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FIRST SYZYGIES OF IRREDUCIBLE
A-HYPERGEOMETRIC QUOTIENTS

MUTSUMI SAITO

ABSTRACT. An A-hypergeometric system is not irreducible, if its
parameter vector is resonant. In this paper, we present a way of
computing a finite system of generators of the first syzygy module
of an irreducible A-hypergeometric quotient. In particular, if the
semigroup generated by A is simplicial and scored, then an explicit
system of generators is given.
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16532, 14M25 (secondary).
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1. INTRODUCTION

Let K be a field of characteristic 0, and let A := (a;;) be a d x
n integer matrix. We assume that Z? is generated by the column
vectors of A as an abelian group. Given a parameter vector 3 =
LBy, .., Bq) € K% the A-hypergeometric (or GKZ (after the systematic
study by Gel'fand, Kapranov, and Zelevinskii [1]-[4])) system M*(3)
with parameter vector 3 is defined as the left D(K™)-module

(1) M*(B):= M(B) := D(K")/D(K")14(9) + D(K"){A0 — B),
where D(K™) is the nth Weyl algebra
D(Kn) = K[ZL‘l, R ,an](al, e ,8n>,

14(0) is the toric ideal of K0y, ..., 0,] defined by A, and D(K"™)({Af —
B) is the left ideal of D(K™) generated by 2?21 a;x;0; — B (1 =
1,...,d).

The A-hypergeometric system MZ(3) is not irreducible in general.
Indeed M%(3) is irreducible if and only if the parameter vector 3 is
nonresonant (see [4] and [12]). In the paper [12], we considered a
category Ogn of right D(K™)-modules appropriate for the study of
A-hypergeometric systems, and we considered irreducible modules in
Okn. Each modules in Ogn» has a weight decomposition with respect
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2 MUTSUMI SAITO

to the torus action defined by A. We treat right D(K™)-modules in this
paper as well. We remark that there exists a one-to-one correspondence
between right D(K™)-modules and left D(K™)-modules by the anti-
automorphism ¢ of D(K™) defined by

(2) L(ij) = 8j L(aj) = l‘j fOI' all j

Let B € K?satisfy F,(83) ¢ N for every facet o of the cone generated
by A, where F, is the primitive integral support function of o. Then

L(B) := D(K")/1aD(K") + D(K") N (A0 — B) D((K™)")

is irreducible [12, Theorem 6.4], and any irreducible module in Oxr can
be described similarly [12, Theorem 6.6, where 1, is the toric ideal of
K[xq,...,x,] defined by A, and

DK™ = K[oFt, ... a(8,,. .., 8,).

In this paper, we describe a finite system of generators of the right
ideal (the first syzygy module of L(3))

I2AD(K"™) + D(K™) N (A0 — B)D((K™)"),

apart from that of I, which can be computed by the commutative
Grobner basis theory. To this aim, we consider generators of the right
D(K™)-module

IAD(K™) + D(K™ N (A0 — B)D((K>)")
IAD(K™) + (A6 — B) D(K™)

Since the D(K™)-module N is finitely generated, it is generated by fi-
nite number of weight spaces. In Theorem 4.7, we specify those weights.
This enables us to compute a finite system of generators of N and, in
turn, that of the first syzygy module of the irreducible module L([3).

If the semigroup is simplicial and scored, then those weights are
associated to facets, and we give explicit generators of N (Theorem
7.1).

We note that Hosono et al [5] and [6] considered L(3) (called the
extended GKZ system) for the reflexive case.

N =

2. RINGS OF DIFFERENTIAL OPERATORS

Let K denote a field of characteristic 0. Let R be a commutative
K-algebra, and let M, N be R-modules. We briefly recall the module
D(M, N) of differential operators from M to N. For details, see [16].
For k € N, the subspaces D*(M, N) of Homg (M, N) are inductively
defined by

D°(M,N) = Homg(M, N)
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and
DFtY (M, N) = {P € Homg (M, N) : [f,P] € D*(M,N) (Vf € R)},
where [, | denotes the commutator. Set D(M, N) := (J,—, D*(M, N),
and D(M) := D(M, M). Then D(M) is a K-algebra, and D(M, N) is
a (D(N), D(M))-bimodule.

The ring D(K™) := D(K]|z1, ..., x,]) of differential operators on K"
is the nth Weyl algebra:

D(Kn) = K[l‘l, ce ,$n]<81, . ,8n>,

9
8x]~ ‘

The ring D((K*)") := D(K[zi{', ..., z']) of differential operators
on (K*)" is given by

D((K*)")

where 0; =

Kz a0y, ..., 0,)

rn

== @uEZ" m“K[@l, e ,Qn],

where 0; = x;0;.

