HOKKAIDO UNIVERSITY

Title	First syzygies of irreducible A-hypergeometric quotients
Author(s)	Saito, Mutsumi
Citation	Journal of Pure and A pplied Algebra, 217(1), 31-44 https://doi.org/10.10161.jpaa.2012.04.010
Issue Date	2013.01
Doc URL	http:/hdll.handle.net/2115/51035
Type	article (author version)
File Information	JPA A 217-1_31-44.pdf

Instructions for use

FIRST SYZYGIES OF IRREDUCIBLE A-HYPERGEOMETRIC QUOTIENTS

MUTSUMI SAITO

Abstract

An A-hypergeometric system is not irreducible, if its parameter vector is resonant. In this paper, we present a way of computing a finite system of generators of the first syzygy module of an irreducible A-hypergeometric quotient. In particular, if the semigroup generated by A is simplicial and scored, then an explicit system of generators is given. Mathematics Subject Classification (2000): 33C70 (primary), 16S32, 14M25 (secondary). Keywords: A-hypergeometric system, irreducible quotient, first syzygy, toric variety

1. Introduction

Let K be a field of characteristic 0 , and let $A:=\left(a_{i j}\right)$ be a $d \times$ n integer matrix. We assume that \mathbb{Z}^{d} is generated by the column vectors of A as an abelian group. Given a parameter vector $\boldsymbol{\beta}=$ ${ }^{t}\left(\beta_{1}, \ldots, \beta_{d}\right) \in K^{d}$, the A-hypergeometric (or GKZ (after the systematic study by Gel'fand, Kapranov, and Zelevinskii [1]-[4])) system $M^{L}(\boldsymbol{\beta})$ with parameter vector $\boldsymbol{\beta}$ is defined as the left $D\left(K^{n}\right)$-module

$$
\begin{equation*}
M^{L}(\boldsymbol{\beta}):=M_{A}^{L}(\boldsymbol{\beta}):=D\left(K^{n}\right) / D\left(K^{n}\right) I_{A}(\partial)+D\left(K^{n}\right)\langle A \theta-\boldsymbol{\beta}\rangle, \tag{1}
\end{equation*}
$$

where $D\left(K^{n}\right)$ is the nth Weyl algebra

$$
D\left(K^{n}\right)=K\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle,
$$

$I_{A}(\partial)$ is the toric ideal of $K\left[\partial_{1}, \ldots, \partial_{n}\right]$ defined by A, and $D\left(K^{n}\right)\langle A \theta-$ $\boldsymbol{\beta}\rangle$ is the left ideal of $D\left(K^{n}\right)$ generated by $\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}-\beta_{i}(i=$ $1, \ldots, d$).

The A-hypergeometric system $M^{L}(\boldsymbol{\beta})$ is not irreducible in general. Indeed $M^{L}(\boldsymbol{\beta})$ is irreducible if and only if the parameter vector $\boldsymbol{\beta}$ is nonresonant (see [4] and [12]). In the paper [12], we considered a category $\mathcal{O}_{K^{n}}$ of right $D\left(K^{n}\right)$-modules appropriate for the study of A-hypergeometric systems, and we considered irreducible modules in $\mathcal{O}_{K^{n}}$. Each modules in $\mathcal{O}_{K^{n}}$ has a weight decomposition with respect
to the torus action defined by A. We treat right $D\left(K^{n}\right)$-modules in this paper as well. We remark that there exists a one-to-one correspondence between right $D\left(K^{n}\right)$-modules and left $D\left(K^{n}\right)$-modules by the antiautomorphism ι of $D\left(K^{n}\right)$ defined by

$$
\begin{equation*}
\iota\left(x_{j}\right)=\partial_{j}, \quad \iota\left(\partial_{j}\right)=x_{j} \quad \text { for all } j . \tag{2}
\end{equation*}
$$

Let $\boldsymbol{\beta} \in K^{d}$ satisfy $F_{\sigma}(\boldsymbol{\beta}) \notin \mathbb{N}$ for every facet σ of the cone generated by A, where F_{σ} is the primitive integral support function of σ. Then

$$
L(\boldsymbol{\beta}):=D\left(K^{n}\right) / I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle A \theta-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)
$$

is irreducible [12, Theorem 6.4], and any irreducible module in $\mathcal{O}_{K^{n}}$ can be described similarly [12, Theorem 6.6], where I_{A} is the toric ideal of $K\left[x_{1}, \ldots, x_{n}\right]$ defined by A, and

$$
D\left(\left(K^{\times}\right)^{n}\right)=K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle .
$$

In this paper, we describe a finite system of generators of the right ideal (the first syzygy module of $L(\boldsymbol{\beta})$)

$$
I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle A \theta-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right),
$$

apart from that of I_{A}, which can be computed by the commutative Gröbner basis theory. To this aim, we consider generators of the right $D\left(K^{n}\right)$-module

$$
N:=\frac{I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle A \theta-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)}{I_{A} D\left(K^{n}\right)+\langle A \theta-\boldsymbol{\beta}\rangle D\left(K^{n}\right)} .
$$

Since the $D\left(K^{n}\right)$-module N is finitely generated, it is generated by finite number of weight spaces. In Theorem 4.7, we specify those weights. This enables us to compute a finite system of generators of N and, in turn, that of the first syzygy module of the irreducible module $L(\boldsymbol{\beta})$.

If the semigroup is simplicial and scored, then those weights are associated to facets, and we give explicit generators of N (Theorem 7.1).

We note that Hosono et al [5] and [6] considered $L(\boldsymbol{\beta})$ (called the extended GKZ system) for the reflexive case.

2. Rings of differential operators

Let K denote a field of characteristic 0 . Let R be a commutative K-algebra, and let M, N be R-modules. We briefly recall the module $D(M, N)$ of differential operators from M to N. For details, see [16]. For $k \in \mathbb{N}$, the subspaces $D^{k}(M, N)$ of $\operatorname{Hom}_{K}(M, N)$ are inductively defined by

$$
D^{0}(M, N)=\operatorname{Hom}_{R}(M, N)
$$

and

$$
D^{k+1}(M, N)=\left\{P \in \operatorname{Hom}_{K}(M, N):[f, P] \in D^{k}(M, N) \quad(\forall f \in R)\right\}
$$

where [,] denotes the commutator. Set $D(M, N):=\bigcup_{k=0}^{\infty} D^{k}(M, N)$, and $D(M):=D(M, M)$. Then $D(M)$ is a K-algebra, and $D(M, N)$ is a $(D(N), D(M))$-bimodule.

The ring $D\left(K^{n}\right):=D\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ of differential operators on K^{n} is the nth Weyl algebra:

$$
D\left(K^{n}\right)=K\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle,
$$

where $\partial_{j}=\frac{\partial}{\partial x_{j}}$.
The ring $D\left(\left(K^{\times}\right)^{n}\right):=D\left(K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\right)$ of differential operators on $\left(K^{\times}\right)^{n}$ is given by

$$
\begin{aligned}
D\left(\left(K^{\times}\right)^{n}\right) & =K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle \\
& =\bigoplus_{u \in \mathbb{Z}^{n}} x^{u} K\left[\theta_{1}, \ldots, \theta_{n}\right],
\end{aligned}
$$

where $\theta_{j}=x_{j} \partial_{j}$.
Let $A:=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\}$ be a finite set of column vectors in \mathbb{Z}^{d}. Sometimes we identify A with the matrix $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)=\left(a_{i j}\right)$. Let $\mathbb{Z} A$, and $\mathbb{Q}_{\geq 0} A$ denote the abelian group, and the cone generated by A, respectively. Throughout this paper, we assume that $\mathbb{Z} A=\mathbb{Z}^{d}$ and that $\mathbb{Q} \geq 0 A$ is strongly convex.

Let X_{A} denote the affine toric variety defined by A, and T_{A} its big torus. Let $\mathbb{N} A$ be the semigroup generated by A. The semigroup algebra $K[\mathbb{N} A]=\bigoplus_{a \in \mathbb{N} A} K t^{a}$ is the ring of regular functions on X_{A}. Then we have $K[\mathbb{N} A] \simeq K[x] / I_{A}$, where I_{A} is the ideal of the polynomial ring $K[x]:=K\left[x_{1}, \ldots, x_{n}\right]$ generated by all $x^{\boldsymbol{u}}-x^{\boldsymbol{v}}$ for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n}$ with $A \boldsymbol{u}=A \boldsymbol{v}$. Here we have used the multi-index notation, e.g., $x^{\boldsymbol{u}}=x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}$ for $\boldsymbol{u}={ }^{t}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$.

The ring $D\left(T_{A}\right):=D\left(K\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\right)$ of differential operators on T_{A} is given by

$$
\begin{aligned}
D\left(T_{A}\right) & =K\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\left\langle\partial_{t_{1}}, \ldots, \partial_{t_{d}}\right\rangle \\
& =\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{a} K\left[s_{1}, \ldots, s_{d}\right],
\end{aligned}
$$

where $s_{i}=t_{i} \partial_{t_{i}}$ and $\partial_{t_{i}}=\frac{\partial}{\partial t_{i}}$.
The ring $D\left(X_{A}\right):=D(K[\mathbb{N} A])$ of differential operators on X_{A} is a subalgebra of $D\left(T_{A}\right)$:

$$
D\left(X_{A}\right)=\left\{P \in D\left(T_{A}\right): P(K[\mathbb{N} A]) \subseteq K[\mathbb{N} A]\right\} .
$$

Let $X=K^{n},\left(K^{\times}\right)^{n}, T_{A}$, or X_{A}. For $\boldsymbol{a} \in \mathbb{Z}^{d}$, set

$$
D(X)_{\boldsymbol{a}}:=\left\{P \in D(X):\left[s_{i}, P\right]=a_{i} P(i=1, \ldots, d)\right\},
$$

where $s_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}$ for $X=K^{n}$ or $\left(K^{\times}\right)^{n}$. Then

$$
D(X)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} D(X)_{\boldsymbol{a}}
$$

is a \mathbb{Z}^{d}-graded algebra.
Recall from [8, Theorem 2.3] that the graded part of $D\left(X_{A}\right)$ is described by

$$
D\left(X_{A}\right)_{\boldsymbol{a}}=t^{a} \mathbb{I}(\Omega(\boldsymbol{a})) \quad \text { for all } \boldsymbol{a} \in \mathbb{Z}^{d},
$$

where

$$
\begin{aligned}
\Omega(\boldsymbol{a}) & :=\Omega_{A}(\boldsymbol{a}):=\mathbb{N} A \backslash(-\boldsymbol{a}+\mathbb{N} A), \\
\mathbb{I}(\Omega(\boldsymbol{a})) & :=\{f(s) \in K[s]: f(\boldsymbol{c})=0 \text { for all } \boldsymbol{c} \in \Omega(\boldsymbol{a})\}, \\
K[s] & :=K\left[s_{1}, \ldots, s_{d}\right] .
\end{aligned}
$$

We write $D\left(K^{n}, X_{A}\right)$ instead of $D(K[x], K[\mathbb{N} A])$. From [16, 1.3 (e),(f)], we have

$$
\begin{equation*}
D\left(K^{n}, X_{A}\right)=D\left(K^{n}\right) / I_{A} D\left(K^{n}\right) \tag{3}
\end{equation*}
$$

The algebra $D\left(X_{A}\right)$ can be identified with

$$
\left\{P \in D\left(K^{n}\right): P I_{A} \subseteq I_{A} D\left(K^{n}\right)\right\} / I_{A} D\left(K^{n}\right)
$$

(See e.g. [7].) We may thus consider that $D\left(X_{A}\right)$ is contained in $D\left(K^{n}, X_{A}\right)$. For the following proposition, see [11, Proposition 4.1 and Corollary 4.2].

