<table>
<thead>
<tr>
<th>Title</th>
<th>Anomalous dip observed in intensity autocorrelation function as an inherent nature of single-photon emitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakajima, H.; Kumano, H.; Iijima, H.; Suemune, I.</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied Physics Letters, 101(16): 161107</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-10-15</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/51071</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Appl. Phys. Lett. 101, 161107 (2012) and may be found at http://link.aip.org/link/?apl/101/161107</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>APL101-16_161107.pdf</td>
</tr>
</tbody>
</table>
Anomalous dip observed in intensity autocorrelation function as an inherent nature of single-photon emitters
H. Nakajima, H. Kumano, H. Iijima, and I. Suemune

Citation: Appl. Phys. Lett. 101, 161107 (2012); doi: 10.1063/1.4760222
View online: http://dx.doi.org/10.1063/1.4760222
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v101/i16
Published by the American Institute of Physics.

Related Articles
Quantum-secured imaging
An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies
Three-dimensionally isotropic negative refractive index assisted by two-photon resonance via quantum coherence
Light propagation in an optically active plate with topological charge
Exploring constrained quantum control landscapes

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Anomalous dip observed in intensity autocorrelation function as an inherent nature of single-photon emitters

H. Nakajima,1,2,a) H. Kumano,1 H. Iijima,1 and I. Suemune1
1Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
2Research Fellow of the Japan Society for the Promotion of Science, Tokyo 102-8472, Japan

(Received 27 July 2012; accepted 4 October 2012; published online 16 October 2012)

We report the observation of an anomalous antibunching dip in intensity autocorrelation function with photon correlation measurements on a single-photon emitter (SPE). We show that the anomalous dip observed is a manifestation of quantum nature of SPEs. Taking population dynamics in a quantum two-level system into account correctly, we redefine intensity autocorrelation function. This is of primary importance for precisely evaluating the lowest-level probability of multiphoton generation in SPEs toward realizing versatile pure SPEs for quantum information and communication. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4760222]

A variety of single-photon emitters (SPEs)1–21 have been widely investigated for applications in quantum key distribution (QKD),22 quantum information processing,23 and quantum metrology.24 Single-photon emission has been demonstrated by using quantum two-level systems formed in single molecules,1,2,12 atoms,3,4 ions,5 color centers in diamond,6–9 and semiconductor quantum dots (QDs).10–21 Generating single-photon pure state is crucial for assuring the firm security in the cryptography25 and also minimizing error rate in linear optical quantum computing.26 Therefore, suppression of the multiphoton generation is strongly required for the practical SPEs. Recently, with a variety of quantum systems, SPEs with considerably low multiphoton probability have been reported,4,13,15 and implementation to the prototype QKD systems has also been demonstrated.6,8,14,16

Photons generated from SPEs are generally inspected with the Hanbury-Brown and Twiss (HBT) setup,27 where photons separated into two arms are introduced to single-photon detectors located on each arm for photon correlation measurements. The intensity autocorrelation function28 is composed of coincidence counts as a function of the delay time τ between photon detection events in each detector. The coincidence counts at τ = 0 exhibit a simultaneous photon detection by the two detectors. Therefore, multiphoton generation can be directly measured with coincidence counts at τ = 0 (Refs. 1 and 10–12) and this usually appears as a peak in the intensity autocorrelation function.

In this paper, observation of counterintuitive dip-shaped structure at τ ~ 0 in intensity autocorrelation function is reported. We show the dip structure originates from an inherent nature of a single quantum emitter. In order to explicitly include population dynamics in a quantum two-level system, we derive an extended form of the conventionally used intensity autocorrelation function. This provides a way to precisely determine the probability of generating single-photon pure states from SPEs over a wide range of operating conditions.

InAs QDs grown on (001) GaAs by metalorganic molecular-beam epitaxy was used to realize a SPE. For isolating a single QD, pillar structures with the diameter of 500 nm were formed with reactive ion etching and were embedded with metal to enhance photon extraction efficiency. Further details on sample preparation are given in Refs. 18 and 19. Optical properties of the QDs were examined by a standard micro-photoluminescence (μ-PL) setup equipped with a mode-locked Ti:sapphire laser (photon energy of 1.3920 eV, pulse repetition period of 13.2 ns, pulse duration of ~5 ps) and a Si charge-coupled-device detector. Figure 1(a) shows a μ-PL spectrum observed from a single QD at 20 K. The excitation power was 2.1 μW which corresponds to the average number of excitons (N_X) photoinjected into the QD of ~0.2. The emission line centered at 1.3214 eV is prominent and we focus on this line hereafter. From the linear excitation power dependence of the PL intensity and the presence of finite exciton fine structure splitting,29 this emission line was assigned to be a neutral exciton (X^0).

Under the same excitation condition, a photon correlation measurement was carried out with the HBT setup employing a pair of single-photon counting modules (SPCMs). Resultant intensity autocorrelation function is displayed as black line in Fig. 1(b) with its expanded view around zero delay in the lower trace. The accumulation time for building up the histogram with a multi-channel scaler was about 10 h. Strongly suppressed coincidence counts at τ ~ 0 manifest highly pure single-photon emission from the present SPE.

