that a fixed face τ of Q≥0A of codimension c satisfies

(13) {σ ∈ F | σ ≽ τ} = {σ ∈ F(β) |σ ≽ τ} = {σ1, σ2, . . . , σc}.
Under these assumptions, we show thatN−β−βτ

is generated byN−β−βσi

(1 ≤ i ≤ c) (Theorem 6.3).
Change the order if necessary, and take a1, · · · ,ad ∈ A so that

ai ∈
c∩

k=1, k ̸=i

σk \ σi (i ≤ c)

ac+1, . . . ,ad ∈ τ is linearly independent.

Put Fi := Fσi
for i ≤ c, and take Fc+1, . . . , Fd ∈ ⟨Aθ⟩ so that for

i, j ≤ d
Fi(aj) ̸= 0 ⇔ i ̸= j.

We prove that N−β−βτ
is generated by N−β−βσi

(1 ≤ i ≤ c). For

simplicity, put

i := I(Ω̃(−βτ )),

a := ⟨Aθ − β − βτ ⟩,

f :=
c∑

i=1

iσi
⟨
∏
j /∈σi

mσi,j∏
k=1

(θj − k) · Fi⟩.

Here, for a facet σ ≽ τ , we put

iσ := ⟨[θ]u |u ∈ Nσ, Fσ′(Au) ∈ Fσ′(βτ ) + Fσ′(NA) (∀σ′ ̸= σ)⟩.
We have, by Theorem 2.2 and Lemma 4.4 (2),

i = ⟨[θ]u |Au ∈ βτ + NA⟩
= ⟨[θ]u |Fi(Au) ∈ −Fi(β) + Fi(NA) (1 ≤ i ≤ c)⟩

and

(14) iσi
=

⟨
[θ]u |

u ∈ Nσi ,
Fk(Au) ∈ Fk(βτ ) + Fk(NA) (∀k ̸= i, k ≤ c)

⟩
,
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since −Fσ(βτ ) ∈ Fσ(NA) for any σ ̸≽ τ .

Lemma 6.1. t−βτ f ⊆
∑c

i=1N−β−βσi
D(Kn).

Proof. Let σ = σi (i = 1, . . . , c), and let u ∈ Nσ satisfy Fσ′(Au) ∈
Fσ′(βτ ) + Fσ′(NA) for all σ′ ̸= σ. Let a := βτ − Au. Since a satisfies
the condition for ‘βσ’ (Notation 4.6 and Remark 5.1),

t−a⟨
∏
j /∈σ

mσ,j∏
k=1

(θj − k) · Fσ⟩ = N−β−a

by Theorem 5.3. Then by the proof of Theorem 4.7

N−β−a ⊆ N−β−βσ
D(Kn).

Hence we have

(15) t−a⟨
∏
j /∈σ

mσ,j∏
k=1

(θj − k) · Fσ⟩ ⊆ N−β−βσ
D(Kn).

Multiplying (15) by ∂u, we have

t−βτ [θ]u
∏
j /∈σ

mσ,j∏
k=1

(θj − k) · Fσ ∈ N−β−βσ
D(Kn).

�
By Lemma 6.1, we only need to prove i ∩ a = f + i · a. To this aim,

we prove that

(16) (i ∩ a)m = (f+ i · a)m
for all maximal ideals m of R := K[θ1, . . . , θn]. In this argument, we
extend the field K into its algebraic closure K. We simply write K
instead of K. For v ∈ Kd, let iv be the localization of i at the maximal
ideal corresponding to v. We have

V(i) := {v ∈ Kd | iv ̸= Rv}

=
c∪

i=1

∪
Fi(Au)/∈−Fi(β)+Fi(NA)

u+Kσi .

Proposition 6.2. i ∩ a = f+ ia.