Proposition 2.1.

$$
D\left(K^{n}, X_{A}\right)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{a} \mathbb{I}(\widetilde{\Omega}(\boldsymbol{a}))
$$

where

$$
\begin{aligned}
\widetilde{\Omega}(\boldsymbol{a}) & :=\widetilde{\Omega}_{A}(\boldsymbol{a}):=\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \notin-\boldsymbol{a}+\mathbb{N} A\right\}, \\
\mathbb{I}(\widetilde{\Omega}(\boldsymbol{a})) & =\{f(\theta) \in K[\theta]: f(\boldsymbol{u})=0 \text { for all } \boldsymbol{u} \in \widetilde{\Omega}(\boldsymbol{a})\}, \\
K[\theta] & :=K\left[\theta_{1}, \ldots, \theta_{n}\right] .
\end{aligned}
$$

In particular, $D\left(K^{n}, X_{A}\right)_{\boldsymbol{a}}=t^{a} K[\theta]$ for all $\boldsymbol{a} \in \mathbb{N} A$.
Recall that a pair (\boldsymbol{u}, σ) with $\sigma \subseteq\{1,2, \ldots, n\}$ and $\boldsymbol{u} \in \mathbb{N}^{\sigma^{c}}:=\{\boldsymbol{v} \in$ $\mathbb{N}^{n} \mid v_{j}=0$ for all $\left.j \in \sigma\right\}$ is called a standard pair of a monomial ideal M of $K\left[\partial_{1}, \ldots, \partial_{n}\right]$ if the following conditions are satisfied:
(1) for any $\boldsymbol{v} \in \mathbb{N}^{\sigma}$, the monomial $\partial^{\boldsymbol{u + v}}$ does not belong to M;
(2) for any $l \notin \sigma$, there exists $\boldsymbol{v} \in \mathbb{N}^{\sigma \cup\{l\}}$ such that $\partial^{\boldsymbol{u + v}}$ belongs to M.

Let $\mathbb{I}(\boldsymbol{a})$ denote the ideal of $K\left[\partial_{1}, \ldots, \partial_{n}\right]$ generated by the monomials $\partial^{\boldsymbol{u}}$ with $A \boldsymbol{u} \in-\boldsymbol{a}+\mathbb{N} A$. Let $S(\mathbb{I}(\boldsymbol{a}))$ denote the set of standard pairs of the monomial ideal $\mathbb{I}(\boldsymbol{a})$. Then we obtain the following theorem from [13, Theorem 3.2.2, Corollary 3.2.3].

Theorem 2.2.

$$
\begin{aligned}
\mathbb{I}(\widetilde{\Omega}(\boldsymbol{a})) & =\widetilde{\mathbb{I}(\boldsymbol{a})}=\left\langle[\theta]_{\boldsymbol{u}}: \partial^{\boldsymbol{u}} \in \mathbb{I}(\boldsymbol{a})\right\rangle \\
& =\bigcap_{(\boldsymbol{u}, \sigma) \in S(\mathbb{I}(\boldsymbol{a}))}\left\langle\theta_{i}-u_{i}: i \notin \sigma\right\rangle,
\end{aligned}
$$

where

$$
[\theta]_{u}:=\prod_{j=1}^{n}\left[\theta_{j}\right]_{u_{j}}:=\prod_{j=1}^{n} \prod_{k=0}^{u_{j}-1}\left(\theta_{j}-k\right)
$$

3. Simple objects in $\mathcal{O}_{K^{n}}$

In this section, we briefly review simple objects in $\mathcal{O}_{K^{n}}$ from [12]. Let $X=K^{n},\left(K^{\times}\right)^{n}$, or T_{A}. In [12], we defined a full subcategory \mathcal{O}_{X} of the category of right $D(X)$-modules (cf. [9, 11]). A right $D(X)$ module M is an object of \mathcal{O}_{X} if the support of M is contained in X_{A}, and M has a weight decomposition $M=\bigoplus_{\lambda \in K^{d}} M_{\boldsymbol{\lambda}}$, where

$$
M_{\boldsymbol{\lambda}}=\{x \in M: x . f(s)=f(-\boldsymbol{\lambda}) x \quad \text { for all } f \in K[s]\} .
$$

Recall that the preorder \preceq is defined in [9] (see also [14]):

$$
\text { For } \boldsymbol{\alpha}, \boldsymbol{\beta} \in K^{d}, \quad \boldsymbol{\alpha} \preceq \boldsymbol{\beta} \Longleftrightarrow \mathbb{I}(\Omega(\boldsymbol{\beta}-\boldsymbol{\alpha})) \nsubseteq \mathfrak{m}_{\boldsymbol{\alpha}}
$$

where \mathfrak{m}_{α} is the maximal ideal of $K[s]$ at $\boldsymbol{\alpha}$. An equivalence relation $\boldsymbol{\alpha} \sim \boldsymbol{\beta}$ is defined to be $\boldsymbol{\alpha} \preceq \boldsymbol{\beta}$ and $\boldsymbol{\alpha} \succeq \boldsymbol{\beta}$.

For $\boldsymbol{\beta} \in K^{d}$, the right $D\left(K^{n}\right)$-module

$$
M_{K^{n}}(\boldsymbol{\beta}):=D\left(K^{n}\right) /\left(I_{A} D\left(K^{n}\right)+\langle s-\boldsymbol{\beta}\rangle D\left(K^{n}\right)\right)
$$

is the right D-module counterpart to the A-hypergeometric system $M_{A}^{L}(\boldsymbol{\beta})$ with parameter vector $\boldsymbol{\beta}$ (cf. (1) and (2)). Recall that $s_{i}=$ $\sum_{j=1}^{n} a_{i j} \theta_{j}$, where $\theta_{j}=x_{j} \partial_{j}$. Clearly $M_{K^{n}}(\boldsymbol{\beta}) \in \mathcal{O}_{K^{n}}$.

Definition 3.1 (Definition 6.2 in [12]). Let $\boldsymbol{\beta} \in K^{d}$. In $\boldsymbol{\beta}+\mathbb{Z} A$, there exists a unique minimal equivalence class with respect to \preceq, which we denote by $\boldsymbol{\beta}^{\text {empty }}$. An element belonging to the class is also denoted by $\beta^{\text {empty }}$.

Remark 3.2. In [10], we have defined a finite subset $E_{\tau}(\boldsymbol{\alpha})$ for a face τ and a parameter vector $\boldsymbol{\alpha} \in K^{d}$:

$$
E_{\tau}(\boldsymbol{\alpha})=\{\boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau): \boldsymbol{\alpha}-\boldsymbol{\lambda} \in \mathbb{N} A+\mathbb{Z}(A \cap \tau)\} .
$$

The class $\boldsymbol{\beta}^{\text {empty }}$ is described as

$$
E_{\tau}\left(\boldsymbol{\beta}^{\text {empty }}\right)= \begin{cases}E_{\mathbb{Q}_{\geq 0} A}(\boldsymbol{\beta}) & \left(\tau=\mathbb{Q}_{\geq 0} A\right) \\ \emptyset & \left(\tau \neq \mathbb{Q}_{\geq 0} A\right) .\end{cases}
$$

Theorem 3.3 (Theorem 6.4 in [12]). Let $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }} \in K^{d}$. Then

$$
\begin{aligned}
L(\boldsymbol{\beta}) & :=L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) \\
& :=D\left(K^{n}\right) /\left(I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle s-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)\right) \\
& \simeq \bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{-\boldsymbol{\beta}+\boldsymbol{a}} K[s] /\langle s-\boldsymbol{\beta}+\boldsymbol{a}\rangle \otimes_{K[s]} \mathbb{I}(\widetilde{\Omega}(\boldsymbol{a}))
\end{aligned}
$$

is a unique simple $D\left(K^{n}\right)$-submodule of

$$
D\left(\left(K^{\times}\right)^{n}\right) /\left(I_{A} D\left(\left(K^{\times}\right)^{n}\right)+\langle s-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)\right) .
$$

Remark 3.4. Any simple object in $\mathcal{O}_{K^{n}}$ is isomorphic to some $L(\boldsymbol{\beta})$ or a similar module associated to a torus constituting the toric variety X_{A} [12, Theorem 6.6].

Let $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$, and let

$$
N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right):=\frac{I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle A \theta-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)}{\left(I_{A} D\left(K^{n}\right)+\langle A \theta-\boldsymbol{\beta}\rangle D\left(K^{n}\right)\right)} .
$$

Here and hereafter we interchangeably use s and $A \theta$. The $D\left(K^{n}\right)$ module $N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ is the kernel of the natural surjection

$$
M_{K^{n}}(\boldsymbol{\beta}) \rightarrow L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)=L(\boldsymbol{\beta}) .
$$

Our aim of this paper is to find a finite system of generators of the $D\left(K^{n}\right)$-module $N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$. For a different choice of $\boldsymbol{\beta}^{\text {empty }}$, we have the following proposition.

Proposition 3.5. Let $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }} \sim \boldsymbol{\beta}^{\prime}$. Then there exists $P, Q \in$ $D\left(X_{A}\right)$ such that

$$
\begin{aligned}
N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) & =P N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right) \\
N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right) & =Q N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) .
\end{aligned}
$$

Proof. Since $\boldsymbol{\beta} \sim \boldsymbol{\beta}^{\prime}$,

$$
\mathbb{I}\left(\Omega\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime}\right)\right) \nsubseteq \mathfrak{m}_{\boldsymbol{\beta}^{\prime}}, \quad \mathbb{I}\left(\Omega\left(\boldsymbol{\beta}^{\prime}-\boldsymbol{\beta}\right)\right) \nsubseteq \mathfrak{m}_{\boldsymbol{\beta}}
$$

Take $p(s) \in \mathbb{I}\left(\Omega\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime}\right)\right) \backslash \mathfrak{m}_{\boldsymbol{\beta}^{\prime}}$ and $q(s) \in \mathbb{I}\left(\Omega\left(\boldsymbol{\beta}^{\prime}-\boldsymbol{\beta}\right)\right) \backslash \mathfrak{m}_{\boldsymbol{\beta}}$, and let $P:=t^{\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime}} p(s)$ and $Q:=t^{\boldsymbol{\beta}^{\prime}-\boldsymbol{\beta}} q(s)$. Then clearly $P N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right) \subseteq$ $N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ and $Q N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) \subseteq N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right)$.

Moreover, since $P Q=p\left(s+\boldsymbol{\beta}^{\prime}-\boldsymbol{\beta}\right) q(s) \notin \mathfrak{m}_{\boldsymbol{\beta}}$ and $Q P=q(s+\boldsymbol{\beta}-$ $\left.\boldsymbol{\beta}^{\prime}\right) p(s) \notin \mathfrak{m}_{\boldsymbol{\beta}^{\prime}}, P Q N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)=N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ and $Q P N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right)=$ $N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right)$. Hence the assertion follows.

4. Weights of generating relations of $L(\boldsymbol{\beta})$

Let $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }} \in K^{d}$. In this section, we choose a finite set J of weights of $N:=N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ such that the weight spaces with weight in J generate N (Theorem 4.7). This enables us to compute a finite system of generators of N and, in turn, that of the irreducible module $L(\boldsymbol{\beta})$.

