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81. Introduction and notations
[.et m denote the normalized Lebesgue measure on the unit
circle T = {z : |zl = 1}, that is dm(eix) =rdx/2%. ‘Let A be

the disc algebra, that is, A 1is the algebra of all continuous
functions on T whose negative Fourier coefficients vanish. For

O & Tpe CE the Hardy space HP is the closure of A in the

p p R *
Lebesgue space L° = L"(m), and H is the weak -closure of A
in Lo = Lm(m). Let S be the singular integral operator
defined by
SF(E) = —0— f AL A
i z — &
T

the 1integral being a Cauchy principal value (cf. [3, p.38]). i
f is 1in Ll, then Sf(f) exists for almost everywhere & of
| We shall define the analytic projection P+ and the co-

analytic projection P_ by
P& T %82, P = k) = 8} /2,

+

where 1 denotes the identity operator. Then,
(P+ # P OP(L)y = (L), (P+ « P RPLCy e BT .
For a function f in Ll, we shall define T by

FLEY = RL{gP(E) - f f dm} .
T

By the calculation,

~ i8 B — x ix ix
fle ") '= cot[————— f(e " )dm(e "),
jT 2 J

the 1integral being a Cauchy principal value. A function Q in

HOO is an inner function if et = 1 a.e.. A function h 1is an

outer function if there exists a real function t in Ll and a

t + i% + ic
e S

real constant ¢ such that h = For functions o

a

and B in L ,




. o a - B
Sa,B = SaP NIRRT e 5 3 L B S

is called a singular integral operator (ef.f17)1). We shall

define subspaces AO and Hg Y 1L.&p & m,, by
A arifar Frillslin wAl and £ dm = 0},
o)
i
HP = {r ; £ is in HP, and f f dm = 0}.
o)
g
By f we denote the complex conjugate function of f. We shall
define subspaces Ao and ﬁg s DY
T e EE o T2 AT i S p
A, . 5 0 ds in AO}, H it o s An HO}.
Suppose 1 £ p<o® and W 1is a non-negative function in Ll.
Then Lp(W) is a weighted Lp space of m-measurable functions

equipped with the norm

el 5 = ¢ 121P wamy /P,
P,
i

The weighted Hardy space Hp(W) (resp. ﬁg(W)) is the norm closure
of A (resp. RO) in Lp(W). In this paper, we shall consider
the case p = 2, and remain entirely in Hilbert spaces. We shall
wright II-II2 W as lI-IIw for short. L2(W) is a Hilbert
space equipped with the inner product

(t. &)y = | f& wam.
T

We shall define the Helson-Szego class (HS) as follows(cf.[18]).

(REY = fe? T e oy we Lm, real,
vl £ ®/2 - €, for some € > 0}.
Historically, in the famous paper [18], H.Helson and

G.Szego proved that a8 is continuous in the norm of LZ(W) ¥ i

and only if W is in (HS) or W = 0. Since S =8, , = 2P -

I P+ is continuous if and only if S 1is continuous. If W €&




(H5); then W—1 & {HS), and hence W_l & Ll. In the paper
L2k , P.Koosis proved that P+ becomes a continuous operator
from LZ(W) to L2(U) for some non-zero and non-negative
function U if and only if W-1 L& 1 Ll. In this paper, we

shall not distinguish between an operator's being bounded and
being densely defined and extendable by continuity to a bounded
operator.

M.Cotlar and C.Sadosky [7] got their lifting theorem, which
is called the Cotlar-Sadosky theorem, and consider the condition
of the operator S = Sl,-l to be a bounded operator on L2(W)
whose operator norm 1is equal to or less than M, for a given
constant M. We gave the another proof of the Cotlar-Sadosky
theorem in [44] and considered the condition of the singular
integral operator Sa,B to be a contraction operator on LZ(W)
under the strong condition that « and B belong to Hm. We
have used the Hilbert space methods and the Cotlar-Sadosky
theorem.

Prof.T.Nakazi and the author [28] gave the more satisfactory
necessary and sufficient condition of Sa,B to be a contraction
operator on LZ(W) when o, B and W satisfy some weak
condition.

In -Seetion 2, we shall give the necessary and sufficient
condition of Sa,B to be a contraction operator on LZ(W)
completely in general. We consider the weighted norm inequality

L gatiian s KHbgs (8.844 bl
where R sk o {fl S S 0 € A, £, € AO}, and get a class

(@)

(HS)(r) with




i palion s Q_;_ﬁ: .
* 1 - aB
We define (HS)(r) in Section 2. Since the necessary and

sufficient condition for Sa 8 to be a contraction operator on

LZ(W) is not simple 1in general, we use a class {HSYir}  To
describe 1it. Even when W =1 or B = 0, our results contain
new results. When B = 0, we get a very simple necessary and

sufficient condition for Sa.B to be a contraction operator on
LZ(W). That is., Sa,O = aP+ is a contraction operator on L2(W)
if and only if W belongs to (HS)(lal) with Jel £1 or aW =
0. This result was essentially given by Prof.T.Nakazi and the

author in 1281]. If r 1s a non-zero constant, then (HS)(r)

becomes a subset of the union of the Helson-Szego class (HS)

and {0}.