Let A := {a;,as,...,a,} be a finite set of column vectors in Z<.
Sometimes we identify A with the matrix (a4, as,...,a,) = (a;;). Let
ZA, and Q>pA denote the abelian group, and the cone generated by
A, respectively. Throughout this paper, we assume that ZA = Z¢ and
that Q>0A is strongly convex.

Let X4 denote the affine toric variety defined by A, and T its big
torus. Let NA be the semigroup generated by A. The semigroup alge-
bra K[NA] = @,y K1* is the ring of regular functions on X4. Then
we have K[NA| ~ K|[x]/I4, where I, is the ideal of the polynomial

ring K[z] := Klzy,...,x,] generated by all 2% — z¥ for u,v € N"
with Au = Av. Here we have used the multi-index notation, e.g.,
¥ = xay? - xtn for w="(ug, us, ..., Uy).

The ring D(Ta) := D(K[t;", ..., t;']) of differential operators on T4

is given by
D(Ta) = Kt7' ...t N0, -, 0u)
pry @and taK[Sl,...7Sd],

9
ot;

The ring D(X4) := D(K[NA]) of differential operators on X4 is a
subalgebra of D(T4):

D(X4) ={P € D(T4) : P(K|NA]) C K|NAJ}.
Let X = K, (K*)", Ty, or X4. For a € Z¢, set
D(X)g :={P € D(X) : [siP]=a;P (i=1,...,d)},

where s; = t,0;, and 0, =
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where s; = Y7, a;;x;0; for X = K" or (K*)". Then

=P px

acZd

is a Z?-graded algebra.
Recall from [8, Theorem 2.3] that the graded part of D(X,) is de-
scribed by

D(X4)q = t*I(Qa)) for all a € Z4,

where

Q(a) = Qa(a):=NA\ (—a + NA),

I(Q(a)) = {f(s ) Kls] = f(e) = 0 for all ¢ € Q(a)},
K[s] = Klsi,...,54)
We write D(K™, X4) instead of D(K[z], K[NA]). From [16, 1.3
(e),(f)], we have
(3) D(K", Xa) = D(K")/1aD(K").
The algebra D(X,4) can be identified with
(P e D(K™) : PIy C I,D(K")}/I,D(K™).

(See e.g. [7].) We may thus consider that D(X,) is contained in
D(K™, X 4). For the following proposition, see [11, Proposition 4.1 and
Corollary 4.2].

Proposition 2.1.
D(K", Xa) = P t°1(2
aczd

where

Qa) = Qu(a) :={ueN": Au¢ —a+ NA},
I(Qa)) = {f(0) € K[f] : f(u)=0 for all u € Q(a)},
K[0] = Klby,...,6,]
In particular, D(K™, X 4)q = t*K|[0] for all a € NA.
Recall that a pair (u, o) with o C {1,2,...,n} andu € N° := {v €

N"|v; =0 for all j € o} is called a standard pair of a monomial ideal
M of K[0y,...,0,] if the following conditions are satisfied:

(1) for any v € N7, the monomial 9" does not belong to M;
(2) for any I ¢ o, there exists v € N°Ui} guch that 9%+ belongs to
M.
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Let I(a) denote the ideal of K0, ..., 0,] generated by the monomi-
als 0" with Au € —a + NA. Let S(I(a)) denote the set of standard
pairs of the monomial ideal [(a). Then we obtain the following theorem
from [13, Theorem 3.2.2, Corollary 3.2.3].

Theorem 2.2.
I(Qa)) = I(a) = ([f], : 9" € I(a))
= [ (0i—w:i¢o),

(u,0)eS(I(a))
where
n n ’le—l
01w = [J16;]u, = [T TT (6 — %)
j=1 j=1 k=0

3. SIMPLE OBJECTS IN Ogn

In this section, we briefly review simple objects in Ogn from [12].
Let X = K™, (K*)", or T4. In [12], we defined a full subcategory Ox
of the category of right D(X)-modules (cf. [9, 11]). A right D(X)-
module M is an object of Ox if the support of M is contained in X4,
and M has a weight decomposition M = @, x4 Mx, where

My={zxe M : z.f(s)=f(—X)z forall fe KJs]|}.
Recall that the preorder < is defined in [9] (see also [14]):
Fora,B€ K,  a=x8<IQB-a))Zm,,

where m,, is the maximal ideal of K[s] at . An equivalence relation
a ~ 3 is defined to be a < B8 and a = 3.
For B € K, the right D(K™)-module

Mien(B) := D(K™)/(IaD(K") + (s — B) D(K™))

is the right D-module counterpart to the A-hypergeometric system
M%(B) with parameter vector 3 (cf. (1) and (2)). Recall that s; =
Zn aijﬁj, where 9]' = l‘jaj. Clearly MKn (IB) € OKn.

Jj=1

Definition 3.1 (Definition 6.2 in [12]). Let 8 € K. In 3+ ZA, there
exists a unique minimal equivalence class with respect to <, which we

denote by 3%, An element belonging to the class is also denoted by
/Bempty.