We recall the primitive integral support function of a facet (maximal proper face) of the cone $\mathbb{Q}_{\geq 0} A$. Let \mathcal{F} denote the set of facets of $\mathbb{Q}_{\geq 0} A$. Given a facet $\sigma \in \mathcal{F}$, we denote by F_{σ} the primitive integral support function of σ, i.e., F_{σ} is the uniquely determined linear form on \mathbb{Q}^{d} satisfying
(1) $F_{\sigma}\left(\mathbb{Q}_{\geq 0} A\right) \geq 0$,
(2) $F_{\sigma}(\sigma)=0$,
(3) $F_{\sigma}\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.

Then we know, by [10, Proposition 2.2] and Remark 3.2,

$$
\begin{equation*}
\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }} \Leftrightarrow F_{\sigma}(\boldsymbol{\beta}) \notin F_{\sigma}(\mathbb{N} A) \text { for all facets } \sigma \in \mathcal{F} . \tag{4}
\end{equation*}
$$

Set

$$
\mathcal{F}(\boldsymbol{\beta}):=\left\{\sigma \in \mathcal{F} \mid F_{\sigma}(\boldsymbol{\beta}) \in \mathbb{Z}\right\} .
$$

From now on, we fix $\boldsymbol{\beta} \in K^{d}$ satisfying $F_{\sigma}(\boldsymbol{\beta})<0$ for all $\sigma \in \mathcal{F}(\boldsymbol{\beta})$. Then $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$ by (4). Let $N:=N(\boldsymbol{\beta}):=N_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$. Then, for $\boldsymbol{a} \in \mathbb{Z}^{d}$, by the definition of $N,(3)$, and Proposition 2.1,

$$
N_{-\boldsymbol{\beta}-\boldsymbol{a}}=\frac{t^{-\boldsymbol{a}}(\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a})) \cap\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle)}{t^{-\boldsymbol{a}}(\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}))\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle)} .
$$

Proposition 4.1 (Lemma 8.2 (1) in [12]). Let $\boldsymbol{a} \in \mathbb{Z}^{d}$. If $\boldsymbol{\beta}+\boldsymbol{a} \sim \boldsymbol{\beta}$, then $N_{-\beta-a}=\{0\}$.

Choose $\tilde{\boldsymbol{\beta}} \in \mathbb{Q}^{d}$ such that $\mathcal{F}(\tilde{\boldsymbol{\beta}})=\mathcal{F}(\boldsymbol{\beta})$ and $F_{\sigma}(\tilde{\boldsymbol{\beta}})=F_{\sigma}(\boldsymbol{\beta})$ for all $\sigma \in \mathcal{F}(\boldsymbol{\beta})$. (Such $\tilde{\boldsymbol{\beta}}$ exists by Cramer's rule.) Set

$$
C(\tilde{\boldsymbol{\beta}}):=\left(-\tilde{\boldsymbol{\beta}}-\mathbb{Q}_{\geq 0} A\right) \cap \mathbb{Z}^{d} .
$$

Proposition 4.2. The right $D\left(K^{n}\right)$-module N is generated by $\bigoplus_{\boldsymbol{a} \in \partial C(\tilde{\boldsymbol{\beta}})} N_{-\boldsymbol{\beta}-\boldsymbol{a}}$, where we put $\partial C(\tilde{\boldsymbol{\beta}})=\bigcup_{\sigma \in \mathcal{F}(\boldsymbol{\beta})}\left\{\boldsymbol{a} \in C(\tilde{\boldsymbol{\beta}}) \mid F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a})=0\right\}$.
Proof. Let σ be a facet of the cone $\mathbb{Q}_{\geq 0} A$. Then

$$
F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}) N_{-\boldsymbol{\beta}-\boldsymbol{a}}=N_{-\boldsymbol{\beta}-\boldsymbol{a}}\left(\sum_{j=1}^{n} F_{\sigma}\left(\boldsymbol{a}_{j}\right) x_{j} \partial_{j}\right) \subseteq \sum_{\boldsymbol{a}_{j} \notin \sigma} N_{-\boldsymbol{\beta}-\left(\boldsymbol{a}-\boldsymbol{a}_{j}\right)} \partial_{j} .
$$

Hence N is generated by $\bigoplus_{\boldsymbol{a} \in C(\tilde{\boldsymbol{\beta}})} N_{-\boldsymbol{\beta}-\boldsymbol{a}}$. By (4) and Proposition 4.1, $N_{-\boldsymbol{\beta}-\boldsymbol{a}}=0$ if $\boldsymbol{a} \in C(\tilde{\boldsymbol{\beta}}) \backslash \partial C(\tilde{\boldsymbol{\beta}})$.

Since $\boldsymbol{a} \in C(\tilde{\boldsymbol{\beta}})$ implies that $F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a})=F_{\sigma}(\tilde{\boldsymbol{\beta}}+\boldsymbol{a}) \leq 0$ for all $\sigma \in \mathcal{F}(\boldsymbol{\beta})$, and that $F_{\sigma^{\prime}}(\tilde{\boldsymbol{\beta}}+\boldsymbol{a})<0$ for all $\sigma^{\prime} \notin \mathcal{F}(\boldsymbol{\beta})$, we see that $\partial C(\tilde{\boldsymbol{\beta}})$ is decomposed according to the decomposition of $\mathbb{Q} \geq 0$:

$$
\partial C(\tilde{\boldsymbol{\beta}})=\coprod_{\tau}(-\tilde{\boldsymbol{\beta}}-\stackrel{\circ}{\tau}) \cap C(\tilde{\boldsymbol{\beta}}),
$$

where τ runs over all proper faces of the cone $\mathbb{Q} \geq 0 A$ such that $\sigma \in \mathcal{F}(\boldsymbol{\beta})$ for all facets $\sigma \succeq \tau$, and $\stackrel{\circ}{\tau}$ denotes the relative interior of τ.

Notation 4.3. As in [15], let

$$
\mathbb{N} A=\mathbb{Q}_{\geq 0} A \cap \mathbb{Z}^{d} \backslash \bigcup_{i}\left(\boldsymbol{b}_{i}+\mathbb{N}\left(A \cap \tau_{i}\right)\right)
$$

and

$$
\begin{equation*}
M:=\max _{\sigma, i} F_{\sigma}\left(\boldsymbol{b}_{i}\right)+1 . \tag{5}
\end{equation*}
$$

We agree $M=0$ if $\mathbb{N} A=\mathbb{Q}_{\geq 0} A \cap \mathbb{Z}^{d}$ ($\mathbb{N} A$ is said to be normal (or saturated) in this case).

Lemma 4.4. Let τ be a face of $\mathbb{Q} \geq 0$ A. Assume $F_{\sigma}(\boldsymbol{a}) \leq-M$ for every facet $\sigma \nsucceq \tau$. Then the following hold.
(1) The support of each minimal generator of the \mathbb{N}^{n}-set $\mathbb{N}^{n} \cap f_{A}^{-1}$ (a+ $\mathbb{N} A$) is contained in $\tau^{c}:=\left\{j \mid \boldsymbol{a}_{j} \notin \tau\right\}$, where f_{A} is the linear map from \mathbb{Z}^{n} to \mathbb{Z}^{d} defined by A.
(2)

$$
\begin{aligned}
\mathbb{N}^{n} \backslash f_{A}^{-1}(\boldsymbol{a}+\mathbb{N} A)= & \bigcup_{\sigma \succeq \tau}\left\{(\boldsymbol{u}, \sigma) \mid F_{\sigma}(A \boldsymbol{u})<F_{\sigma}(\boldsymbol{a})\right\} \\
& \cup \bigcup_{\tau_{i} \succeq \tau}\left\{\left(\boldsymbol{u}, \tau_{i}\right) \mid A \boldsymbol{u} \in \boldsymbol{a}+\boldsymbol{b}_{i}+\mathbb{Z}\left(A \cap \tau_{i}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \text { where }(\boldsymbol{u}, \sigma):=\boldsymbol{u}+\mathbb{N}^{\sigma} \text {, and } \\
& \qquad \mathbb{N}^{\sigma}:=\left\{\boldsymbol{v} \in \mathbb{N}^{n} \mid v_{j}=0 \text { for all } \boldsymbol{a}_{j} \notin \sigma\right\} .
\end{aligned}
$$

Proof. It is enough to prove (1) that, if $\boldsymbol{u} \in \mathbb{N}^{n}$ and $A \boldsymbol{u} \notin \boldsymbol{a}+\mathbb{N} A$, then $A(\boldsymbol{u}+\boldsymbol{v}) \notin \boldsymbol{a}+\mathbb{N} A$ for any $\boldsymbol{v} \in \mathbb{N}^{\tau}$.

Suppose that $A \boldsymbol{u} \notin \boldsymbol{a}+\mathbb{N} A$. Then one of the following two holds:
(1) $F_{\sigma}(A \boldsymbol{u})<F_{\sigma}(\boldsymbol{a})$ for some facet $\sigma \succeq \tau$.
(2) $A \boldsymbol{u} \in \boldsymbol{a}+\boldsymbol{b}_{i}+\mathbb{N}\left(A \cap \tau_{i}\right)$ for some i.

In the first case, we clearly have $A(\boldsymbol{u}+\boldsymbol{v}) \notin \boldsymbol{a}+\mathbb{N} A$ for any $\boldsymbol{v} \in \mathbb{N}^{\tau}$.
Suppose that $A \boldsymbol{u} \in \boldsymbol{a}+\boldsymbol{b}_{i}+\mathbb{N}\left(A \cap \tau_{i}\right)$ for some i. Then we prove $\tau_{i} \succeq \tau$. For this, we prove $\sigma \succeq \tau$ for all facets $\sigma \succeq \tau_{i}$. Suppose that $\sigma \succeq \tau_{i}$ but $\sigma \nsucceq \tau$. Then $F_{\sigma}(A \boldsymbol{u})=F_{\sigma}\left(\boldsymbol{a}+\boldsymbol{b}_{i}\right) \leq-M+F_{\sigma}\left(\boldsymbol{b}_{i}\right)<0$, which is a contradiction. We have thus proved $\tau_{i} \succeq \tau$. Hence we have $A(\boldsymbol{u}+\boldsymbol{v}) \notin \boldsymbol{a}+\mathbb{N} A$ for any $\boldsymbol{v} \in \mathbb{N}^{\tau}$ in the second case, too. We also have proved the second statement of the lemma.

Lemma 4.5. Let $\boldsymbol{a} \in \mathbb{Z}^{d}$, and let τ be a face of $\mathbb{Q}_{\geq 0} A$. Let $\tilde{\boldsymbol{\beta}}+\boldsymbol{a}$ be in the relative interior of $-\tau$, and $\boldsymbol{b} \in \mathbb{N}(A \cap \tau)$. Assume that $F_{\sigma}(\boldsymbol{a}+\boldsymbol{b}) \leq-M$ for all facets $\sigma \nsucceq \tau$. Then
(1) $D\left(K^{n}, X_{A}\right)_{-\boldsymbol{a}-\boldsymbol{b}} x^{\boldsymbol{u}}=D\left(K^{n}, X_{A}\right)_{-\boldsymbol{a}}$ for any $\boldsymbol{u} \in \mathbb{N}^{\tau}$ with $A \boldsymbol{u}=$ b.
(2) $N_{-\boldsymbol{\beta}-\boldsymbol{a}-\boldsymbol{b}} x^{\boldsymbol{u}}=N_{-\boldsymbol{\beta}-\boldsymbol{a}}$ for any $\boldsymbol{u} \in \mathbb{N}^{\tau}$ with $A \boldsymbol{u}=\boldsymbol{b}$.