In Section 3, we consider the (left) invertibility of Sa,B
on L2(W). By the same method which we use to consider the
weighted norm inequality

Pl i e, T iele ke e da
in Section 2, we shall give the necessary and sufficient
condlition of functions s B and W to satisfy the reverse

weighted norm inequality

. 2 i
At s b 2 (leRE E -5 G O
completely 1in general. By way of this inequality, we consider
. S _ o ;
the (left) invertibility of Sa,B o LT{W), Sa,B is (left)
invertible if and only if ess inf min{lel, |Bl} > 0O and S¢ 1
is (left) invertible where ¢ = a/B. Hence we may assume B = 1.
For a $ in Lm, the singular integral operator S¢ g ¢P+ +




P is denoted by S for short. When W 1 H.Widom [43] and

- $
A.Devinatz [8] considered the (left) invertibility of T¢ and
S¢ tety B8] PEG, .. 187 e w8 s EL ) M.Shinbrot [39]
considered the invertibility of S¢ on L2 and derived the

method for finding the inverse operator of S¢. When W 1is in

(HS) , R.Rochberg [35] defined the Toeplitz operator T¢ on

HP(W) by T,f = P_(#f) for all f in H°(W), and got the

necessary and sufficient condition for the invertibility of T¢
on LP(w) (cf. [3, p.216], [4]). Many generalizations of these
results have been considered (cf. [3], [4], [6], [16], [17],
[25]1, [27]1, [28], [29], [44], [45], [46]). If P_ 1s continuous

in the norm of Lp(W), then T is (left) invertible in Hp(W)

$
if and only if S, is (left) invertible in LP(w) (ef. [15,
P 124F, [3Y, D,39311 . Prof.T.Nakazi and the author [29] gave a

simple necessary and sufficient condition for «, B and W
which satisfy the weighted norm inequality
Ve 2 x
118, gflly = 8LIf (fre A+ ALY,
for some positive constant 8§, when ess infla - B| > 0. We
shall study the weighted norm inequality
% .
fELFily 2 olliE - e aa g
by way of the weighted norm inequality
5 &
Under the assumption that W € (HS) or ess infll - ¢| > 0, we
can give a simple necessary and sufficient condition for the
operator S¢ to be bounded below w.r.t. W. 1In spite of this

assumption, the results in Section 3 cover the Widom-Devinatz-

Rochberg theorem for p = 2.




In Section 4, we do not assume W € (HS) or
sam Infll =, i, It is remarkable in this case that the

condition of ¢ and W satisfying the weighted norm inequality

- "
min{||S¢f||W. IIS_¢f||W} 2 &llflly (LK & B,

which implies that both S¢ and S_¢ are bounded below w.r.t.

Wi becomes simple. If W € (HS) and S¢ is bounded below

Wl iBe W, then S_¢ is also bounded below w.r.t. W. Hence

the results 1in Section 4 also cover the Widom-Devinatz-Rochberg
theorem for p = 2. We studied the L2—type (left) invertibility

of S¢ in [45].

This paper is based on the author's papers [45] and [46].




§2. Boundedness of Sa B and its norm

We shall consider the condition of the singular integral

operator Sa B to be a contraction operator on the weighted
space LZ(W). Even when W =1 or B = 0, Theorem A involves
new results. Theorem A 1involves not only the Helson-Szego
theorem but also new results. In this paper, the Cotlar-Sadosky
theorem &en g [2], [7]) is essential and is used several times.
We have given the another proof of this theorem in [44]. If Wl
2 W2 = W3 = 0, then (2) becomes the Schwarz inequality, and (3)
holds with k = 0. We shall use the equivalence of (1) and (3).