Proof. If v /∈ V(i) ∩ V(a), then (i ∩ a)v = (ia)v.
Let v ∈ V(i) ∩ V(a), and let θ′j := θj − vj. By the definitions and

Theorem 2.2,

iv = ⟨
∏

vj∈N, vj<uj

θ′j | [θ]u: minimal in i⟩,
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and

fv =
c∑

i=1

⟨
∏

j /∈σi,vj∈N,1≤vj≤mσi,j

θ′j · Fi ·
∏

vj∈N,vj<u′
j

θ′j | [θ]u′ : minimal in iσi
⟩.

Note that iv is a monomial ideal in the variables θ′1, . . . , θ
′
n.

Let

(17)
d∑

i=1

fiFi(θ
′) ∈ iv.

Note that, among θ1, . . . , θd, the variable θi is the unique one appearing
in Fi. Hence we may assume that

f1 ∈ K[θ′1, θ
′
d+1, . . . , θ

′
n], f2 ∈ K[θ′1, θ

′
2, θ

′
d+1, . . . , θ

′
n], . . . , fd ∈ K[θ′1, . . . , θ

′
n].

By looking at the variable θ′d in (17), we see

fdθ
′
d ∈ iv.

If [θ]u is minimal in i, then uc+1 = · · · = ud = 0. Hence, if c < d, then
we have fd ∈ iv, fdFd(θ

′) ∈ (ia)v, and

(18)
d−1∑
i=1

fiFi(θ
′) ∈ iv.

Similarly we have fiFi(θ
′) ∈ (ia)v for c+ 1 ≤ i ≤ d, and

(19)
c∑

i=1

fiFi(θ
′) ∈ iv.

By looking at the variable θ′c in (19), we see fcθ
′
c ∈ iv and

fc ∈ ⟨
∏

vj∈N, vj<uj

θ′j |Fi(Au) ∈ Fi(βτ ) + Fi(NA) (∀i < c)⟩,

since Fi(ac) = 0 for all i < c.
Let u satisfy Fi(Au) ∈ Fi(βτ ) + Fi(NA) for all i < c, and let

h :=
∏

vj∈N, vj<uj

θ′j(= [θ]u up to multiplication by a unit in Rv).

In what follows, we omit to write ‘up to multiplication by a unit in
Rv’. Let j /∈ σc. If uj > mσc,j, then Fc(Au) ∈ Fc(βτ ) + Fc(NA), and
h = [θ]u ∈ iv. Suppose that uj ≤ mσc,j. Then Fc(Au + (mσc,j + 1 −
uj)aj) ∈ Fc(βτ ) + Fc(NA).

Note that for k ≥ 0
h = [θ]u+k1j

unless uj ≤ vj < uj + k.
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Hence, if there exists j /∈ σc such that the condition uj ≤ vj ≤ mσc,j

does not hold, then

h = [θ]u+(mσc,j+1−uj)1j
∈ iv.

Next suppose that uj ≤ vj ≤ mσc,j for all j /∈ σc. Since v ∈ V(a),
we have Fc(Av) = 0. Hence vj = 0 for all j /∈ σc, and in turn uj = 0
for all j /∈ σc, or u ∈ Nσc . By (14), h = [θ]u ∈ (iσc)v. Therefore

hFc ∈ fv

by noting that vj = 0 for all j /∈ σc. In all cases, we have thus proved

hFc ∈ (f+ ia)v.

Hence we have fcFc ∈ (f + i · a)v ⊆ iv, and
∑c−1

i=1 fiFi ∈ iv. Similarly,
we obtain

fiFi ∈ (f+ i · a)v
for i = c − 1, . . . , 1. Hence (i ∩ a)v ⊆ (f + ia)v. The other inclusion is
clear. �
Theorem 6.3. Assume that NA is scored, and that a face τ of Q≥0A
of codimension c satisfies (13). Then N−β−βτ

is generated by N−β−βσi

(1 ≤ i ≤ c).