Proof. By Theorem 2.2 and Lemma 4.4 (1), the minimal generators of $\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}))$ do not have variables θ_{i} for $\boldsymbol{a}_{i} \in \tau$. Moreover, by Lemma 4.4 (2), $\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}))=\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}-\boldsymbol{b}))$. Hence the assertions follow.

Notation 4.6. Let τ be a face of $\mathbb{Q}_{\geq 0} A$ such that all facets containing τ belong to $\mathcal{F}(\boldsymbol{\beta})$, and let $m_{\tau}:=\left[\mathbb{Z}^{d} \cap \mathbb{Q} \tau: \mathbb{Z}(A \cap \tau)\right]$.

Choose $\boldsymbol{\beta}_{\tau, j} \in \mathbb{Z}^{d}\left(j=1, \ldots, m_{\tau}\right)$ so that $\tilde{\boldsymbol{\beta}}+\boldsymbol{\beta}_{\tau, j}$ form a set of representatives of $\left(\mathbb{Q} \tau \cap\left(\tilde{\boldsymbol{\beta}}+\mathbb{Z}^{d}\right)\right) / \mathbb{Z}(A \cap \tau)$, and that $F_{\sigma}\left(\boldsymbol{\beta}_{\tau, j}\right) \leq-M$ for every facet σ with $\sigma \nsucceq \tau$. When $m_{\tau}=1$, we simply write $\boldsymbol{\beta}_{\tau}$ instead of $\boldsymbol{\beta}_{\tau, 1}$.

Theorem 4.7. The right $D\left(K^{n}\right)$-module N is generated by

$$
\bigoplus_{\tau} \bigoplus_{j=1}^{m_{\tau}} N_{-\beta-\beta_{\tau, j}},
$$

where τ ranges over all faces of $\mathbb{Q} \geq 0 A$ such that all facets containing τ belong to $\mathcal{F}(\boldsymbol{\beta})$.

Proof. Let $\tilde{\boldsymbol{\beta}}+\boldsymbol{a}$ be in the relative interior of $-\tau$. By Proposition 4.2, it is enough to prove that $N_{-\boldsymbol{\beta}-\boldsymbol{a}}$ is generated by $\bigoplus_{\boldsymbol{\tau}^{\prime} \succeq \tau} \bigoplus_{j=1}^{m} N_{-\boldsymbol{\tau ^ { \prime }}} \boldsymbol{\beta}_{\boldsymbol{\tau}^{\prime}, j}$. We prove this by induction on the codimension of τ.

There exists $\boldsymbol{\beta}_{\tau, j}$ such that $\boldsymbol{\beta}_{\tau, j}-\boldsymbol{a} \in \mathbb{Z}(A \cap \tau)$. Take \boldsymbol{a}^{\prime} so that $\boldsymbol{\beta}_{\tau, j}-\boldsymbol{a}^{\prime}, \boldsymbol{a}-\boldsymbol{a}^{\prime} \in \mathbb{N}(A \cap \tau)$.

We claim that

$$
\begin{equation*}
\boldsymbol{\beta}+\boldsymbol{a} \sim \boldsymbol{\beta}+\boldsymbol{a}^{\prime} \tag{6}
\end{equation*}
$$

Since $\boldsymbol{a}-\boldsymbol{a}^{\prime} \in \mathbb{Z}(A \cap \tau)$, we have, by definition, $E_{\tau^{\prime}}(\boldsymbol{\beta}+\boldsymbol{a})=E_{\tau^{\prime}}\left(\boldsymbol{\beta}+\boldsymbol{a}^{\prime}\right)$ for $\tau^{\prime} \succeq \tau$. For $\tau^{\prime} \nsucceq \tau$, there exists a facet $\sigma \succeq \tau^{\prime}$ with $\sigma \nsucceq \tau$. Since
$\tilde{\boldsymbol{\beta}}+\boldsymbol{a} \in-\stackrel{\circ}{\tau}$ and $\boldsymbol{a}-\boldsymbol{a}^{\prime} \in \mathbb{N}(A \cap \tau)$, we have, for $\sigma \in \mathcal{F}(\boldsymbol{\beta})$,

$$
\begin{aligned}
F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}) & =F_{\sigma}(\tilde{\boldsymbol{\beta}}+\boldsymbol{a})<0 \\
F_{\sigma}\left(\boldsymbol{\beta}+\boldsymbol{a}^{\prime}\right) & =F_{\sigma}(\tilde{\boldsymbol{\beta}}+\boldsymbol{a})-F_{\sigma}\left(\boldsymbol{a}-\boldsymbol{a}^{\prime}\right)<0
\end{aligned}
$$

For $\sigma \notin \mathcal{F}(\boldsymbol{\beta})$, of course $F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}), F_{\sigma}\left(\boldsymbol{\beta}+\boldsymbol{a}^{\prime}\right) \notin \mathbb{N}$. Hence $E_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a})=$ $\emptyset=E_{\sigma}\left(\boldsymbol{\beta}+\boldsymbol{a}^{\prime}\right)$ by [10, Proposition 2.2 (3)]. Then $E_{\tau^{\prime}}(\boldsymbol{\beta}+\boldsymbol{a})=\emptyset=$ $E_{\tau^{\prime}}\left(\boldsymbol{\beta}+\boldsymbol{a}^{\prime}\right)$ by $[10$, Proposition 2.2 (4)]. We have thus proved the claim (6).

By [14, Lemma 4.1.4] and Theorem 2.2, there exists a b-function $b_{\boldsymbol{a}-\boldsymbol{a}^{\prime}}(\theta):=b_{\boldsymbol{a}-\boldsymbol{a}^{\prime}}(A \theta)=\sum_{\boldsymbol{u}} a_{\boldsymbol{u}} x^{\boldsymbol{u}} \partial^{\boldsymbol{u}}$ with $b_{\boldsymbol{a}-\boldsymbol{a}^{\prime}}(\boldsymbol{\beta}+\boldsymbol{a}) \neq 0$ and $A \boldsymbol{u} \in$ $\boldsymbol{a}-\boldsymbol{a}^{\prime}+\mathbb{N} A$ for $a_{\boldsymbol{u}} \neq 0$. Then

$$
N_{-\boldsymbol{\beta}-\boldsymbol{a}}=N_{-\boldsymbol{\beta}-\boldsymbol{a}} b_{\boldsymbol{a}-\boldsymbol{a}^{\prime}}(\boldsymbol{\beta}+\boldsymbol{a})=N_{-\boldsymbol{\beta}-\boldsymbol{a}} b_{\boldsymbol{a}-\boldsymbol{a}^{\prime}}(\theta) \subseteq \sum_{\boldsymbol{u}} N_{-\boldsymbol{\beta}-\boldsymbol{a}+A \boldsymbol{u}} \partial^{u} .
$$

Here $\boldsymbol{a}-A \boldsymbol{u} \in \boldsymbol{a}^{\prime}-\mathbb{N} A$. If $\boldsymbol{a}-A \boldsymbol{u} \notin \boldsymbol{a}^{\prime}-\mathbb{N}(A \cap \tau)$, then $\tilde{\boldsymbol{\beta}}+\boldsymbol{a}-A \boldsymbol{u}$ is in the relative interior of a larger face, and hence the induction hypothesis would do. If $\boldsymbol{a}-A \boldsymbol{u} \in \boldsymbol{a}^{\prime}-\mathbb{N}(A \cap \tau)$, then $\boldsymbol{\beta}_{\tau, j}-(\boldsymbol{a}-A \boldsymbol{u}) \in \mathbb{N}(A \cap \tau)$, and by Lemma $4.5 N_{-\boldsymbol{\beta}-\boldsymbol{a}+A \boldsymbol{u}}$ is generated by $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\tau, j}}$.

We may rephrase Theorem 4.7 as follows:
Corollary 4.8. The irreducible module $L(\boldsymbol{\beta})$ is described as
$D\left(K^{n}\right) /\binom{I_{A} D\left(K^{n}\right)+\langle A \theta-\boldsymbol{\beta}\rangle D\left(K^{n}\right)}{+\bigoplus_{\tau} \bigoplus_{j=1}^{m_{\tau}} t^{-\boldsymbol{\beta}_{\tau, j}}\left(\mathbb{I}\left(\tilde{\Omega}\left(-\boldsymbol{\beta}_{\tau, j}\right)\right) \cap\left\langle A \theta-\boldsymbol{\beta}-\boldsymbol{\beta}_{\tau, j}\right\rangle\right) D\left(K^{n}\right)}$.
Example 4.9. Let $A=\left(\begin{array}{llll}2 & 3 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$. Then $\mathbb{Q} \geq 0 A=\mathbb{Q}_{\geq 0}^{2}$ has two facets: $\sigma_{12}:=\mathbb{Q}_{\geq 0} \boldsymbol{a}_{1}=\mathbb{Q}_{\geq 0} \boldsymbol{a}_{2}$ and $\sigma_{3}:=\mathbb{Q}_{\geq 0} \boldsymbol{a}_{3} ; F_{\sigma_{12}}(s)=s_{2}$ and $F_{\sigma_{3}}(s)=s_{1}$. We have $\mathbb{N} A=\mathbb{N}^{2} \backslash\binom{1}{0}, M=2$, and $m_{\sigma_{12}}=m_{\sigma_{3}}=$ $m_{\{0\}}=1$. Let $\boldsymbol{\beta}=\binom{-1}{-1}$. Note that

$$
s_{1}=2 \theta_{1}+3 \theta_{2}+\theta_{4}, \quad s_{2}=\theta_{3}+\theta_{4} .
$$

Let $\boldsymbol{\beta}_{\sigma_{12}}:=-\boldsymbol{a}_{2}-\boldsymbol{\beta}=\binom{-2}{1}$. Then $\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma_{12}}=\binom{-3}{0}$, and

$$
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma_{12}}\right)\right)=\left\langle\theta_{3}, \theta_{4}\right\rangle .
$$

$$
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma_{12}}\right)\right) \cap\left\langle s_{1}+3, s_{2}\right\rangle \equiv\left\langle\theta_{3}+\theta_{4}\right\rangle
$$

where \equiv denotes the equality modulo $\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma_{12}}\right)\right)\left\langle s_{1}+3, s_{2}\right\rangle$.
Since $-\boldsymbol{\beta}_{\sigma_{12}}=\boldsymbol{a}_{1}-\boldsymbol{a}_{3}=\boldsymbol{a}_{2}-\boldsymbol{a}_{4}$,

$$
\begin{equation*}
t^{-\boldsymbol{\beta}_{\sigma_{12}}}\left(\theta_{3}+\theta_{4}\right)=x_{1} \partial_{3}+x_{2} \partial_{4} . \tag{7}
\end{equation*}
$$

Let $\boldsymbol{\beta}_{\sigma_{3}}:=-2 \boldsymbol{a}_{3}-\boldsymbol{\beta}=\binom{1}{-1}$. Then $\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma_{3}}=\binom{0}{-2}$.

$$
\begin{aligned}
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma_{3}}\right)\right) & =\left\langle\theta_{1}, \theta_{2}, \theta_{4}\right\rangle . \\
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma_{3}}\right)\right) \cap\left\langle s_{1}, s_{2}+2\right\rangle & \equiv\left\langle 2 \theta_{1}+3 \theta_{2}+\theta_{4}\right\rangle .
\end{aligned}
$$