Cotlar-Sadosky theorem. Suppose W1 and W2 are real
functions 1in Ll, and W3 is a complex function in Ll. Then
the following conditions are mutually equivalent.
(1) For all fl € A and f2 E Ao'

f (F. 12w, + |£.1%w, + 2Re(f,F.W.)}dm = 0

T - 1 2 2 hERL e e i
« > A
(2) W1 . 0 W2 < 0, mnd Tor all fl € A and fz E Ao'

[ £ F,wadn] < (e 12w amd 2] re, 12w am 2

1-2 3 1 ;! 2 2
T T T

{3) W, 2 0, W, =2 0, and there exists a k in Hl such that

- 2

|W3—k|2§WW

12




We shall consider the boundedness of the singular integral
operator Sa B on the weighted space LZ(W). The following

classes (HS) and (HS)(r) are useful to consider this problem.
Some properties of (HS) and (HS)(r) are given in series of

Propositions 2.1-2.5.

Definition 2.1. We shall define the Helson-Szego class

(HS) as follows (et bid, pliddg), 22002281, 81, p.1871),

~/

e < 6 T ¥ b v e 1" real,
lvl £ /2 - €, for some € > 0}.
Definition 2.2. For a non-negative function r, we shall

define (HS)(r) as follows.

(B Y{x )= {Ceu iyt > C is a non-negative constant,
u, v : real functions, u € Ll, x| /2,0 cand
sl o amW o 2(cos Vv)}.

When 0 < r £ 1, by the calculation, we have

s

(HS)(r) = {Ceu G ; C is a non-negative constant,
u, v : real functions, u € Ll,
vl € cos™ r, and lul € cosh™*{(cos v)/r} }.
where y = cos—lx implies x = cos y, and

1)1/2}.

cosh 1x = log{x + (x2




In the following propositions, we shall give the basic

properties of the set (HS)(r).

Proposition 2.1. The following statements are true.
(a) If (HS)(r) 1is not empty, then r £ 1.

(b) |5 r and r

1 o are measurable functions satisfying 0 £

< <
rl = r2 < P then

(HS) (1) C (HS)(r,) C (HS)(r,) C (HS)(O0).

{e) (HS) C (HS)(O0).
Proof. We shall prove (a). Suppose W 1is in (HS)(r).

Then there exists a non-negative constant C and real functions

u, v such that W = ce? * V, u € Ll, vl £ /2, and

rz'eu L - 2{({cos v).

v “mn -u
Since 20 A P + e , r=cosv=1. We shall prove (b).
Suppose W is 1in (HS)(rz). Then there exists a non-negative
constant C and real functions u, v such that u € Ll, |v] £
{25+ W = Ceu el and
it -1
Py Bl .9 < 2(cos v).

g epl o TR e 2(cos V).

Hence W 1is in (HS)(rl). We shall prove (c). Suppose W is in

(HBE ) . Then there exists a non-negative constant C and real

a

functions u, v such that u €L, |v|l £n/2 - €, for some €
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> 0, and "W Ce

Let & = llullm - log(cos ||V||m). SO

that

-(u + &) £ ||ull, - & = log(cos ||vl],)
< log(cos v) £ log(2 cos V).

e(u + 8) + v e—(u + §) <

Hence W = (Ce_a) , and £ 2(cos v). Hence

W is in (HS)(0).

Proposition 2.2. The following statements are true.
(a) it W 1is in (HS)(r) for some function r satisfying 0 =
r €1, then r?W 1is in L1,
(b) If W 1is a non-zero function in (HS) (0), then log W and
W > are in LY.

Proof. We shall prove (a). Suppose W 1is in (HS)(r).

Then there exists a non-negative constant C and real functions

~

4, v such that uw €L, Ivl £wn/2, w=ce®* 7 and
phgH wiel Wik 2(cos V).
Hence,
rew = gl v - & 2Ce$(cos V).
Since |v| £ w/2, ev(cos v) 1is in (cf. [14, p.161]). Hence
r2W is in Ll. We shall prove (b). Suppose W 1is a non-zero

function -in A(HE)(0O). Then there exists a positive constant C g




i1

and real functions u, Vv such that u € Ll, vl £ ©/2, W =
o] v and
e " £ 2(cos v).
Since
log W = log C + u + 3,
log W 1is in Ll. Since
Cam P Sl P v - ZC_lemv(cos v),

~/

and e Vicos V) is in Lt (cf. [14, p.161]), Wt e L

Proposition 2.3. The following conditions are mutually

equivalent.
{2 W 1is in (HS) or W = 0.

(2) W 1is in (HS)(r) for some constant r satisfying 0 < r £ 1.

Proof. We shall show that (1) implies (2). Suppose W
is in (HS) . Then there exists a non-negative constant C and
real functions XL v such that u €& Lm. vl € /T - £, Tor

u o+ v [u]

cos V),

some € >0, and W = Ce Let r = ess inf(e

so that r 1is a positive constant satisfying

L F. 2r_1(cos V).
et u' = 1t = log v, so that
L R R < 2(cos v), and
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Hence W is in (HS)(r). We shall show that (2) implies (1).