Proof. This is immediate from Lemma 6.1 and Proposition 6.2. �

Example 6.4. Let A =

1 0 0 1
0 1 0 1
0 0 1 −1

 = (a1,a2,a3,a4), and

β =

−1
−1
0

 = −a1 − a2 = −a3 − a4.

This example is normal but non-simplicial.

F13 := Fσ13 = s2 = θ2 + θ4,

F23 := Fσ23 = s1 = θ1 + θ4,

F14 := Fσ14 = s2 + s3 = θ2 + θ3,

F24 := Fσ24 = s1 + s3 = θ1 + θ3.

Let β+β14 := −a1−a4. Then β14 =
t(−1, 0, 1) = a3−a1 = a2−a4.

By Corollary 5.4, N−β−β14
is generated by

t−β14F14 = t−β14(θ2 + θ3) = x4∂2 + x1∂3.

Each 1-dimensional face satisfies the condition (13).
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We have β0 := β{0} = −β, and

I(Ω̃(−β0)) = ⟨θ2, θ3⟩ ∩ ⟨θ1, θ3⟩ ∩ ⟨θ2, θ4⟩ ∩ ⟨θ1, θ4⟩
= ⟨θ1θ2, θ3θ4⟩.

In particular,

θ1θ2 − θ3θ4 = θ1(θ2 + θ3)− θ3(θ1 + θ4) ∈ I(Ω̃(−β0)) ∩ ⟨Aθ⟩,
and hence

N0 ∋ t−β0(θ1θ2 − θ3θ4) = tβ(θ1θ2 − θ3θ4) = ∂1∂2 − ∂3∂4.

Indeed N0 is generated by

tβθ1θ4(θ2 + θ3) = θ4∂1∂2 + θ1∂3∂4,

tβθ2θ4(θ1 + θ3) = θ4∂1∂2 + θ2∂3∂4,

tβθ1θ3(θ2 + θ4) = θ3∂1∂2 + θ1∂3∂4,

tβθ2θ3(θ1 + θ4) = θ3∂1∂2 + θ2∂3∂4,

tβ(θ1θ2 − θ3θ4) = ∂1∂2 − ∂3∂4.

Hence by Theorems 4.7 and 6.3, N is generated by

t−β14(θ2 + θ3) = x4∂2 + x1∂3,

t−β24(θ1 + θ3) = x4∂1 + x2∂3,

t−β13(θ2 + θ4) = x3∂2 + x1∂4,

t−β23(θ1 + θ4) = x3∂1 + x2∂4,

tβ(θ1θ2 − θ3θ4) = ∂1∂2 − ∂3∂4.

7. Simplicial scored case

Theorem 7.1. Suppose that NA is scored and simplicial. Then N is
generated by N−β−βσ

(σ ∈ F(β)). More explicitly, N is generated by

t−βσ⟨
∏
j /∈σ

mσ,j∏
k=1

(θj − k)⟩ · Fσ(Aθ) (σ ∈ F(β)).

Proof. This is clear from Theorems 4.7, 5.3, and 6.3. �
Corollary 7.2. Suppose that NA is normal and simplicial. Then N is
generated by

t−βσ

∏
j /∈σ

⌊−Fσ(β)−1
Fσ(aj)

⌋∏
k=1

(θj − k) · Fσ(Aθ) (σ ∈ F(β)).

Proof. This is immediate from Theorem 7.1 and Corollary 5.4. �
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Corollary 7.3. Suppose that NA is normal and simplicial. Assume
that Fσ(β) = −1 for all σ ∈ F(β). Then N is generated by

t−βσFσ(Aθ) (σ ∈ F(β)).

Proof. This is immediate from Corollary 7.2. �

Example 7.4. LetA =

(
1 1 · · · 1 1
0 1 · · · n− 1 n

)
= (a0,a1, . . . ,an−1,an).

Then

F0 := Fσ0(s) = s2 =
n∑

i=1

iθi

Fn := Fσn(s) = ns1 − s2 =
n−1∑
i=0

(n− i)θi.

This is normal and simplicial.