Since $-\boldsymbol{\beta}_{\sigma_{3}}=\boldsymbol{a}_{4}-\boldsymbol{a}_{1}=\boldsymbol{a}_{1}+\boldsymbol{a}_{3}-\boldsymbol{a}_{2}=2 \boldsymbol{a}_{3}-\boldsymbol{a}_{4}$,

$$
\begin{equation*}
t^{-\boldsymbol{\beta}_{\sigma_{3}}}\left(2 \theta_{1}+3 \theta_{2}+\theta_{4}\right)=2 x_{4} \partial_{1}+3 x_{1} x_{3} \partial_{2}+x_{3}^{2} \partial_{4} \tag{8}
\end{equation*}
$$

Let $\boldsymbol{\beta}_{\{0\}}:=-\boldsymbol{\beta}$. Then

$$
\left.\begin{array}{c}
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\{0\}}\right)\right)=\left\langle\theta_{4}, \theta_{2} \theta_{3},\left[\theta_{1}\right]_{2} \theta_{3}, \theta_{1}\left[\theta_{3}\right]_{2}\right\rangle . \\
\theta_{2}\left(\theta_{3}+\theta_{4}\right), \\
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\{0\}}\right)\right) \cap\left\langle s_{1}, s_{2}\right\rangle \equiv\left(\begin{array}{c}
{\left[\theta_{1}\right]_{2}\left(\theta_{3}+\theta_{4}\right), \theta_{1}\left(\theta_{3}-1\right)\left(\theta_{3}+\theta_{4}\right),} \\
{\left[\theta_{3}\right]_{2}\left(2 \theta_{1}+3 \theta_{2}+\theta_{4}\right),} \\
\left(\theta_{1}-1\right) \theta_{3}\left(2 \theta_{1}+3 \theta_{2}+\theta_{4}\right), \\
\theta_{3}\left(2 \theta_{1}+3 \theta_{2}+\theta_{4}\right)-2 \theta_{1}\left(\theta_{3}+\theta_{4}\right)
\end{array}\right\rangle \\
=3 \theta_{2} \theta_{3}+\left(\theta_{3}-2 \theta_{1}\right) \theta_{4}
\end{array}\right\rangle .
$$

Hence N is generated by the operators (7), (8), and (9) by Theorem 4.7.

5. Scored case for a facet

Recall that a semigroup $\mathbb{N} A$ is said to be scored if

$$
\mathbb{N} A=\bigcap_{\sigma \in \mathcal{F}}\left\{\boldsymbol{a} \in \mathbb{Z} A: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

(See [14].) Clearly a normal semigroup is scored. Note that, if $\mathbb{N} A$ is scored, then $m_{\tau}=1$ for all faces τ [11, Lemma 7.11]. In this section, we assume that $\mathbb{N} A$ is scored, and we give an explicit generator of $K[s]$-module $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}}$ for a facet σ (Theorem 5.3).

Remark 5.1. In the scored case, we can refine some previous statements without changing proofs.

In Lemma 4.4, the condition $F_{\sigma}(\boldsymbol{a}) \leq-M$ can be replaced by the condition $-F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)$. In Lemma 4.5, the condition $F_{\sigma}(\boldsymbol{a}+$ $\boldsymbol{b}) \leq-M$ can be replaced by the condition $-F_{\sigma}(\boldsymbol{a}+\boldsymbol{b}) \in F_{\sigma}(\mathbb{N} A)$. In Notation 4.6, we take $\boldsymbol{\beta}_{\tau}$ so that $-F_{\sigma}\left(\boldsymbol{\beta}_{\tau}\right) \in F_{\sigma}(\mathbb{N} A)$ instead of $F_{\sigma}\left(\boldsymbol{\beta}_{\tau}\right) \leq-M$; Theorem 4.7 is valid for this choice of $\boldsymbol{\beta}_{\tau}$.

Lemma 5.2. Assume that $\mathbb{N} A$ is scored. Let $\sigma \in \mathcal{F}(\boldsymbol{\beta})$. Then
(1) $S\left(\mathbb{I}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)=\left\{(\boldsymbol{u}, \sigma) \mid \boldsymbol{u} \in \mathbb{N}^{\sigma^{c}}, F_{\sigma}(A \boldsymbol{u}) \notin-F_{\sigma}(\boldsymbol{\beta})+F_{\sigma}(\mathbb{N} A)\right\}$.
(2) $\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)=\bigcap_{(u, \sigma) \in S\left(\mathbb{I}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)}\left\langle\theta_{i}-u_{i} \mid i \notin \sigma\right\rangle$.
(3)

$$
\begin{aligned}
N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}} & \equiv t^{-\boldsymbol{\beta}_{\sigma}}\left(\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma}\right)\right): F_{\sigma}(A \theta)\right) \cdot F_{\sigma}(A \theta) \\
& \equiv t^{-\boldsymbol{\beta}_{\sigma}} \bigcap_{(\boldsymbol{u}, \sigma) \in S\left(\mathbb{I}\left(-\boldsymbol{\beta}_{\sigma}\right)\right), \boldsymbol{u} \neq \mathbf{0}}\left\langle\theta_{i}-u_{i} \mid i \notin \sigma\right\rangle \cdot F_{\sigma}(A \theta) .
\end{aligned}
$$

Here $\mathbb{N}^{\sigma^{c}}=\left\{\boldsymbol{u} \in \mathbb{N}^{n} \mid u_{j}=0\right.$ for all $\left.\boldsymbol{a}_{j} \in \sigma\right\}$. We sometimes write $j \in \sigma$ instead of $\boldsymbol{a}_{j} \in \sigma$.

Proof. Recall from Notation 4.6 and Remark 5.1 that we have chosen $\boldsymbol{\beta}_{\sigma}$ so that $-F_{\sigma^{\prime}}\left(\boldsymbol{\beta}_{\sigma}\right) \in F_{\sigma^{\prime}}(\mathbb{N} A)$ for all $\sigma^{\prime} \neq \sigma$.
(1) follows from Lemma 4.4 (2), and (2) follows from (1) and Theorem 2.2.

To prove (3), by renumbering if necessary, we assume that $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}$ are linearly independent with $\boldsymbol{a}_{1} \notin \sigma$ and $\boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{d} \in \sigma$. Let $F_{i}(s)$ be a linear form such that, for $j \leq d, F_{i}\left(\boldsymbol{a}_{j}\right) \neq 0$ if and only if $i=j$. Take $F_{1}=F_{\sigma}$. Then

$$
\left\langle A \theta-\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right)\right\rangle=\left\langle F_{i}(A \theta)-F_{i}\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right) \mid i=1, \ldots, d\right\rangle .
$$

Note that $F_{\sigma}(A \theta)=F_{1}(A \theta) \in\left\langle A \theta-\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right)\right\rangle$ since $F_{\sigma}\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right)=0$ by definition. Hence \supseteq of the first equality is clear, and \supseteq of the second equality follows from (2).

Suppose that

$$
\begin{equation*}
\sum_{i=1}^{d} f_{i}\left(F_{i}(\theta)-F_{i}\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right)\right) \in \mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma}\right)\right) \tag{10}
\end{equation*}
$$

Here and hereafter, we sometimes write $F(\theta)$ instead of $F(A \theta)$. Since $F_{i}(\theta)$ contains θ_{i} but not $\theta_{j}(j \neq i, j \leq d)$, we may assume that $f_{i} \in$ $K\left[\theta_{j} \mid j \leq i\right.$ or $\left.j>d\right]$.

Let (\boldsymbol{u}, σ) satisfy $\boldsymbol{u} \in \mathbb{N}^{\sigma^{c}}$ and $F_{\sigma}(\boldsymbol{u}) \notin-F_{\sigma}(\boldsymbol{\beta})+F_{\sigma}(\mathbb{N} A)$. Then

$$
\begin{equation*}
\sum_{i=1}^{d} f_{i}\left(\boldsymbol{u}, \theta_{\sigma}\right)\left(F_{i}\left(\boldsymbol{u}, \theta_{\sigma}\right)-F_{i}\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right)\right)=0 \tag{11}
\end{equation*}
$$

where $F\left(\boldsymbol{u}, \theta_{\sigma}\right)$ denotes the function obtained from F by replacing θ_{j} by u_{j} for $j \notin \sigma$. By looking at the variables $\theta_{i}(i=d, \ldots, 2)$, we see $f_{i}\left(\boldsymbol{u}, \theta_{\sigma}\right)=0(i=d, \ldots, 2)$. Hence $f_{i} \in \mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)$ for $i=d, \ldots, 2$. In turn, $f_{1}\left(\boldsymbol{u}, \theta_{\sigma}\right) F_{1}\left(\boldsymbol{u}, \theta_{\sigma}\right)=0$. (Note that $F_{1}\left(\boldsymbol{\beta}+\boldsymbol{\beta}_{\sigma}\right)=0$.) Since $F_{1}\left(\boldsymbol{u}, \theta_{\sigma}\right)=F_{1}(\boldsymbol{u})=F_{\sigma}(A \boldsymbol{u})$, we have

$$
f_{1} \in \bigcap_{\substack{\boldsymbol{u} \in \mathbb{N}^{\sigma^{c}} ; \boldsymbol{u} \neq 0 \\ F_{\sigma}(A \boldsymbol{u}) \notin-F_{\sigma}(\boldsymbol{\beta})+F_{\sigma}(\mathbb{N} A)}}\left\langle\theta_{i}-u_{i} \mid i \notin \sigma\right\rangle,
$$

since, for $\boldsymbol{u} \in \mathbb{N}^{\sigma^{c}}, F_{\sigma}(A \boldsymbol{u}) \neq 0$ if and only if $\boldsymbol{u} \neq \mathbf{0}$.
Theorem 5.3. Assume that $\mathbb{N} A$ is scored. Let $\sigma \in \mathcal{F}(\boldsymbol{\beta})$. For $j \notin \sigma$, put

$$
m_{j}:=m_{\sigma, j}=\max \left\{u_{j} \in \mathbb{N} \mid F_{\sigma}\left(\boldsymbol{a}_{j}\right) u_{j} \notin-F_{\sigma}(\boldsymbol{\beta})+F_{\sigma}(\mathbb{N} A)\right\} .
$$

Then

$$
N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}} \equiv t^{-\boldsymbol{\beta}_{\sigma}}\left\langle\prod_{j \notin \sigma} \prod_{k=1}^{m_{j}}\left(\theta_{j}-k\right)\right\rangle \cdot F_{\sigma}(A \theta)
$$

Proof. By Lemma 5.2, it is enough to show

$$
\begin{align*}
& \quad \bigcap_{\substack{u} \mathbb{N}^{\sigma^{c}}, F_{\sigma}(A \boldsymbol{u}) \neq 0}\left\langle\theta_{j}-u_{j} \mid j \notin \sigma\right\rangle=\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)+\left\langle\prod_{j \notin \sigma} \prod_{k=1}^{m_{j}}\left(\theta_{j}-k\right)\right\rangle . \tag{12}\\
& F_{\sigma}(A \boldsymbol{u}) \notin-F_{\sigma}(\boldsymbol{\beta})+F_{\sigma}(\mathbb{N} A)
\end{align*}
$$

We know $\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)=\quad \bigcap \quad\left\langle\theta_{j}-u_{j} \mid j \notin \sigma\right\rangle$ by Lemma 5.2. $\boldsymbol{u} \in \mathbb{N}^{\sigma^{c}}, F_{\sigma}(A \boldsymbol{u}) \notin-F_{\sigma}(\boldsymbol{\beta})+F_{\sigma}(\mathbb{N} A)$
Since each ideal in (12) is generated by elements in $K\left[\theta_{j} \mid j \notin \sigma\right]$, we only need to check (12) in $K\left[\theta_{j} \mid j \notin \sigma\right]$. Then the zero set of each side of (12) equals the finite set $\left\{\boldsymbol{u} \neq \mathbf{0} \mid(\boldsymbol{u}, \sigma) \in S\left(\mathbb{I}\left(-\boldsymbol{\beta}_{\sigma}\right)\right)\right\}$. By localizing at each zero point, we see that both sides are equal.