Suppose W ig, dn AHS)Mr . Then there exists a non-negative
constant C and real functions u, v such that u € Ll, v £
w/2, W=Ce" TV and
p2a¥ 4 &% < 2tcosw),

t 2 1 -

Since o' B rSe + & -, r £ cos v. Since vl £ w/2, |vl £
cos T, Since r is a positive constant, |v| £ ®/2 - € for

; 2. 1 -1 1

some g 2L 0, Since r-e + e £ 2 ‘and''r  1s a positive

constant,

-log 2 £ u £ log 2 - 2(log r).

' (0 8]
Hence u s dn L

Proposition 2.4. For a non-negative function W in L7,
the following conditions are mutually equivalent.
{13 W is in (HS)(0).

(2} W= 0 -ore W ois dd 1t

(3) W is in (HS)(r) for some function r satisfying 0 < r £ 1.

Proof. By Proposition 2.2(b), (1) implies (2). By
Proposition 2.1(b), (3) implies (1). We shall show that (2)
implies (1). Suppose W and W"l are in Ll. Then log W 1is
U T B 3

B R PGS LS
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St REY S0 Re P el £ W i ince s W - Be T Y. Feste T 0

Hence there exists a positive constant C and a function v

such that |v] £ w/2 and

P Cev - Tv
Then W = Cev/(cos vy, Let u = log W - . log C, so that u
ig in Ll, and W = Ce? ¥ V. Hence e ¥ = cos v £ 2(cos v). We
shall show that (1) implies (3). Suppose W 1is a non-zero
function 1in (BS L0 )« Then there exists a positive constant C
and real functions e - ¥ ‘such that u 't Ll, vl £ ®/2, W =
ce® ¥V and e™™ £ 2(cos v). Since
(e—u/2)2 < e Y(cos v)/2 £ (cos V)2,
there exists a function r such that rz = e_u(cos v)/2 and
Qe e‘“/z Sr Ecos v & 1. Let 1" =1 + log 2, 8o that
el 4 eW o sos'Y + e N2 £ 2(cos V).

and W = ot Vo oa (C/2)eu o

Proposition 2.5. The following conditions are mutually
equivalent.
(1) W 'ils in (HS)(L).
{21 W 1is a non-negative constant.

(3) W 41s in (HS)(r) for ‘any constant r satisfying 0 5 r < %L.
Proof. By Proposition 2.1(b), (1) implies (3). It is

clear that (2) implies (1). We shall show that (3) implies (2).

We shall assume that W 1is not identically zero. By Proposition
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2.1(b)° and Proposltion 2.2(b), log Wi 'is In Ll. Hence W > 0.
For any positive constant g, there exists a constant r

satisfying 1 -~ £ < ¢ < 1 and

cosh_l(r—l) + log p ¥ 4 soalyr < &,

By (3), W is v ldn b lHE) () Hence there exists a positive
constant # and real functions u, Vv such that W = Ceu r V,
u €LY, vl £ mw/2, and
< 1 =11
re” + e £ 2(cos v).
Hence,
lu + log rl = cosh-l(r_lcos v) £ cosh_l(r_l),
and |v] £ g < t/2. Hence u and v are in L. Then,

L3

I IVlzdm = j lvlzdm - II v dml2 < J |v|2dm £ (cos—lr)z,
T Ak i

(cf. [14, p.108]). Hence,

ot 912amM2 < g juiZam M2 . 191 2amy /2
& T E

= cosh_l(r—l) + log r 14 oees™lr < e,

Since log W - log C = u + g, we have

j |log W - log C|2dm < 82,
0

for any positive constant €. This implies W = C.

We shall consider the the condition of the operator Sa B

to be a contraction operator on LZ(W), that 1s,
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& "
Suppose 0, B are functions in Lm, and W 1s a non-negative
function in Ll such that W = BW. In this case, Sa B
becomes a multiplication operator on L2(W), and hence the

condition of the boundedness of Sa B on L2(W) is simple as

follows. Since

s, o 12w = lawl/2p £ « gwl/2p _£12 - |ar|®w,

a,B

we have

IISa.B fIIw = Ilafllw (e a4,

Then the following conditions are mutually equivalent.

: < A
(1) lIsy g Ty = TIfll (f €A+ A).
« s N
(2) lletlly, = HI£l], & GL-B R 3
(3) lalw £ W.
Suppose €, B are functions in Lm, and W 1is a non-

negative function in Ll such that (& - B)W 1is not identically

Zero. In this case, the condition of the operator S to be

o, B

a contraction operator on LZ(W) is not simple. We shall use a

class (HS)(ra,B)'
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Definition 2.3. For functions o and B in L

satisfying |1 - aB| > 0,

a - B

1 - aB

r
a,B

We shall give some lemmas to prove Theorem A. We shall use

Lemma A to prove Lemma B. Lemma A is is a original result in
this paper. In it's proof, we use the inner-outer factorization
theorem. Similar results are given in [486].