Remark 3.2. In [10], we have defined a finite subset E,(a) for a face 7
and a parameter vector a € K d;

E(a)={Ae K(ANT)/Z(ANT) : a— A NA+Z(ANT)}.
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The class B°™PY is described as

emptyy\ __ E >0 (/8) (T:@ZOA)
Ej‘r(/6 ) - { @Q7 ! (7’ 7£ QZOA)'

Theorem 3.3 (Theorem 6.4 in [12]). Let 8 = B € K. Then

L(B) = Lgn(Ta,B)
= D(K")/(IaD(K") + D(K")N (s — @D((KX)”))
~ @K s — B+ a) oy 10(a)

is a unique simple D(K™)-submodule of
D((K*)")/(IaD((K™)") 4 (s = B)D((K)")).

Remark 3.4. Any simple object in O is isomorphic to some L(3) or
a similar module associated to a torus constituting the toric variety X4
[12, Theorem 6.6].

Let B = B°™PY and let
[AD(K™) + D(K™) 1 (A0 — B) D((K™)")
NK" (TA7 /6) = n n
(LaD(K") + (A0 — B) D(K™))
Here and hereafter we interchangeably use s and Af. The D(K™)-
module Ngn (T4, 3) is the kernel of the natural surjection
Mgen(B) = Licn(Ta, B) = L(B).

Our aim of this paper is to find a finite system of generators of the
D(K™)-module Ngn(T4,3). For a different choice of 8% we have
the following proposition.

Proposition 3.5. Let B = BY ~ @'. Then there exists P,Q €
D(X4) such that

Ngn(Ta, B) = PNgn(Ta,B)

Ngna(Ta,B8) = QNg«(Ta,B).
Proof. Since 8 ~ 3,

QB -0) Lmg, LB —B)) £ ms.
Take p(s) € I(Q(B — B) \ mg and ¢(s) € I(QB" — B)) \ mg, and
let P := t#PFp(s) and Q := t7Pq(s). Then clearly PNn (T4, 3) C
Nin(Ta, B) and QNgn(Ta, B) € Nin(Ta, B).
Moreover, since PQ = p(s+ 8 — 3)q(s) ¢ mg and QP = q(s + 3 —

B)p(s) ¢ mg, PQNgn(Ta,B) = Nin(Ta,B) and QPN (Ta, B)
Ngn(Ta,3"). Hence the assertion follows.

O
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4. WEIGHTS OF GENERATING RELATIONS OF L([3)

Let B = B ¢ K9 In this section, we choose a finite set J of
weights of N := Ngn (T4, 3) such that the weight spaces with weight
in J generate N (Theorem 4.7). This enables us to compute a finite
system of generators of N and, in turn, that of the irreducible module

L(B).

We recall the primitive integral support function of a facet (maximal
proper face) of the cone Q>¢A. Let F denote the set of facets of Qx¢A.
Given a facet 0 € F, we denote by F, the primitive integral support
function of o, i.e., F, is the uniquely determined linear form on Q¢
satisfying

(1) Fa(QZOA) 2 07
(2) Fy(0) =0,
(3) F, (2% = Z.
Then we know, by [10, Proposition 2.2] and Remark 3.2,
(4) B = B"""Y & F,(8) ¢ F,(NA) for all facets o € F.

Set
F(B) :={o € F|F,(B) € Z}.
From now on, we fix 3 € K¢ satisfying F,(83) < 0 for all 0 € F(B3).
Then B = BPY by (4). Let N := N(B) := Ngn(Ta,3). Then, for
a € 7%, by the definition of N, (3), and Proposition 2.1,
t-e (ﬂ((z(—a)) N (A9 — B — a,))
t-= (1(93(~a))(40 - B - a))

Proposition 4.1 (Lemma 8.2 (1) in [12]). Let a € Z*. If B+ a ~ B,
then N_g_q = {0}.

Choose B € Q7 such that F(B) = F(B) and F,(B) = F,(B) for all
o € F(B). (Such B exists by Cramer’s rule.) Set

Proposition 4.2. The right D(K")-module N is generated by @B ,coc3) N-p-as

where we put IC(B) = Usersia € C(B)| Fo(B +a) = 0}.
Proof. Let o be a facet of the cone Q>9A. Then

N_g_q =

F(B+a)N g oa=N_g o) Fr(aj)z;0) > Ng (aayd;

j=1 ajia
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Hence N is generated by €D ,cc5) N-g-o- By (4) and Proposition 4.1,
N_g_q=0if a € C(B)\ dC(B). O
Since a € C(B) implies that F,(8 + a) = F,(B+ a) < 0 for all

o € F(B), and that Fi,(B + a) < 0 for all o' ¢ F(B), we see that
JC(B) is decomposed according to the decomposition of QsA:

oc(B) = [1(-B -1 ncm),

T

where 7 runs over all proper faces of the cone Qs A such that o € F(3)
for all facets o = 7, and 7 denotes the relative interior of 7.