Let β =

(
−2
−n

)
= −a0 − an, β0 := βσ0

= −a0 − β = an, βn :=

βσn
= −an − β = a0, β0 := −β.

By Corollary 5.4, N−β−βσ0
is generated by

(20) t−β0

n−1∏
i=1

⌊n−1
i

⌋∏
k=1

(θi − k)F0,

and N−β−βσn
is generated by

(21) t−βn

n−1∏
i=1

⌊n−1
n−i

⌋∏
k=1

(θi − k)Fn.

By Corollary 7.2, N is generated by (20) and (21).

Example 7.5. Let A =


−1 0

Id−1
...

...
−1 0

1 · · · · · · 1 1

 = (a1, . . . ,ad,ad+1),

and β = −ad+1. We have a1 + · · · + ad = dad+1. This example is
normal, homogeneous, simplicial, and reflexive; Fσ(β) = −1 for all
facets σ.
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Let σǐ be the facet not containing ai (1 ≤ i ≤ d). Put Fǐ := Fσǐ
. We

have

Fď = sd − (s1 + · · ·+ sd−1) = dθd + θd+1,

Fǐ = sd − (
d−1∑

j=1,j ̸=i

sj) + (d− 1)si = dθi + θd+1 (i < d).

We have Fσ(β) = −1 for all facets σ, and take βǐ := βσǐ
as follows:

βď =


−1
...
−1
2− d

 , β1̌ =


1
0
...
0

2− d

 , · · · ,β ˇd−1 =


0
...
0
1

2− d

 .

The vectors −β1̌, . . . ,−βď are the roots (e.g. see (2.10) in [6]). Since
mď,d = mď,d+1 = 0 and −βď = (d−1)ad+1−ad = a1+· · ·+ad−1−ad+1,

N−β−βď
= t−βď⟨Fď(θ)⟩ = t−βď⟨dθd + θd+1⟩
= ⟨dxd−1

d+1∂d + x1 · · · xd−1∂d+1⟩.
Let i < d. Since mǐ,i = mǐ,d+1 = 0 and −βǐ = (d − 1)ad+1 − ai =∑d

j=1, j ̸=i aj − ad+1,

N−β−βǐ
= t−βǐ⟨Fǐ(θ)⟩ = t−βǐ⟨dθi + θd+1⟩

= ⟨dxd−1
d+1∂i + (

d∏
j=1, j ̸=i

xj)∂d+1⟩.

Hence the left module counterpart LL(β) to L(β) is described as

LL(β) = D(Kd+1)/D(Kd+1)

⟨ dθi + θd+1 + 1 (i ≤ d)

dxi∂
d−1
d+1 + xd+1

d∏
j=1, j ̸=i

∂j (i ≤ d)

∂1 · · · ∂d − ∂d
d+1

⟩
,

which is the extended hypergeometric system considered in [5] and [6].
The rank of the A-hypergeometric system ML(β) equals the volume d.

Take the weight (0, . . . , 0, 1), and consider a refined monomial order.
Then the exponents of ML(β) are

(−i/d, . . . ,−i/d, i− 1) (i = 1, 2, . . . , d),

and

ϕi = (x1 · · · xd)
− i

dxi−1
d+1

∞∑
n=0

[−i/d]dn
[dn+ i− 1]dn

(
xd
d+1

x1 · · · xd

)n
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(i = 1, 2, . . . , d) form a fundamental basis (see [13, Chapters 2 and 3]
for this argument).

Among them, ϕ1, . . . , ϕd−1 satisfy LL(β), but ϕd does not. Hence the
rank of LL(β) equals d− 1.

Take the weight (1, . . . , 1, 0), and consider a refined monomial order.
Then the unique exponent is (0, . . . , 0,−1), and LL(β) has a funda-
mental basis consisting of log-series starting with

x−1
d+1

(
log

x1 · · · xd

xd
d+1

)i

(i = 0, 1, . . . , d− 2).
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