Main Lemma A.([46]) Suppose r and F are measurable
functions such that g 75 F 1is in Ll, and rF 1is not
identically zero. Then the following conditions are mutually

equivalent.

(1) There exists a function k 1in Hl such that

IF = k|2 L0119

{23 lFl > o, r £ 1, and there exists an inner function Q
and a real function. t . in Ll such that
F/|F] = Qeit, and |F STV s (HS) (r) .
Proof. We shall show that (1) implies (2). If k = 0,

0. This contradiction implies that k is

then (1) implies rF

non-zero. Hence loglk]| 1is in 1. since IF - k| £ |F|, |kl
< slrl. B8ince lYoglkl 'ig in Ll, log|F| 1is also in Ll. Let
u = logl|F/k|, and v = Arg(F/k),

where -1t £ Arg z <. Then u is in Ll, and




g
eu + 1y = PrRk.
Since |F|] > 0, by (1),
SRR A I G N L R e
Hence r £ 1, and
T e L YT e
Hence,
L e 2(cos V).
z 2.1 -u
Since 2r & r°e + e ~, this implies r = cos v. Since |xl =
=1 o+ V
T, |lvl £ cos r £ w/2. Hence e is in (HS)(r). Since Kk
is a non-zero function in Hl, by the inner-outer factorization
theorem, there exists an inner function @Q such that
k = qeloglkl + i(loglkl)
Since ik & et |E/kl,
F/IF| = Qei{(loglkl) + V}.
Let t = loglk| - V, so that t is in Ll, and T = (loglk|)”™
+ V = C, for some real constant c Hence
v/ |El = (Qe*%)e’t,
Since u = loglF/k| and t = loglkl - ¥,
el s ekl aie® s B T.X,
Since a TR e in (HSYIir), |F‘|e_t is in (HS)(r). We shall
show that (2) implies (1). Since IFIe_t is in (HS)(r), there
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exists. & positive constant C, real functions u, v such that
1 .
0 e LT, vl s w2y
p e e N Btenw w). Bnay, IelieT Y e et
Let Kk = Fe_(u X iv)’ so that

18 = &l % 541 < e OER
g |F|2{|l .3 e—(u + iV)|2 . (1 n rz)}

2{cos v)} = 0.

" |F|28—u{r26u 5 e—u

1

Since |kl £ 2|F|, k 1is in L. Since F = Qe Fl,
- Qeit]Fle_(u + iv) _ CQet + 1t + v - 1v.
Hence k 1is in H1. This completes the proof.

We shall use Lemma 2.1 and Lemma B to prove Theorem A.

l.Lecmma 2.1. If max{lel, IBl} £ 1 or min{lel, |B|} =2 1,

<
then ra,B = 1.

Proof. |1 - aﬁlz - la - BIZ = (1 - |a|2)(l - |B|2) 2 0.

Main Lemma B.([46]) Suppose «, B are functions in Lm,
and W is a non-negative function in L1 such that (a — B)W
is not identically Zero. Then the following conditions are

mutually equivalent.
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(1) There exists a function Kk in H1 such that
% o ¢
P S B witew iy Oiar® i L 1Bt
(2) |11 - aBlW > o0, o B £ 1, and there exists an inner
function Q and a real function t in L1 such that
— % Lt
(1 - eB)/l1 - aB] = Qe~ ", and
|4 & o[E?lWe_t € (HS) (r )
a,B’’

Proof. et o a o and F = (1 - aB)W. Since r|F| =
le - B|W, rF 1is not identically zero. By Lemma A, (1) holds
it and only if | F | - . T .5 and there exists an inner
function Q and a real function t in Ll such that

¥/|B] = Qe T,
and IFle* 1s in (HS)(r). Since |F|l >0, |1 - aBlWw > 0.

Since W > 0,

(1 - oB)2]1 - aBl =~ qelt.

Hence (1) and (2) are equivalent. This completes the proof.

The following theorem is the main theorem in this section.
Even when W is a constant function, Theorem A contains new
results. When (¢ - B)W is not identically zero, we shall

consider the problem of finding the condition of Sa B to be a

contraction operator in LZ(W). Theorem A follows immediately

from the Cotlar-Sadosky theorem, Lemma 2.1 and Lemma B.
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Main Theorem A.([486]) Suppose «, B are functions in
Lw, and W 1is a non-negative function in L1 such that (a -
B)W is not identically zero. Then the following conditions are

mutually equivalent.