Here, we analyze the measured intensity autocorrelation function with a commonly accepted formula under nonresonant pulsed excitation30,31,19,20

$$N^{-1} \left\{ B + x_0 \exp \left(-{\tau \over \tau_e} \right) + \sum_{n \neq 0} x_n \exp \left(-{\tau - n \cdot T_{rep} \over \tau_e} \right) \right\},$$

where $x_0, x_{n(\neq 0) \cdot T_{rep}}, \tau_e$, and N are the degree of multiphoton contribution (0 ≤ $x_0 ≤ 1$), correlation peak height of nth excitation cycle ($x_{n(\neq 0) \cdot T_{rep}} \equiv 1$), repetition period of the excitation pulses, decay time constant of the emitter, and the normalization factor, respectively.

Here, B is the baseline originating from an accidental coincidence, estimated to be ~0.009.30 As for τ_e, we have independently measured the decay profile of the X^0 emission.

a)Electronic mail: nakajima@es.hokudai.ac.jp.
measured coincidence counts at well reproduced. However, the important finding is that the to zero assuming an ideal SPE. The overall properties are calculated with Eq.(1) for the ideal SPE. This is a clear indicated to unity at \(t = 0 \) will relax to the ground state (GS) with decay time constant of \(\tau_c \) as indicated by the green line in line (inset of Fig. 1(a)) and obtained double-exponential decay times of 0.9 and 6.1 ns. The shorter decay component is the exciton lifetime commonly observed in InAs QDs, while the longer one is most probably due to additional transitions involving other excitonic states, such as dark excitons or charged excitons. Intensity autocorrelation function based on Eq. (1) is simulated and the convoluted result with a system response function is displayed as the green dashed line in Fig. 1(b). In this simulation, \(x_0 = 0.003 \). Expanded view at \(t = 0 \) in a logarithmic scale is displayed at the bottom.

The observed dip-shaped coincidence with a cusp at \(t = 0 \) reveals that there exists qualitative difference between the measured intensity autocorrelation function and Eq. (1). We discuss, to clarify the difference, the coincidence counts between photons labeled as the first and second photons triggered by the different excitation pulses. Assuming for simplicity that excitation pulse drives the exciton population in a QD, \(p_{X_0} \) to unity and the second photons are emitted instantaneously after excitation at \(t = T_{rep} \) (Fig. 2). The \(p_{X_0} \) initiated to unity at \(t = 0 \) will relax to the ground state (GS) with decay time constant of \(\tau_c \) as indicated by the green line in

Fig. 2. Schematic of the dynamics of exciton population in a QD. Green thin line indicates the decay profile of exciton populated at \(t = 0 \) as a function of \(t \) (bottom axis) and delay time \(\tau \) with respect to \(t = T_{rep} \) (upper axis). After the first photon emission at \(t_0 \), system stays in the ground state until next excitation (black dashed arrow). Black arrow indicates possible coincidence between the first and second photon emissions, while the gray arrow corresponds to unphysical coincidence in which the exciton decay is independent of the subsequent excitations as reflected in Eq. (1).
\[\tilde{g}^{(2)}(\tau \geq 0) = N^{-1} \left\{ B + x_0 \exp \left(-\frac{\tau}{\tau_e} \right) + \sum_{n>0} x_n \exp \left(-\frac{\tau - n \cdot T_{rep}}{\tau_e} \right) \cdot [1 - \exp(-|\tau|/\tau_e)] \right\} \]

and \(\tilde{g}^{(2)}(\tau \leq 0) = \tilde{g}^{(2)}(-\tau) \). In comparison to Eq. (1), the anomalous dip observed at \(\tau \sim 0 \) is satisfactorily reproduced with the \(\tilde{g}^{(2)}(\tau) \) as indicated by the red line in Fig. 1(b). Furthermore, the extended function allows us to precisely determine the multiphoton contribution of \(x_0 = 0.003 \) which cannot be derived with Eq. (1). These results demonstrate that considering the population dynamics, as an inherent nature of quantum emitters, is essential for evaluating the intensity autocorrelation function under the pulsed excitation.