Notation 4.3. As in [15], let
NA = Qz0ANZ*\ | J(b; + N(An 7)),

and

(5) M :=max F,(b;) + 1.

We agree M = 0 if NA = Q>4 N Z? (NA is said to be normal (or
saturated) in this case).

Lemma 4.4. Let 7 be a face of Qs0A. Assume F,(a) < —M for every
facet o i 1. Then the following hold.

(1) The support of each minimal generator of the N"-set N”ﬂfgl(anL
NA) is contained in ¢ := {j|a; ¢ T}, where f4 is the linear
map from Z" to Z¢ defined by A.

(2)

N\ fi'(a+NA) = (J{(w,0)| F,(Au) < F,(a)}

orT
U U{(u,Ti)]Au ca+b+Z(ANT)},
Ti T
where (w,0) :=u + N7, and
N :={veN"|v;=0 forala; ¢ c}.
Proof. Tt is enough to prove (1) that, if w € N” and Au ¢ a + NA,

then A(u +v) ¢ a+ NA for any v € N".
Suppose that Au ¢ a + NA. Then one of the following two holds:

(1) F,(Au) < F,(a) for some facet o = 7.
(2) Au € a+b; + N(ANm;) for some i.
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In the first case, we clearly have A(u + v) ¢ a + NA for any v € N”.
Suppose that Au € a + b; + N(AN 7;) for some i. Then we prove
7; = 7. For this, we prove o > 7 for all facets o > 7;. Suppose that
o =1, but 0 # 7. Then F,(Au) = F,(a + b;)) < —M + F,(b;) < 0,
which is a contradiction. We have thus proved 7; = 7. Hence we have
A(u+v) ¢ a+ NA for any v € N7 in the second case, too. We also
have proved the second statement of the lemma. O

Lemma 4.5. Let a € Z%, and let 7 be a face of QsoA. Let B + a
be in the relative interior of —7, and b € N(AN 7). Assume that
F,(a+b) < —M for all facets o # 7. Then
(1) D(K™, X4)_q-p2" = D(K", X4)_q for any u € N™ with Au =
b.
(2) N_g_a-b2" = N_g_q for any u € N7 with Au = b.

Proof. By Theorem 2.2 and Lemma 4.4 (1), the minimal generators of
I(£2(—a)) do not have variables 6; for a; € 7. Moreover, by Lemma 4.4
(2), (Q(—a)) =1(Q2(—a — b)). Hence the assertions follow. O

Notation 4.6. Let 7 be a face of Q>gA such that all facets containing
7 belong to F(B), and let m, = [Z9N Q7 : Z(ANT)).

Choose 8, ; € 74 (j = 1,...,m,) so that B+ B.; form a set of
representatives of (Qr N (B + Z%))/Z(AN7), and that F,(B8,,;) < —M
for every facet o with o % 7. When m, = 1, we simply write 3. instead
of B.;.

Theorem 4.7. The right D(K™)-module N is generated by

mr
@ @ N-g-p,,,
j=1

T

where T ranges over all faces of Q>¢A such that all facets containing T

belong to F(B).

Proof. Let [5'+a be in the relative interior of —7. By Proposition 4.2, it
is enough to prove that N_g_, is generated by .., @T;{ N_g-p, -
We prove this by induction on the codimension of 7.
There exists 3, ; such that 3, ; —a € Z(AN 7). Take a’ so that
B,;,—a,a—a eNANT).

We claim that

(6) B+a~p+a

Since a—a’ € Z(ANT), we have, by definition, E.(84+a) = E(B+a’)
for 7 = 7. For 7/ # 7, there exists a facet ¢ = 7’ with o % 7. Since



10 MUTSUMI SAITO

B+ae—7and a—a € NANT), we have, for 0 € F(3),
F,(8+a) = F,(B+a)<0,
F,(B+a) = F,(B+a)—F,(a—a’)<0.

For o ¢ F(B3), of course F,(B+a), F,(B+a’) ¢ N. Hence E,(B+a) =
) = E,(B+ a) by [10, Proposition 2.2 (3)]. Then E.(8+a) =0 =
E.(B+a') by [10, Proposition 2.2 (4)]. We have thus proved the claim

By [14, Lemma 4.1.4] and Theorem 2.2, there exists a b-function
ba—a(0) = ba_a(A0) = >, auz™0" with ba_a/ (B+a)# 0 and Au €
a —a’' + NA for a,, # 0. Then

N—B—a = N—ﬁ—aba—a’ (/6 + a') = N—B—aba—a’(g) - Z N—B—a—l—Auau-

Here a—Au € @' —NA. If a—Au ¢ a' —N(ANT), then B+a— Au is in
the relative interior of a larger face, and hence the induction hypothesis
would do. If a — Au € @’ —=N(ANT), then B, ; — (a— Au) € N(ANT),
and by Lemma 4.5 N_g_q4 4, is generated by N—ﬁ—ﬁm‘ [