(1) "Sa,s fllw < IIfllw SR s A )

(2} l1 - aBlW > 0, max{lal, IBl} £ 1, and there exists an

inner function Q and a real function t in Ll such that

(1 - aB)/I1 - aBl = Qe'*, ana
[ e nBl et B e = o)
: ) a.Bn
J . » 2 o
Proof. Let W muld 2 leel “)w, W, = (1 - IBl“)W, and
W,3 — (1 - aB)W. By the Cotlar-Sadosky theorem, {19 ' 1s
equivalent to the condition that Wl = 0, Wz 2 0 and there
exists a k in HY such that |W.3 - klz < wlwz, that is,
2t 2 L 'S
6L, “ef il o w e R S M p PR
By Lemma 2.1 and Lemma B, this is equivalent to (2). This
completes the proof.
By Theorem A, we prove Theorem 2.1. By Theorem 2.1, we
prove Theorem 2.2. By Theorem 2.2, we prove Theorem 2.3.

Theorem 2.4 follows 1immediately from Theorem 2.3. Theorem 2.3

and Theorem 2.4 were essentially given by Prof.T.Nakazi and the

anthor in [28].
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Theorem 2.1. Suppose ¢, B are functions in Lm, and

W 1is a non-negative function in L1 such that (¢ — B)W 1is not

identically =zero. Suppose there exists a real function s 1in

L2 such that

I o gt ol - aBl,

~

and |1 - aB|we® is in 1y Then, the following conditions are
mutually equivalent.
(2) |1 - eBlW > 0, max{lel, IBl} £ 1, and
L s
|1 - aB|wWe” € (HS)(ra,B).
Proof. We shall show that (1) implies (2). By Theorem A,
1 - eaBlWw > 0, max{lel, IBl} £ 1, and there exists an inner

function Q and a real function t 1in Ll such that

(1 - aB)/11 - aBl = Qel®, and
T
|1 - aB|We € (HS)(ra,B).
Since Qe1t B kBB e 5 8) L b8 By Proposition
i = ; 1
2.2(e), e /(l1 - aBlW) 1is in L. Hence,

I e(t + 8)/2 q
Ak

m

< {I 11 - aB|we® dm}l/z{J et/(ll - aB|W) dm}1/2 <
i i T
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Hence et S 10 is a non-negative function in Hl/2. By the
Neuwirth-Newman theorem (cf. [301] ) there exists a positive
g Fng
constant C such that e = ., Hence,
ElwaS Sl L
|1 - aBlWe” = C|1 - aB|We € (HS)(ra B).

We shall show that (2) implies (1). Let t = —g, so that t 1is
in Ll, and there exists a constant ¢ such that s = % + C.
Ity O = eic. so that Q 1is an inner function. Then,

(1 ~-aB)i/l1 = aBl = &*® = Qeit, and

S lw. -t S lw.S
|1 - aB|We = |1 - aB|lwe® € (HS)(ra B).

By Theorem A, this implies (1).

Theorem 2.2 was given by Prof. T. Nakazi and the author
(cf. [28]). We shall give the another proof of Theorem 2.2 using

Theorem 2.1.

Theorem 2.2. Suppose «, B are functions in Lm, and

W 1is a non-negative function in L1 such that (a¢ — B)W is not
identically =zero. Suppose there exists a real function s in

L‘2 such that

1 -aB = e °|1 - aBl,

~

and |1 - aEIWeS 18 1n LT+ " FThen, the following conditions are

mutually equivalent.
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~ S - . a
(1) "Sa,s fllgy = LIflly (e A &
(2) l1 - aBlW > o, max{|lal, |Bl} £ 1, and there exists a
positive constant C, and real functions u', v such that
711 2| TR S
W = C{‘l = aBl x{a’-B} * la - Bl x{a?‘B}}e ’
-1
<
vl £ cos o

e cosh—l{(cos v)/ra B} on {a # B}, and

b

-log(2 cos v) £u' on {a = B}.

Proof. We shall show that (1) implies (2). By Theorem
2.1 1 - eaBIW > o0, max{lel, IB|l} £ 1, and |1 - aBlwe® €
(HS)(ra B)' Hence there exists a positive constant C, real
functions u, Vv such that u € Ll, ivl & ®/2.
e 4+ U < 2(cos v), and
|1 - aBlwe® = ce" TV
Since 2r £ peall e U vl £ GOl - Fo B Let
u' = u + logr g on {a # B}, and
u' = u on {a = B}
Then,
u' -u'
e + e £ 2(cos V)/ra g on {a # B}.
Hence

fnt] L cosh—l{(cos v)/r,, B} on f{a # B}, and

B}.