Corollary 5.4. Assume that $\mathbb{N} A$ is normal. Let $\sigma \in \mathcal{F}(\boldsymbol{\beta})$.

Then

$$
N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}} \equiv t^{-\boldsymbol{\beta}_{\sigma}}\left\langle\prod_{j \notin \sigma} \prod_{k=1}^{\left\lfloor\frac{-F_{\sigma}(\boldsymbol{\beta})-1}{F_{\sigma}\left(a_{j}\right)}\right\rfloor}\left(\theta_{j}-k\right)\right\rangle \cdot F_{\sigma}(A \theta)
$$

Proof. In this case, the m_{j} in Theorem 5.3 equals $\left\lfloor\frac{-F_{\sigma}(\boldsymbol{\beta})-1}{F_{\sigma}\left(\boldsymbol{a}_{j}\right)}\right\rfloor$.

6. Scored case for a simple face

In this section, we keep to assume that $\mathbb{N} A$ is scored. Furthermore we assume that a fixed face τ of $\mathbb{Q}_{\geq 0} A$ of codimension c satisfies

$$
\begin{equation*}
\{\sigma \in \mathcal{F} \mid \sigma \succeq \tau\}=\{\sigma \in \mathcal{F}(\boldsymbol{\beta}) \mid \sigma \succeq \tau\}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{c}\right\} \tag{13}
\end{equation*}
$$

Under these assumptions, we show that $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\tau}}$ is generated by $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma_{i}}}$ $(1 \leq i \leq c)$ (Theorem 6.3).

Change the order if necessary, and take $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{d} \in A$ so that

$$
\begin{aligned}
& \boldsymbol{a}_{i} \in \bigcap_{k=1, k \neq i}^{c} \sigma_{k} \backslash \sigma_{i} \quad(i \leq c) \\
& \boldsymbol{a}_{c+1}, \ldots, \boldsymbol{a}_{d} \in \tau \text { is linearly independent. }
\end{aligned}
$$

Put $F_{i}:=F_{\sigma_{i}}$ for $i \leq c$, and take $F_{c+1}, \ldots, F_{d} \in\langle A \theta\rangle$ so that for $i, j \leq d$

$$
F_{i}\left(\boldsymbol{a}_{j}\right) \neq 0 \Leftrightarrow i \neq j
$$

We prove that $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\tau}}$ is generated by $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma_{i}}}(1 \leq i \leq c)$. For simplicity, put

$$
\begin{aligned}
\mathfrak{i} & :=\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{\tau}\right)\right), \\
\mathfrak{a} & :=\left\langle A \theta-\boldsymbol{\beta}-\boldsymbol{\beta}_{\tau}\right\rangle, \\
\mathfrak{f} & :=\sum_{i=1}^{c} \mathfrak{i}_{\sigma_{i}}\left\langle\prod_{j \notin \sigma_{i}} \prod_{k=1}^{m_{\sigma_{i}, j}}\left(\theta_{j}-k\right) \cdot F_{i}\right\rangle .
\end{aligned}
$$

Here, for a facet $\sigma \succeq \tau$, we put

$$
\mathfrak{i}_{\sigma}:=\left\langle[\theta]_{\boldsymbol{u}} \mid \boldsymbol{u} \in \mathbb{N}^{\sigma}, F_{\sigma^{\prime}}(A \boldsymbol{u}) \in F_{\sigma^{\prime}}\left(\boldsymbol{\beta}_{\tau}\right)+F_{\sigma^{\prime}}(\mathbb{N} A)\left(\forall \sigma^{\prime} \neq \sigma\right)\right\rangle .
$$

We have, by Theorem 2.2 and Lemma 4.4 (2),

$$
\begin{aligned}
\mathfrak{i} & =\left\langle[\theta]_{\boldsymbol{u}} \mid A \boldsymbol{u} \in \boldsymbol{\beta}_{\tau}+\mathbb{N} A\right\rangle \\
& =\left\langle[\theta]_{\boldsymbol{u}} \mid F_{i}(A \boldsymbol{u}) \in-F_{i}(\boldsymbol{\beta})+F_{i}(\mathbb{N} A) \quad(1 \leq i \leq c)\right\rangle
\end{aligned}
$$

and

$$
\mathfrak{i}_{\sigma_{i}}=\left\langle[\theta]_{\boldsymbol{u}} \left\lvert\, \begin{array}{l}
\boldsymbol{u} \in \mathbb{N}^{\sigma_{i}} \tag{14}\\
F_{k}(A \boldsymbol{u}) \in F_{k}\left(\boldsymbol{\beta}_{\tau}\right)+F_{k}(\mathbb{N} A)(\forall k \neq i, k \leq c)
\end{array}\right.\right\rangle
$$

since $-F_{\sigma}\left(\boldsymbol{\beta}_{\tau}\right) \in F_{\sigma}(\mathbb{N} A)$ for any $\sigma \nsucceq \tau$.
Lemma 6.1. $t^{-\boldsymbol{\beta}_{\tau}} \mathfrak{f} \subseteq \sum_{i=1}^{c} N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma_{i}}} D\left(K^{n}\right)$.
Proof. Let $\sigma=\sigma_{i}(i=1, \ldots, c)$, and let $\boldsymbol{u} \in \mathbb{N}^{\sigma}$ satisfy $F_{\sigma^{\prime}}(A \boldsymbol{u}) \in$ $F_{\sigma^{\prime}}\left(\boldsymbol{\beta}_{\tau}\right)+F_{\sigma^{\prime}}(\mathbb{N} A)$ for all $\sigma^{\prime} \neq \sigma$. Let $\boldsymbol{a}:=\boldsymbol{\beta}_{\tau}-A \boldsymbol{u}$. Since \boldsymbol{a} satisfies the condition for ' $\boldsymbol{\beta}_{\boldsymbol{\sigma}}$ ' (Notation 4.6 and Remark 5.1),

$$
t^{-\boldsymbol{a}}\left\langle\prod_{j \notin \sigma} \prod_{k=1}^{m_{\sigma, j}}\left(\theta_{j}-k\right) \cdot F_{\sigma}\right\rangle=N_{-\boldsymbol{\beta}-\boldsymbol{a}}
$$

by Theorem 5.3. Then by the proof of Theorem 4.7

$$
N_{-\boldsymbol{\beta}-\boldsymbol{a}} \subseteq N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}} D\left(K^{n}\right) .
$$

Hence we have

$$
\begin{equation*}
t^{-a}\left\langle\prod_{j \notin \sigma} \prod_{k=1}^{m_{\sigma, j}}\left(\theta_{j}-k\right) \cdot F_{\sigma}\right\rangle \subseteq N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}} D\left(K^{n}\right) \tag{15}
\end{equation*}
$$

Multiplying (15) by ∂^{u}, we have

$$
t^{-\boldsymbol{\beta}_{\tau}}[\theta]_{u} \prod_{j \notin \sigma} \prod_{k=1}^{m_{\sigma, j}}\left(\theta_{j}-k\right) \cdot F_{\sigma} \in N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}} D\left(K^{n}\right) .
$$

By Lemma 6.1, we only need to prove $\mathfrak{i} \cap \mathfrak{a}=\mathfrak{f}+\mathfrak{i} \cdot \mathfrak{a}$. To this aim, we prove that

$$
\begin{equation*}
(\mathfrak{i} \cap \mathfrak{a})_{\mathfrak{m}}=(\mathfrak{f}+\mathfrak{i} \cdot \mathfrak{a})_{\mathfrak{m}} \tag{16}
\end{equation*}
$$

for all maximal ideals \mathfrak{m} of $R:=K\left[\theta_{1}, \ldots, \theta_{n}\right]$. In this argument, we extend the field K into its algebraic closure \bar{K}. We simply write K instead of \bar{K}. For $\boldsymbol{v} \in K^{d}$, let $\mathfrak{i}_{\boldsymbol{v}}$ be the localization of \mathfrak{i} at the maximal ideal corresponding to \boldsymbol{v}. We have

$$
\begin{aligned}
\mathbb{V}(\mathfrak{i}) & :=\left\{\boldsymbol{v} \in K^{d} \mid \mathfrak{i}_{\boldsymbol{v}} \neq R_{\boldsymbol{v}}\right\} \\
& =\bigcup_{i=1}^{c} \bigcup_{F_{i}(A \boldsymbol{u}) \notin-F_{i}(\boldsymbol{\beta})+F_{i}(\mathbb{N} A)} \boldsymbol{u}+K^{\sigma_{i}} .
\end{aligned}
$$

Proposition 6.2. $\mathfrak{i} \cap \mathfrak{a}=\mathfrak{f}+\mathfrak{i a}$.
Proof. If $\boldsymbol{v} \notin \mathbb{V}(\mathfrak{i}) \cap \mathbb{V}(\mathfrak{a})$, then $(\mathfrak{i} \cap \mathfrak{a})_{v}=(\mathfrak{i a})_{\boldsymbol{v}}$.
Let $\boldsymbol{v} \in \mathbb{V}(\mathfrak{i}) \cap \mathbb{V}(\mathfrak{a})$, and let $\theta_{j}^{\prime}:=\theta_{j}-v_{j}$. By the definitions and Theorem 2.2,

$$
\left.\mathfrak{i}_{v}=\left\langle\prod_{v_{j} \in \mathbb{N}, v_{j}<u_{j}} \theta_{j}^{\prime}\right|[\theta]_{u}: \text { minimal in } \mathfrak{i}\right\rangle,
$$

and

$$
\left.\mathfrak{f}_{\boldsymbol{v}}=\sum_{i=1}^{c}\left\langle\prod_{j \notin \sigma_{i}, v_{j} \in \mathbb{N}, 1 \leq v_{j} \leq m_{\sigma_{i}, j}} \theta_{j}^{\prime} \cdot F_{i} \cdot \prod_{v_{j} \in \mathbb{N}, v_{j}<u_{j}^{\prime}} \theta_{j}^{\prime}\right|[\theta]_{\boldsymbol{u}^{\prime}}: \text { minimal in } \mathfrak{i}_{\sigma_{i}}\right\rangle .
$$

Note that \mathfrak{i}_{v} is a monomial ideal in the variables $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$.
Let

$$
\begin{equation*}
\sum_{i=1}^{d} f_{i} F_{i}\left(\theta^{\prime}\right) \in \mathfrak{i}_{v} \tag{17}
\end{equation*}
$$

Note that, among $\theta_{1}, \ldots, \theta_{d}$, the variable θ_{i} is the unique one appearing in F_{i}. Hence we may assume that
$f_{1} \in K\left[\theta_{1}^{\prime}, \theta_{d+1}^{\prime}, \ldots, \theta_{n}^{\prime}\right], f_{2} \in K\left[\theta_{1}^{\prime}, \theta_{2}^{\prime}, \theta_{d+1}^{\prime}, \ldots, \theta_{n}^{\prime}\right], \ldots, f_{d} \in K\left[\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}\right]$.
By looking at the variable θ_{d}^{\prime} in (17), we see

$$
f_{d} \theta_{d}^{\prime} \in \mathfrak{i}_{v} .
$$

If $[\theta]_{u}$ is minimal in \mathfrak{i}, then $u_{c+1}=\cdots=u_{d}=0$. Hence, if $c<d$, then we have $f_{d} \in \mathfrak{i}_{\boldsymbol{v}}, f_{d} F_{d}\left(\theta^{\prime}\right) \in(\mathfrak{i a})_{\boldsymbol{v}}$, and

$$
\begin{equation*}
\sum_{i=1}^{d-1} f_{i} F_{i}\left(\theta^{\prime}\right) \in \mathfrak{i}_{v} \tag{18}
\end{equation*}
$$