We may rephrase Theorem 4.7 as follows:

Corollary 4.8. The irreducible module L(3) is described as
wy (1aD(K™) + (A0 — B) D(K™)
L G Y |

Example 4.9. Let A = <(2) g (1] D Then Q>0A = Q% has two
facets: 019 — onal = onag and 03 — onag; Fglg(S) = S92 and

1

F,,(s) = s;. We have NA = N?\ <O

), M = 2, and m,, = My, =
myoy = 1. Let 8 = (:D Note that
S1 — 291 -+ 302 -+ 94, S9 — 93 + (94.
Let B,,, == —as — B = < 12) Then 8+ 8,,, = (_03), and
I((=B,,,)) = (03,04).

I((—B,,,)) N (s1+3,5) = (05 +04),

where = denotes the equality modulo H(ﬁ(—ﬂglz))(sl + 3, 59).
Since —3,,, = a1 — a3z = ay — ay,
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(7) t_ﬂ(’l? (03 -+ 94) = I1@3 -+ I284.

Let B,, := —2a3 — B = < 11). Then B8+ 8, = (_02>

I(Q(=B,,)) = (01,62,64).
1(Q(—B,,)) N (51,8 +2) = (26, + 305+ 0y).
Since —0,, = as — a; = a; +az — az = 2az — ay,
(8) tPos (201 + 305 + 0,) = 2240, + 3x12305 + x§84.
Let By := —B. Then

HQ(—Byoy)) = (ba, 0205, [01]205, 61[0]2).

05(05 + 04),
[91]2(93 +604),01(05 — 1)(65 + 04),
O(— _ ] [0]5(2601 + 302 + 64),
HQ=Brop)) Nsr 2 = < (61 — 1)05(26, + 365 + 64), '
05(26, + 305 + 04) — 201(05 + 0,)
= 39293 + (93 - 201)64

Since —5{0} =—a4=a1—0ay—az = ay—2a; —as = as—a, — 2as,
t7P101 05 (03 + 04) = 110503 + 12050,
t7P101[0,]5(05 + 04) = 220205 + 22070y,
t7P1010, (03 — 1)(0s + 04) = 140102 + 01 (05 — 1)0y,
P01 [03]5(260, + 305 + 04)
= 2:1:431@3? + 321(03 — 1)0205 + [03)204,
tP1oy (0, — 1)03(20, + 3604 + 0y4)
= 2090205 + 311 (0; — 1)0205 + (6, — 1)050y,
t7P0} (30,05 + (05 — 26,)6,) = 3210205 + (A5 — 26,)0,.
Hence N is generated by the operators (7), (8), and (9) by Theorem
4.7.
5. SCORED CASE FOR A FACET

Recall that a semigroup NA is said to be scored if
NA = (){a € ZA : F,(a) € F,(NA)}.

ceF
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(See [14].) Clearly a normal semigroup is scored. Note that, if NA is
scored, then m, = 1 for all faces 7 [11, Lemma 7.11]. In this section,
we assume that NA is scored, and we give an explicit generator of
K|s]-module N_g_g_for a facet o (Theorem 5.3).

Remark 5.1. In the scored case, we can refine some previous statements
without changing proofs.

In Lemma 4.4, the condition F,(a) < —M can be replaced by the
condition —F,(a) € F,(NA). In Lemma 4.5, the condition F,(a +
b) < —M can be replaced by the condition —F,(a + b) € F,(NA).
In Notation 4.6, we take 3. so that —F,(3,) € F,(NA) instead of
F,(B,) < —M; Theorem 4.7 is valid for this choice of 3,.

Lemma 5.2. Assume that NA is scored. Let o € F(B3). Then
(1) SA(=B,)) = {(u,0) |u € N, F,(Au) ¢ —F,(B) + F,(NA)}.
(2) I(Q(-B,)) = N (0; —u;|i ¢ o).
u,0)eS(I(—B,

(u, )
(3)
Nog g, = tP(UQ(=B,) : Fy(A0))- F,(A0)

= N (0; —u; |i ¢ o) - F,(AD).
(u,0)€SI(-B,)), u#0

Here N°° = {u € N"|u; =0 for alla; € 6}. We sometimes write
J € o instead of a; € 0.

Proof. Recall from Notation 4.6 and Remark 5.1 that we have chosen
B, so that —F,/(8,) € F,/(NA) for all 0’ # o.

(1) follows from Lemma 4.4 (2), and (2) follows from (1) and Theo-
rem 2.2.

To prove (3), by renumbering if necessary, we assume that a4, ..., a4
are linearly independent with a; ¢ ¢ and as,...,a,; € 0. Let Fi(s) be
a linear form such that, for j < d, Fi(a;) # 0 if and only if i = j. Take
Fy = F,. Then

(A0 — (B+B,)) = (Fi(A0) — Fi(B+B,)[i=1,....d).