-log(2 cos v) £ u' on (e
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Hence
Y ¥ = (l/ra’s)eu' ¢ % on f{a # B}, and
i % < ot v on {a = B}.
Since |1 - aEIWeg = cel 7V ;, we have
|1 - aEIWeg = (C/ra’B)eu' + v on {a # B}, and
|1 - aEIWeg =l el L v on f{a = B}.

This implies (1). We shall show that (2) implies (1). Let

u =u' - log re.p O {a # B}, and
u =u'" on {a = B}.
Then, by' (2%, rzeu + e £ 2(cos v), and |1 - aB|we® =

~ 7

gt Y Yo encer s 4 = aB|We® 1is in (HS)(ra B). By Theorem 2.1,

this implies (1). This completes the proof.

Although the condition of the operator Sa B to be a
contraction operator on LZ(W) is not simple as we have shown in
Theorem A, Theorem 2.1 and Theorem 2.2, it becomes simple when

aB belongs to H. Theorem 2.3 and Theorem 2.4 were essentially

given by Prof.T.Nakazi and the author in [28]. We shall give an

another proof of Theorem 2.3 using Theorem 2.1.
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Theorem 2.3. Suppose &, B are functions in L* such
that aB belongs to Hm, and W 1is a non-negative function in

L1 such that (¢ — B)W is not identically zero. Then the

following conditions are mutually equivalent.

(1) 1Is, g Tlly = TIflly (f €A+ A).
(2) |1 - aBlw > 0, max{lal, |Bl} £1, and W€ (HS) (r,, g)-
(3) |1 - eBlW > 0, max{lel, |BI} £ 1, and

vy gP Ty = LT, (f CaIE Y,

Proof . By Theorem 2.1, (1) implies that |1 - aB|W > 0
and max{lal,l |IBl} £ 1. Hence 1 - aB 1is an outer function in

H® satisfying Re(l - aB) 2 0. Since & — B 1is not identically

Zero, there exists a positive constant C and a function s
such that |s|] £w/2 and 1 - aB = Ce'S™S Hence,
1 -aB = e'®|1 - aB],

and 11 - oBlwe® 1= in LY. By Theorem 2.1, (1) and (2) are
equivalent. By the equivalence of (1) and (2), (3) and (2) are
equivalent. This completes the proof.

The condition of the operator Sa B = aP+ to be a
contraction operator on LZ(W) is more simple as follows.

Theorem 2.4 follows immediately from Theorem 2.3.
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Theorem 2.4. Suppose « 1is in Lm, and W 1is a non-

negative function in Ll such that aW 1is not identically zero.

Then the following conditions are mutually equivalent.

= o A
<R L P R ST SRS TR &R
(2) W>o0, lal £1, and W € (HS)(lal).

For a given positive constant M and a non-negative
function W in Ll, M.Cotlar and C.Sadosky [7] consider the
boundedness of the operator S = S1 1 on LZ(W) with norm M.
Using our notation (B8 1T ), their result can be written as
follows. The following conditions are equivalent.

2 =
(1) Hstlly, = mMlLIfl, (f €TAT A,

(2) M=1, and W 1is in (HS)(2M/(M% + 1)).

We shall consider the operator P+ since the condition is

more simple as follows which is a corollary of Theorem 2.3 since

P+ = S1 0" The following conditions are equivalent.
e i e . n
(vy  He, il s miiflly, (T BgB % B
(2) M1, and W 1is in (HS)(M 1).
By this equivalence and Proposition 2.3, we have the

Helson-Szego theorem which is the first characterization of the
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non-negative function W in | i defined on the circle T,
such that the Riesz projection P, acts continuously in L2(W).

By Proposition 2.3 and Theorem 2.3, we have the following

well kKnown result {(ef. [18], [14, 'p.149], 122, p.2268)).

Helson-Szego theorem. For a non-negative function W 1in
L], the following conditions are mutually equivalent.
(1) There exists a positive constant C such that
2 —
LIp, £lly < cliflly (£.6-4 &8 F,

() WeE {(HS) or W=090.

~ . s
If P, = Sl,O ore 8 = Sl,—l acts continuously in L“(W),

then W is in (HS). Moreover we have the following result from

the Helson-Szego theorem immediately.

Proposition 2.6. For a non-negative function W in Ll,

the following conditions are mutually equivalent.

(1) There exist functions « and B in LUO such that

ess inf |a - B|] > 0, and

”Sa,B fllwgllfllw (f €A #4 ).

(2) W 1is in, (HS).