In what follows, we discuss the condition for emerging the anomalous antibunching dip based on Eq. (2). The anomalous dip is caused by applying the modulation term \(1 - \exp(-\tau/\tau_e) \) to unphysical coincidence counts represented by exciton population at \(t = T_{rep} \), i.e., \(\exp(-T_{rep}/\tau_e) \) (see Fig. 2 and Eq. (1)). Thus, for evaluating the \(x_0 \), it is beneficial to describe the dip depth as a function of \(T_{rep}/\tau_e \) which is specified by selecting the emitter and the repetition period of the excitation. Here, we introduce the dip depth defined by \(\Delta - \tilde{g}^{(2)}(0) = \Delta - x_0 \), where \(\Delta \) is the lower limit of the coincidence counts at \(\tau = 0 \) without considering the inherent nature of quantum emitter, and we set \(B = 0 \). Figure 3 presents the calculated dip depth as a function of \(T_{rep}/\tau_e \) for some \(x_0 \) values. In this figure, all traces tend to \(-x_0\) for sufficiently high \(T_{rep}/\tau_e \), which indicates that peak-shaped coincidence with the amplitude of \(x_0 \) appears as the multiphoton contribution. In this condition, Eq. (2) reduces to Eq. (1). Actually, in most of the reports, \(x_0 \) has been evaluated with relatively high \(T_{rep}/\tau_e \) region such as \(>10 \). However, for the low \(T_{rep}/\tau_e \) region, dip-shaped coincidence emerges. This is because the coincidence counts based on the uncorrelated decay (green dashed line in Fig. 2) are overestimated, and the amplitude of modulation required to include the quantum nature is enhanced for the low \(T_{rep}/\tau_e \). Thus, the conventional formula (Eq. (1)) is no longer valid. In the present case, since \(T_{rep}/\tau_e \sim 2 \) and \(\Delta > x_0 \), the anomalous dip was clearly observed as indicated by Fig. 1(b). Therefore, it is essential to employ the \(\tilde{g}^{(2)}(\tau) \) especially for the SPEs with low \(x_0 \) operating with low \(T_{rep}/\tau_e \) conditions such as high repetition cycles.

Note that the fine fitting for the height of each correlation peak at \(\tau = n \cdot T_{rep} \) \((n \geq 1) \) shown in Fig. 2 is due to relatively low excitation condition such that \(N_X \sim 0.2 \). For larger excitation power, the peak heights are subject to the effect of excitation rate of \(G \) as is the case with the well-known antibunching lineshape in a single-photon emission under cw excitation. On the other hand, the derived modulation term \(1 - \exp(-|\tau|/\tau_e) \) is irrelevant to the \(G \) for \(\tau \sim 0 \) since the system is free from excitation.

In conclusion, we have reported the observation of an anomalous antibunching dip in intensity autocorrelation function with a semiconductor single-photon emitter. By redefining the autocorrelation function to include the population dynamics in quantum emitters, the observed dip was clearly interpreted. Applying the extended autocorrelation function to the result of the photon correlation measurements enables us to evaluate one of the most important figure of merit \(x_0 \) even with relatively low \(T_{rep}/\tau_e \) condition evoking a dip at around zero delay. Our findings are invaluable to deal with versatile single-photon emitters demanded for the state-of-the-art quantum information devices.

The authors would like to acknowledge Dr. H. Sasakura and Dr. C. Hermannstädt for fruitful discussions. This work was supported in part by the Grant-in-Aid for Scientific Research (B), No.24310084, (S), No.24226007, Hokkaido Innovation Through Nanotechnology Supports (HINTs) from the Ministry of Education, Culture, Sports, Science and Technology, and Strategic Information and Communications R&D Promotion Programme (SCOPE) from Ministry of Internal Affairs and Communications.

![Dip depth vs. T_{rep}/τ_e](image_url)

FIG. 3. Calculated depth of anomalous dip at $\tau = 0$ as a function of T_{rep}/τ_e for specific x_0 values. In this calculation, $B = 0$ is assumed and system response function is not taken into account. Negative value represents peak-shaped coincidence at $\tau = 0$. The dip depth is the lower limit of the coincidence with the amplitude of x_0 appearing as the multiphoton contribution.

30Fraction of accidental coincidence count for emitters under cw excitation is estimated by \((2S + D^2)/(S + D)^2\), where \(S\) and \(D\) are measured signal and dark count rates, respectively (Ref. 17). In our case, \(S/D\) was approximately 11 500 (120) counts/s, leading to \((2S + D^2)/(S + D)^2 \approx 0.021\). The baseline \(B\) for pulsed operation is given by the fraction of accidental coincidence count in time-averaged coincidence counts per pixel in a multi-channel scaler (MCS). Thus, \(B\) is obtained by normalized coincidence counts of 814.5 integrated over a relatively wide time bin of 184.8 ns (1848 MCS pixels) as 814.5/1848 × 0.021.

33The emitter employed in this work shows double-exponential decay, thus the term \(\exp(-1/\tau_0)\) in Eq. (1) can be rewritten as \(A_1 \exp(-1/\tau_1) + A_2 \exp(-1/\tau_2)\), where \(A_1, A_2, \tau_1, \tau_2\) are 0.69, 0.31, 0.9 ns, 6.1 ns, respectively.

34In the redefined intensity autocorrelation function, symmetrization operation to be even function in terms of \(\tau\) is carried out after summing up all the contribution of physically possible coincidence counts triggered by excitations for \(n > 0\).

35Function value of Eq. (1) at \(\tau = 0\) corresponds to \(\Delta\) with \(\alpha_0 = B = 0\). Using \(\Sigma\) defined as \(2 \sum_{n=0}^{N_\text{max}} \alpha_n \exp(-n \cdot T_{\text{rep}}/\tau_n)\), we have \(\Delta = \Sigma/ (1 + 2\sigma)\).