Similarly we have $f_{i} F_{i}\left(\theta^{\prime}\right) \in(\mathfrak{i a})_{\boldsymbol{v}}$ for $c+1 \leq i \leq d$, and

$$
\begin{equation*}
\sum_{i=1}^{c} f_{i} F_{i}\left(\theta^{\prime}\right) \in \mathfrak{i}_{v} \tag{19}
\end{equation*}
$$

By looking at the variable θ_{c}^{\prime} in (19), we see $f_{c} \theta_{c}^{\prime} \in \mathfrak{i}_{v}$ and

$$
f_{c} \in\left\langle\prod_{v_{j} \in \mathbb{N}, v_{j}<u_{j}} \theta_{j}^{\prime} \mid F_{i}(A \boldsymbol{u}) \in F_{i}\left(\boldsymbol{\beta}_{\tau}\right)+F_{i}(\mathbb{N} A)(\forall i<c)\right\rangle,
$$

since $F_{i}\left(\boldsymbol{a}_{c}\right)=0$ for all $i<c$.
Let \boldsymbol{u} satisfy $F_{i}(A \boldsymbol{u}) \in F_{i}\left(\boldsymbol{\beta}_{\tau}\right)+F_{i}(\mathbb{N} A)$ for all $i<c$, and let

$$
h:=\prod_{v_{j} \in \mathbb{N}, v_{j}<u_{j}} \theta_{j}^{\prime}\left(=[\theta]_{\boldsymbol{u}} \text { up to multiplication by a unit in } R_{\boldsymbol{v}}\right) .
$$

In what follows, we omit to write 'up to multiplication by a unit in $R_{\boldsymbol{v}}{ }^{\prime}$. Let $j \notin \sigma_{c}$. If $u_{j}>m_{\sigma_{c}, j}$, then $F_{c}(A \boldsymbol{u}) \in F_{c}\left(\boldsymbol{\beta}_{\tau}\right)+F_{c}(\mathbb{N} A)$, and $h=[\theta]_{u} \in \mathfrak{i}_{v}$. Suppose that $u_{j} \leq m_{\sigma_{c}, j}$. Then $F_{c}\left(A \boldsymbol{u}+\left(m_{\sigma_{c}, j}+1-\right.\right.$ $\left.\left.u_{j}\right) \boldsymbol{a}_{j}\right) \in F_{c}\left(\boldsymbol{\beta}_{\tau}\right)+F_{c}(\mathbb{N} A)$.

Note that for $k \geq 0$

$$
h=[\theta]_{\boldsymbol{u}+k \mathbf{1}_{j}}
$$

unless $u_{j} \leq v_{j}<u_{j}+k$.

Hence, if there exists $j \notin \sigma_{c}$ such that the condition $u_{j} \leq v_{j} \leq m_{\sigma_{c}, j}$ does not hold, then

$$
h=[\theta]_{\boldsymbol{u}+\left(m_{\sigma_{c}, j}+1-u_{j}\right) \mathbf{1}_{j}} \in \mathfrak{i}_{\boldsymbol{v}} .
$$

Next suppose that $u_{j} \leq v_{j} \leq m_{\sigma_{c}, j}$ for all $j \notin \sigma_{c}$. Since $\boldsymbol{v} \in \mathbb{V}(\mathfrak{a})$, we have $F_{c}(A \boldsymbol{v})=0$. Hence $v_{j}=0$ for all $j \notin \sigma_{c}$, and in turn $u_{j}=0$ for all $j \notin \sigma_{c}$, or $\boldsymbol{u} \in \mathbb{N}^{\sigma_{c}}$. By (14), $h=[\theta]_{\boldsymbol{u}} \in\left(\mathfrak{i}_{\sigma_{c}}\right)_{\boldsymbol{v}}$. Therefore

$$
h F_{c} \in \mathfrak{f}_{v}
$$

by noting that $v_{j}=0$ for all $j \notin \sigma_{c}$. In all cases, we have thus proved

$$
h F_{c} \in(\mathfrak{f}+\mathfrak{i a})_{\boldsymbol{v}}
$$

Hence we have $f_{c} F_{c} \in(\mathfrak{f}+\mathfrak{i} \cdot \mathfrak{a})_{\boldsymbol{v}} \subseteq \mathfrak{i}_{\boldsymbol{v}}$, and $\sum_{i=1}^{c-1} f_{i} F_{i} \in \mathfrak{i}_{\boldsymbol{v}}$. Similarly, we obtain

$$
f_{i} F_{i} \in(\mathfrak{f}+\mathfrak{i} \cdot \mathfrak{a})_{v}
$$

for $i=c-1, \ldots, 1$. Hence $(\mathfrak{i} \cap \mathfrak{a})_{\boldsymbol{v}} \subseteq(\mathfrak{f}+\mathfrak{i a})_{\boldsymbol{v}}$. The other inclusion is clear.

Theorem 6.3. Assume that $\mathbb{N} A$ is scored, and that a face τ of $\mathbb{Q}_{\geq 0} A$ of codimension c satisfies (13). Then $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\tau}}$ is generated by $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma_{i}}}$ $(1 \leq i \leq c)$.
Proof. This is immediate from Lemma 6.1 and Proposition 6.2.
Example 6.4. Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1\end{array}\right)=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right)$, and

$$
\boldsymbol{\beta}=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)=-\boldsymbol{a}_{1}-\boldsymbol{a}_{2}=-\boldsymbol{a}_{3}-\boldsymbol{a}_{4}
$$

This example is normal but non-simplicial.

$$
\begin{aligned}
F_{13} & :=F_{\sigma_{13}}=s_{2}=\theta_{2}+\theta_{4}, \\
F_{23} & :=F_{\sigma_{23}}=s_{1}=\theta_{1}+\theta_{4}, \\
F_{14} & :=F_{\sigma_{14}}=s_{2}+s_{3}=\theta_{2}+\theta_{3}, \\
F_{24} & :=F_{\sigma_{24}}=s_{1}+s_{3}=\theta_{1}+\theta_{3} .
\end{aligned}
$$

Let $\boldsymbol{\beta}+\boldsymbol{\beta}_{14}:=-\boldsymbol{a}_{1}-\boldsymbol{a}_{4}$. Then $\boldsymbol{\beta}_{14}={ }^{t}(-1,0,1)=\boldsymbol{a}_{3}-\boldsymbol{a}_{1}=\boldsymbol{a}_{2}-\boldsymbol{a}_{4}$.
By Corollary 5.4, $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{14}}$ is generated by

$$
t^{-\boldsymbol{\beta}_{14}} F_{14}=t^{-\boldsymbol{\beta}_{14}}\left(\theta_{2}+\theta_{3}\right)=x_{4} \partial_{2}+x_{1} \partial_{3} .
$$

Each 1-dimensional face satisfies the condition (13).

We have $\boldsymbol{\beta}_{0}:=\boldsymbol{\beta}_{\{\mathbf{0}\}}=-\boldsymbol{\beta}$, and

$$
\begin{aligned}
\mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{0}\right)\right) & =\left\langle\theta_{2}, \theta_{3}\right\rangle \cap\left\langle\theta_{1}, \theta_{3}\right\rangle \cap\left\langle\theta_{2}, \theta_{4}\right\rangle \cap\left\langle\theta_{1}, \theta_{4}\right\rangle \\
& =\left\langle\theta_{1} \theta_{2}, \theta_{3} \theta_{4}\right\rangle .
\end{aligned}
$$

In particular,

$$
\theta_{1} \theta_{2}-\theta_{3} \theta_{4}=\theta_{1}\left(\theta_{2}+\theta_{3}\right)-\theta_{3}\left(\theta_{1}+\theta_{4}\right) \in \mathbb{I}\left(\widetilde{\Omega}\left(-\boldsymbol{\beta}_{0}\right)\right) \cap\langle A \theta\rangle,
$$

and hence

$$
N_{\mathbf{0}} \ni t^{-\boldsymbol{\beta}_{0}}\left(\theta_{1} \theta_{2}-\theta_{3} \theta_{4}\right)=t^{\boldsymbol{\beta}}\left(\theta_{1} \theta_{2}-\theta_{3} \theta_{4}\right)=\partial_{1} \partial_{2}-\partial_{3} \partial_{4} .
$$

Indeed N_{0} is generated by

$$
\begin{aligned}
t^{\boldsymbol{\beta}} \theta_{1} \theta_{4}\left(\theta_{2}+\theta_{3}\right) & =\theta_{4} \partial_{1} \partial_{2}+\theta_{1} \partial_{3} \partial_{4}, \\
t^{\boldsymbol{\beta}} \theta_{2} \theta_{4}\left(\theta_{1}+\theta_{3}\right) & =\theta_{4} \partial_{1} \partial_{2}+\theta_{2} \partial_{3} \partial_{4}, \\
t^{\boldsymbol{\beta}} \theta_{1} \theta_{3}\left(\theta_{2}+\theta_{4}\right) & =\theta_{3} \partial_{1} \partial_{2}+\theta_{1} \partial_{3} \partial_{4}, \\
t^{\boldsymbol{\beta}} \theta_{2} \theta_{3}\left(\theta_{1}+\theta_{4}\right) & =\theta_{3} \partial_{1} \partial_{2}+\theta_{2} \partial_{3} \partial_{4}, \\
t^{\boldsymbol{\beta}}\left(\theta_{1} \theta_{2}-\theta_{3} \theta_{4}\right) & =\partial_{1} \partial_{2}-\partial_{3} \partial_{4} .
\end{aligned}
$$

Hence by Theorems 4.7 and $6.3, N$ is generated by

$$
\begin{aligned}
t^{-\boldsymbol{\beta}_{14}}\left(\theta_{2}+\theta_{3}\right) & =x_{4} \partial_{2}+x_{1} \partial_{3}, \\
t^{-\boldsymbol{\beta}_{24}}\left(\theta_{1}+\theta_{3}\right) & =x_{4} \partial_{1}+x_{2} \partial_{3}, \\
t^{-\boldsymbol{\beta}_{13}}\left(\theta_{2}+\theta_{4}\right) & =x_{3} \partial_{2}+x_{1} \partial_{4}, \\
t^{-\boldsymbol{\beta}_{23}}\left(\theta_{1}+\theta_{4}\right) & =x_{3} \partial_{1}+x_{2} \partial_{4}, \\
t^{\boldsymbol{\beta}}\left(\theta_{1} \theta_{2}-\theta_{3} \theta_{4}\right) & =\partial_{1} \partial_{2}-\partial_{3} \partial_{4} .
\end{aligned}
$$

7. Simplicial scored case

Theorem 7.1. Suppose that $\mathbb{N} A$ is scored and simplicial. Then N is generated by $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma}}(\sigma \in \mathcal{F}(\boldsymbol{\beta}))$. More explicitly, N is generated by

$$
t^{-\boldsymbol{\beta}_{\sigma}}\left\langle\prod_{j \notin \sigma} \prod_{k=1}^{m_{\sigma, j}}\left(\theta_{j}-k\right)\right\rangle \cdot F_{\sigma}(A \theta) \quad(\sigma \in \mathcal{F}(\boldsymbol{\beta}))
$$

Proof. This is clear from Theorems 4.7, 5.3, and 6.3.
Corollary 7.2. Suppose that $\mathbb{N} A$ is normal and simplicial. Then N is generated by

$$
t^{-\boldsymbol{\beta}_{\sigma}} \prod_{j \notin \sigma} \prod_{k=1}^{\left\lfloor\frac{-F_{\sigma}(\boldsymbol{\beta})-1}{F_{\sigma}\left(a_{j}\right)}\right\rfloor}\left(\theta_{j}-k\right) \cdot F_{\sigma}(A \theta) \quad(\sigma \in \mathcal{F}(\boldsymbol{\beta})) .
$$

Proof. This is immediate from Theorem 7.1 and Corollary 5.4.