Note that F,,(Af) = Fy(Af) € (A0 —(B+,)) since F,(B+03,) = 0 by
definition. Hence D of the first equality is clear, and O of the second
equality follows from (2).

Suppose that

(10) > Li(F0) = F(B+ B,)) € UO(=B,)).
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Here and hereafter, we sometimes write F'(6) instead of F(Af). Since
F;(0) contains 6; but not 6;(j # 4, j < d), we may assume that f; €
K[ej |j <iorj>d].

Let (u, o) satisfy w € N°° and F,(u) ¢ —F,(8B) + F,(NA). Then

d
(11) > filw,05)(Fi(u,0,) = Fi(B + B,)) =

i=1
where F'(u,0,) denotes the function obtained from F by replacmg 0;
by w; for j ¢ o. By looking at the variables 6; (i = d,...,2), we see
filu,0,) =0 (i = ..,2). Hence f; € [(2(—8,)) fori =d,...,2

In turn fi(u,0,)F ( 0,) = 0. (Note that Fy (8 + 3,) = 0.) Sincé
Fi(u,0,) = Fi(u) = F,(Au), we have

fie N (0; —u;|i ¢ o),
weN";u£0
F;(Au) ¢ —F,(B) + F>(NA)

since, for u € N°°| F,(Au) # 0 if and only if u # 0. O

Theorem 5.3. Assume that NA is scored. Let o € F(B). For j ¢ o,
put

m; =m,,; = max{u; € N|F,(a;)u; ¢ —F,(8)+ F,(NA)}.
Then
N g g, =t P HHe—k F,(Af)
j¢o k=1

Proof. By Lemma 5.2, it is enough to show

(12) (M 0—wlj ¢ o) =1Q=B,)+ (]I~

u €N, F,(Au) #0 j¢o k=1
F,(Au) ¢ —F,(B) + F,(NA)

We know [(Q(—43,)) = ﬂ (0; —u;|j ¢ o) by Lemma 5.2.
WENTE, F, (Au)¢—Fy (B)+F» (NA)

Since each ideal in (12) is generated by elements in K[0;|j ¢ o], we

only need to check (12) in K[f;|j ¢ o]. Then the zero set of each side

of (12) equals the finite set {u # 0| (u,0) € S(I(—8,))}. By localizing

at each zero point, we see that both sides are equal. O

Corollary 5.4. Assume that NA is normal. Let o € F(3).
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Then
[ =tey
N, =tP(] I 0 —-Fk) F.(A9)
j¢o k=1
—F, —1
Proof. In this case, the m; in Theorem 5.3 equals L%j O
o\t

6. SCORED CASE FOR A SIMPLE FACE

In this section, we keep to assume that NA is scored. Furthermore
we assume that a fixed face 7 of Q>0A of codimension c satisfies

(13) {oeFlor-1}={ceFB)|ocr=1}={01,00,...,0.}.

Under these assumptions, we show that N_g_g_is generated by N_g_g_
(1 <i<c¢) (Theorem 6.3).

Change the order if necessary, and take aq,--- ,aq € A so that
C
aic€ () ox\oy (i<o)
k=1, k#i
Qci1,--.,0q € 7T is linearly independent.

Put F; := F,, for i < ¢, and take F.iq,...,F; € (Af) so that for
1,7 <d
Fi(a;) #0 i # 5.
We prove that N_g_g_is generated by N_g_g_ (1 < i < ¢). For
simplicity, put '

= LQ(-8,)).

a = (46-8-8,),

fo= Zl"ZHHH_k
jéo; k=1

Here, for a facet o > 7, we put
iy = {([0]u|u €N, F(Au) € F,(8,) + F,(NA) (Vo' # 0)).
We have, by Theorem 2.2 and Lemma 4.4 (2),
i = ([flu]|Au € B, + NA)
= ([0lu|Fi(Au) € —F(B) + F;(NA) (1<i<0))

and

. u € N7,
(14) i, = <[ bl F(Au) € FL(B,) + Fu(NA) (% #1, K <0 >
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since —F,(83.) € F,(NA) for any o % 7.
Lemma 6.1. t P-§C >0 N_g_g D(K").

Proof. Let 0 = 0, (i = 1,...,¢), and let u € N7 satisfy F,/(Au) €
Fo(B,)+ Fy(NA) for all o' # 0. Let a := B, — Au. Since a satisfies
the condition for ‘3.’ (Notation 4.6 and Remark 5.1),

eI TI0 - F)=Nga
j¢o k=1
by Theorem 5.3. Then by the proof of Theorem 4.7
N_g_a € N_g_g, D(K").