Corollary 7.3. Suppose that $\mathbb{N} A$ is normal and simplicial. Assume that $F_{\sigma}(\boldsymbol{\beta})=-1$ for all $\sigma \in \mathcal{F}(\boldsymbol{\beta})$. Then N is generated by

$$
t^{-\boldsymbol{\beta}_{\sigma}} F_{\sigma}(A \theta) \quad(\sigma \in \mathcal{F}(\boldsymbol{\beta}))
$$

Proof. This is immediate from Corollary 7.2.
Example 7.4. Let $A=\left(\begin{array}{ccccc}1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & \cdots & n-1 & n\end{array}\right)=\left(\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n-1}, \boldsymbol{a}_{n}\right)$.
Then

$$
\begin{aligned}
& F_{0}:=F_{\sigma_{0}}(s)=s_{2}=\sum_{i=1}^{n} i \theta_{i} \\
& F_{n}:=F_{\sigma_{n}}(s)=n s_{1}-s_{2}=\sum_{i=0}^{n-1}(n-i) \theta_{i} .
\end{aligned}
$$

This is normal and simplicial.
Let $\boldsymbol{\beta}=\binom{-2}{-n}=-\boldsymbol{a}_{0}-\boldsymbol{a}_{n}, \boldsymbol{\beta}_{0}:=\boldsymbol{\beta}_{\sigma_{0}}=-\boldsymbol{a}_{0}-\boldsymbol{\beta}=\boldsymbol{a}_{n}, \boldsymbol{\beta}_{n}:=$ $\boldsymbol{\beta}_{\sigma_{n}}=-\boldsymbol{a}_{n}-\boldsymbol{\beta}=\boldsymbol{a}_{0}, \boldsymbol{\beta}_{\mathbf{0}}:=-\boldsymbol{\beta}$.

By Corollary 5.4, $N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\sigma_{0}}}$ is generated by

$$
\begin{equation*}
t^{-\beta_{0}} \prod_{i=1}^{n-1} \prod_{k=1}^{\left\lfloor\frac{n-1}{i}\right\rfloor}\left(\theta_{i}-k\right) F_{0} \tag{20}
\end{equation*}
$$

and $N_{-\beta-\beta_{\sigma_{n}}}$ is generated by

$$
\begin{equation*}
t^{-\boldsymbol{\beta}_{n}} \prod_{i=1}^{n-1} \prod_{k=1}^{\left\lfloor\frac{n-1}{n-i}\right\rfloor}\left(\theta_{i}-k\right) F_{n} \tag{21}
\end{equation*}
$$

By Corollary 7.2, N is generated by (20) and (21).
Example 7.5. Let $A=\left(\begin{array}{ccccc} & & & -1 & 0 \\ & I_{d-1} & & \vdots & \vdots \\ 1 & \ldots & \ldots & 1 & 1\end{array}\right)=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}, \boldsymbol{a}_{d+1}\right)$,
and $\boldsymbol{\beta}=-\boldsymbol{a}_{d+1}$. We have $\boldsymbol{a}_{1}+\cdots+\boldsymbol{a}_{d}=d \boldsymbol{a}_{d+1}$. This example is normal, homogeneous, simplicial, and reflexive; $F_{\sigma}(\boldsymbol{\beta})=-1$ for all facets σ.

Let σ_{i}^{*} be the facet not containing $\boldsymbol{a}_{i}(1 \leq i \leq d)$. Put $F_{i}:=F_{\sigma_{i}}$. We have

$$
\begin{aligned}
F_{\breve{d}} & =s_{d}-\left(s_{1}+\cdots+s_{d-1}\right)=d \theta_{d}+\theta_{d+1}, \\
F_{i} & =s_{d}-\left(\sum_{j=1, j \neq i}^{d-1} s_{j}\right)+(d-1) s_{i}=d \theta_{i}+\theta_{d+1} \quad(i<d) .
\end{aligned}
$$

We have $F_{\sigma}(\boldsymbol{\beta})=-1$ for all facets σ, and take $\boldsymbol{\beta}_{\bar{i}}:=\boldsymbol{\beta}_{\sigma_{i}}$ as follows:

$$
\boldsymbol{\beta}_{\check{d}}=\left(\begin{array}{c}
-1 \\
\vdots \\
-1 \\
2-d
\end{array}\right), \quad \boldsymbol{\beta}_{\check{1}}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
2-d
\end{array}\right), \cdots, \boldsymbol{\beta}_{d \check{ }}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
2-d
\end{array}\right) .
$$

The vectors $-\boldsymbol{\beta}_{1}, \ldots,-\boldsymbol{\beta}_{\breve{d}}$ are the roots (e.g. see (2.10) in [6]). Since

$$
\begin{aligned}
m_{\check{d}, d}=m_{\check{d}, d+1}=0 \text { and } & -\boldsymbol{\beta}_{\check{d}}=(d-1) \boldsymbol{a}_{d+1}-\boldsymbol{a}_{d}=\boldsymbol{a}_{1}+\cdots+\boldsymbol{a}_{d-1}-\boldsymbol{a}_{d+1}, \\
N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\check{d}}} & =t^{-\boldsymbol{\beta}_{\tilde{d}}}\left\langle F_{\tilde{d}}(\theta)\right\rangle=t^{-\boldsymbol{\beta}_{\tilde{d}}}\left\langle d \theta_{d}+\theta_{d+1}\right\rangle \\
& =\left\langle d x_{d+1}^{d-1} \partial_{d}+x_{1} \cdots x_{d-1} \partial_{d+1}\right\rangle .
\end{aligned}
$$

Let $i<d$. Since $m_{\check{i}, i}=m_{\check{i}, d+1}=0$ and $-\boldsymbol{\beta}_{\bar{i}}=(d-1) \boldsymbol{a}_{d+1}-\boldsymbol{a}_{i}=$ $\sum_{j=1, j \neq i}^{d} \boldsymbol{a}_{j}-\boldsymbol{a}_{d+1}$,

$$
\begin{aligned}
N_{-\boldsymbol{\beta}-\boldsymbol{\beta}_{\bar{i}}} & =t^{-\boldsymbol{\beta}_{\bar{i}}}\left\langle F_{\bar{i}}(\theta)\right\rangle=t^{-\boldsymbol{\beta}_{i}}\left\langle d \theta_{i}+\theta_{d+1}\right\rangle \\
& =\left\langle d x_{d+1}^{d-1} \partial_{i}+\left(\prod_{j=1, j \neq i}^{d} x_{j}\right) \partial_{d+1}\right\rangle .
\end{aligned}
$$

Hence the left module counterpart $L^{L}(\boldsymbol{\beta})$ to $L(\boldsymbol{\beta})$ is described as

$$
L^{L}(\boldsymbol{\beta})=D\left(K^{d+1}\right) / D\left(K^{d+1}\right)\left\langle\begin{array}{cc}
d \theta_{i}+\theta_{d+1}+1 & (i \leq d) \\
d x_{i} \partial_{d+1}^{d-1}+x_{d+1} \\
\prod_{1} \cdots \partial_{d}-\partial_{d+1}^{d} & \partial_{j} \\
j=1, j \neq i
\end{array} \quad,\right.
$$

which is the extended hypergeometric system considered in [5] and [6]. The rank of the A-hypergeometric system $M^{L}(\boldsymbol{\beta})$ equals the volume d.

Take the weight $(0, \ldots, 0,1)$, and consider a refined monomial order. Then the exponents of $M^{L}(\boldsymbol{\beta})$ are

$$
(-i / d, \ldots,-i / d, i-1) \quad(i=1,2, \ldots, d)
$$

and

$$
\phi_{i}=\left(x_{1} \cdots x_{d}\right)^{-\frac{i}{d}} x_{d+1}^{i-1} \sum_{n=0}^{\infty} \frac{[-i / d]_{n}^{d}}{[d n+i-1]_{d n}}\left(\frac{x_{d+1}^{d}}{x_{1} \cdots x_{d}}\right)^{n}
$$

$(i=1,2, \ldots, d)$ form a fundamental basis (see [13, Chapters 2 and 3$]$ for this argument).

Among them, $\phi_{1}, \ldots, \phi_{d-1}$ satisfy $L^{L}(\boldsymbol{\beta})$, but ϕ_{d} does not. Hence the rank of $L^{L}(\boldsymbol{\beta})$ equals $d-1$.

Take the weight $(1, \ldots, 1,0)$, and consider a refined monomial order. Then the unique exponent is $(0, \ldots, 0,-1)$, and $L^{L}(\boldsymbol{\beta})$ has a fundamental basis consisting of log-series starting with

$$
x_{d+1}^{-1}\left(\log \frac{x_{1} \cdots x_{d}}{x_{d+1}^{d}}\right)^{i} \quad(i=0,1, \ldots, d-2) .
$$

References

[1] I. M. Gel'fand, General theory of hypergeometric functions, Dokl. Akad. Nauk. SSSR 288 (1986) 14-18; Soviet Math. Dokl. (English translation), 33 (1987) 9-13.
[2] I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, Equations of hypergeometric type and Newton polyhedra, Soviet Mathematics Doklady 37 (1988) 678-683.
[3] I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, Hypergeometric functions and toral manifolds, Funktsional. Anal. i Prilozhen 23 (1989) 12-26; Funct. Anal. Appl. (English translation), 23 (1989) 94-106.
[4] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinskii, Generalized Euler integrals and A-hypergeometric functions, Advances in Mathematics, 84 (1990) 255-271.
[5] S. Hosono, A. Klemm, S. Theisen, S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Comm. Math. Phys. 167 (1995), 301-350.
[6] S. Hosono, B. H. Lian, S.-T. Yau, GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces, Comm. Math. Phys. 182 (1996), 535-577.
[7] J. C. McConnel, J. C. Robson, Noncommutative Noetherian rings, John Wiley \& Sons, Chichester, 1987.
[8] I. M. Musson, Rings of differential operators on invariants of tori, Trans. Amer. Math. Soc. 303 (1987) 805-827.
[9] I. M. Musson and M. Van den Bergh, Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc. 650 (1998).
[10] M. Saito, Isomorphism classes of A-hypergeometric systems. Compos. Math. 128 (2001) 323-338.
[11] M. Saito, Primitive ideals of the ring of differential operators on an affine toric variety, Tohoku Math. J. 59 (2007), 119-144.
[12] M. Saito, Irreducible quotients of A-hypergeometric systems, Compos. Math. 147 (2011), 613-632.
[13] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations. Algorithms and Computation in Mathematics, vol. 6, Springer, New York, 2000.
[14] M. Saito, W. N. Traves, Differential algebras on semigroup algebras, AMS Contemporary Math. 286 (2001), 207-226.
[15] M. Saito, W. N. Traves, Finite generations of rings of differential operators of semigroup algebras, J. Algebra 278 (2004), 76-103.
[16] S. P. Smith, J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988) 229-259.

Department of Mathematics
Hokkaido University
Sapporo, 060-0810
Japan
e-mail: saito@math.sci.hokudai.ac.jp