Hence we have
Mo, j

(15) E [T T k) - Fo) € Vg s, DK™,
j¢o k=1
Multiplying (15) by 0%, we have
¢ P01 [T T1 (05— k) - Fo € N, D(K™).
jé¢o k=1

O

By Lemma 6.1, we only need to prove i Na = {4 1i-a. To this aim,
we prove that

(16) (iNa)y=>F+1i-a)y
for all maximal ideals m of R := Kby, ..., Hn]_. In this argument, we
extend the field K into its algebraic closure K. We simply write K

instead of K. For v € K%, let i, be the localization of i at the maximal
ideal corresponding to v. We have

V@{) = {ve K, # Ry}

Cc

= U U u+ K.

i=1 F,(Au)¢—F,(8)+F;(NA)
Proposition 6.2. iNa=f+ia.
Proof. If v ¢ V(i) N V(a), then (iNa), = (ia),.

Let v € V(i) N V(a), and let ¢ := ; — v;. By the definitions and
Theorem 2.2,

i, = ( H 05 | [0]: minimal in i),

vjeN, v;<u;
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and
(&
fo = Z( H 0 - F; - H 0} | [0]w: minimal in i,,).
i=1 j¢o;v;EN,1<v;<mg, ; vj EN,vj <uj
Note that i, is a monomial ideal in the variables 6}, ...,6 .
Let

(17) E:ﬁmwﬁeg.

Note that, among 64, ..., #,, the variable 6; is the unique one appearing
in F;. Hence we may assume that

[ eK[0,,0),,,....0,], fr€ K[01,05,0,,,....0,],..., fa € K[0,...,0,].
By looking at the variable ¢/, in (17), we see
fabl; € ip.

If [0], is minimal in i, then u.yq = -+ = ug = 0. Hence, if ¢ < d, then
we have fy € i, f4F4(0') € (ia),, and

d-1
(18) > LF(0) € .
i=1
Similarly we have f;F;(0') € (ia), for c+ 1 <i < d, and
(19) > LF(0) € .
i=1
By looking at the variable ¢’ in (19), we see f.0/, € i,, and
feeC I 91 Fi(Au) € F(8,) + F(NA) (Vi < ¢)),
UjEN, v <uj
since Fi(a.) =0 for all i < c.
Let u satisfy F;(Au) € F;(8,) + F;(NA) for all i < ¢, and let
h:= H 0 (= [0]u up to multiplication by a unit in R,).

vieN, v;<u;

In what follows, we omit to write ‘up to multiplication by a unit in
R,. Let j & o.. If uj > m,,;, then F.(Au) € F.(8,) + F.(NA), and
h = [0]y € i,. Suppose that u; < m,, ;. Then F.(Au+ (m,, ; +1—
u,)a;) € F(B,) + F.(NA).
Note that for £ > 0
h = [8]u+k1j

unless u; < v; <u; + k.
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Hence, if there exists j ¢ o. such that the condition u; < v; < m,,;
does not hold, then

h = [Q]UJr(mac,jH*uj)lj € 1y

Next suppose that u; < v; < m,, ; for all j ¢ o.. Since v € V(a),
we have F.(Av) = 0. Hence v; = 0 for all j ¢ 0., and in turn u; = 0
for all j ¢ 0., or w € N°¢. By (14), h = [0]4 € (i, )». Therefore

hE,. € f,
by noting that v; = 0 for all j ¢ o.. In all cases, we have thus proved
hE, € (f + ia),.

Hence we have f.F. € (f+i-a), C iy, and Zf;ll fiF; € i,. Similarly,
we obtain

fiFi € (F+i-a)y
fori =c—1,...,1. Hence (iNa), C (f +ia),. The other inclusion is
clear. n

Theorem 6.3. Assume that NA is scored, and that a face 7 of Q>pA
of codimension c satisfies (13). Then N_g_g_ is generated by N_g_g_
(1<i<ec).

Proof. This is immediate from Lemma 6.1 and Proposition 6.2. U
1 00 1
Example 6.4. Let A=[0 1 0 1 | =(a1,as,as3,a4), and
001 —1
-1
:3: -1 =—-a;—a;=—a3—ay.
0

This example is normal but non-simplicial.

= F,, =59 ="05+ 04,
Fys = F,,, =51 =101+ 04
= F,, =53+ 83 =05+ 03,
Fyy = F,, =51+ 53=>0,+0s.
Let 84+8,, := —a;—ay. Then B, =1(—1,0,1) = az3—a; = ax—ay.
By Corollary 5.4, N_g_g,, is generated by

t_514F14 = t_BM (92 + 93) = I482 + :1:163.

&)

Each 1-dimensional face satisfies the condition (13).



18 MUTSUMI SAITO
We have 3 := B9, = =3, and

I(Q(—B,)) = (fa,05) N (61,05) N (B, 04) N (61, 06,)
= (0104,030,).

In particular,
0105 — 050, = 01(02 + 03) — 03(01 + 0,) € I[( (—B,)) N (AD),
and hence
No 3 t7P0(6,0, — 0304) = tP(0,05 — 030,) = 0,05 — 050s.
Indeed Ny is generated by
tP0,04(05 + 03) = 040,02 + 010504,
tP0,0,(01 +03) = 0,010, + 050504,
tP0.05(0, + 04) = 03000, + 0,050y,
tP0,05(60, + 04) 030105 + 020504,
tP(0,02 — 0505) = 0,05 — D30
Hence by Theorems 4.7 and 6.3, N is generated by
tP1(0, + 63) 140, + 7105,
tP2(0) + 03) = 1401 + 2903,
tP(0y +0,) = 2300 + 7104,
)
)

P2 (91 +04) = x301 + 120y,
tP(010y — 0304) = 0,05 — O30,.
7. SIMPLICIAL SCORED CASE

Theorem 7.1. Suppose that NA is scored and simplicial. Then N is
generated by N_g_g_ (0 € F(B)). More explicitly, N is generated by

HH (0, — k) - F,(A8) (0 € F(B)).
j¢o k=1
Proof. This is clear from Theorems 4.7, 5.3, and 6.3. U

Corollary 7.2. Suppose that NA is normal and simplicial. Then N is
generated by

=l
%I [ 6k -F.(40) (0 € F(@)).
j¢o k=1

Proof. This is immediate from Theorem 7.1 and Corollary 5.4. U
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Corollary 7.3. Suppose that NA is normal and simplicial. Assume
that F,(B) = —1 for all o € F(B). Then N is generated by

t™%F,(A9) (0 € F(B)).

Proof. This is immediate from Corollary 7.2. U
11 .- 1 1

Example 7.4. Let A = (O 1 e 1 n) = (ap,a1,...,a,_1,a,).

Then

This is normal and simplicial.

Let B = <_2) = —Qg — Ay, /60 = Ba’o = —ay — B = a,, IBTL =

n

By, = —n — B = ao, By := 0.
By Corollary 5.4, N_g_ B, 1 generated by

(20) tﬁoHH (0; — k) Fy,

=1 k=1

and N_g_g_is generated by

-1
n—1 I—:LL—LJ

(21) 211 IT @ - k) F

i=1 k=1

By Corollary 7.2, N is generated by (20) and (21).

-1 0
Example 7.5. Let A = o 51 () =(ay,...,aq,a4:1),
T |
and 8 = —ag,1. We have a1 + --- + ay = dag.;. This example is
normal, homogeneous, simplicial, and reflexive; F,(8) = —1 for all

facets o.
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Let o; be the facet not containing a; (1 <i < d). Put F; := F,.. We
have

F;j = sqa—(s1+--+54-1) = dbg+ 0441,

d—1
Fy = sq— (Y sj)+(d—1)s; =db;+ 0401 (i <d).
j=Llj#i
We have F,(3) = —1 for all facets o, and take 3; := B,. as follows:
1 0
! 0 s
Bd: : s /81: 7"'7/651;1: 0
1 0 1
2—d 2 d 2 d
The vectors —34,...,—3; are the roots (e.g. see (2.10) in [6]). Since

Mg = Mgy = Oand —3; = (d—1)ag.1—ag = a1+ -+aq41—aq.1,
Nog-p, = tPi(Fy0)) =t Pi(dfa+ bas1)
= <dl’§:&8d +x - xd_16d+1).
Let ¢ < d. Since m;; = m;y ., = 0 and —3; = (d — 1)ags1 — a; =

d
Zj:l,j;éi a; — Qqy1,

N_gp, = tP(F(0)) =tP(df; + bar1)
d
= (da5 30+ ( ] #)0as1)-
=1,
Hence the left module counterpart L(3) to L(3) is described as
do; + 04,1 + 1 (Z < d)
d
LE(B) = D(Kd+1)/D(Kd+1>< dz; 05,1 + Tas H 0; (1<d) >
j=1#i
004 0,

which is the extended hypergeometric system considered in [5] and [6].
The rank of the A-hypergeometric system M (3) equals the volume d.

Take the weight (0,...,0,1), and consider a refined monomial order.
Then the exponents of M%(3) are
(—ifd,...,—ijdi—1) (i=1,2,...,d),
and

Gi = (931"'33d)_§$i11112 e/, ( f d)

= dn+i—1gn \21---2
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(1 =1,2,...,d) form a fundamental basis (see [13, Chapters 2 and 3]
for this argument).

Among them, ¢y, ..., ¢4 1 satisfy LE(3), but ¢4 does not. Hence the
rank of L(3) equals d — 1.

Take the weight (1,...,1,0), and consider a refined monomial order.
Then the unique exponent is (0,...,0,—1), and L¥(3) has a funda-
mental basis consisting of log-series starting with

- R i .
Tih (10g—x31 ) (i=0,1,...,d—2).
+
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