Proof. Since Sa B f = (¢ ~ B)P+f + Bf, (1) implies that

(ess inf |a - Bl)||P+f||w < |l(a - B)P+f||w
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g ~ 7 &
-4 Hba,B fllw + ||8f||w < (1 + ||8||m)||f||w.
By the Helson-Szego theorem, W 1is in (HS). Since
& b
15y glly € 1la - BII LB, eIl + 11811,
IISa,BIIW is finite when ||P+||w is finite. By the Helson-

Szego theorem, (2) implies (1).

We shall consider the weighted norm inequality having two

weights. We shall give the another proof of the Koosis theorem.
It i ig i (HS, then by the Zygmund theorem (cf. [22,
p.1381), W et for some p > 1 and hence W 1 el (of,
(14, p.17%81).

Koosis theorem. For a non-negative function W in Ll,
the following conditions are mutually equivalent.
(1) There exists a non-zero and non-negative measurable
function U such that

LI, £l = Hithy (BB K A ),

(250 Wk ds it

Proof. We shall show that (1) implies (2). Let a =
(u/w2 on {W>0), and @ =0 on {W =0}, and let B = 0.

By (1), U =W and

s fllwsllfllw (T°€ A +"8.7.

a,0

Since U £ W and m{U > 0} > 0, we have aW is not identically

Zero. By Theorem 2.3, we have W € (HS)(a). By Proposition
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2.1(b) and Proposition 2.2(b), Wit Eie ko e shall show that (2)

implies (1). By Proposition 2.4, W € (HS)(r) for some positive

Tnpctlion. Y. By Theorem 2.3 with o = r, we have
: < . 7
||rP+ fllW < ||f||w (f € A + AO).
2
Let U = rw, so that
" B
e Bl bl ke € A &,

5 i o B then W = 0. This completes the proof.

Example 2.1. Suppose W 1is a non-negative function in

. such that W2 is in L]“. Let

Um 00 232802 & (W)Y,
Then,

g /
L fill, = VIS, JOSRre

Proof. Let k = 1/{W_1 + i(W-l)N}, so that
2
lw - k|© = w(wW - U),
k & H1 and U £ W. By the Cotlar-Sadosky theorem,

_ 2 2
s e B

2 2
= TERLE w e BHLE S i 210 B 0.

If there exists a non-zero weight U such that P+ is a

continuous operator from LZ(W) to L2(U), then W‘l is in

Ll. Moreover we have the following result.
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Proposition 2.7. For a non-negative function W in Ll.
the following conditions are mutually equivalent.
(1.} There exist functions « and B in L such that (a -
B)W is not identically zero, and
= &
118, g Tlly S LIf11, (f €A+ A)).
(2) There exist functions « and B in LDO such that (o -
B)YW is not identically zero, and
s g fly = 11tlly  (F€a«A).
(g3 wt Va4t MR,
Proof. We shall show that (1) implies (3). Since Sa B f
= lac= BIP.E o+ B, (1Y 1lmpiles that
= < <
[1(a - )P, £l1y < s, g £1ly + [IBEII < (1 + LIBHI)IIgl],.
: 2 2
Let U = |la - Bl“W/(1 + ||B||m) , so that U satisfies
<
WAl & shiefls:
By the Koosis theorem, W % 1is in LY. We shall show that (3)

=1 1

implies (2). Let k = 274w L + 1w 1™ . o that %k is in H

Let a = k/K and B = -1, so that
(1 - aB)W = 2W(Re k)/k = K.

Hence (1 - aB)W is in HT. Hence, ¥for all £ in A + A ,

2 ; 2 _ N\ (PP | AT "
BEE ol i E S G IT(P+f)(P~f)(1 oaB)W dm = 0.

It is clear that (2) implies (1).
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Example 2.2. Suppose W 1is a non-negative function in
1 -1 . 1
i such that W 18 ..3n gl Suppose ¢ 1is a constant
satisfying ~1. =2e¢ 5 1. Let
@ = Dol s LN s L™
and.. B =.0. Then,
s "
118y g Tlly = 1If11 (f. €& + & ¥
Proof. Since (a - B)W = (¢ - 1)/{W_l + 1(W_1)~},
(¢ - B)W 1is in Hl. Hence,
I (P f)(P f)(a¢ - B)W dm = 0 (f €EA + A ).
+ = 0
A%
Since' -1 £ c £1, Jel £1. Hence,
2 2 B 2 2 -
B A LT R jT (1 - lel®ifi?20 (fen+Ai.
By Theorem 2.1, Corollary 2.1 follows immediately.
Corollary 2.1. Suppose & and B are functions in L~

satisfying m{e # B} >0 and 1 - aB = eicll - aB| for some

real constant e Suppose W 1is a positive function in Ll.
Then the following conditions are mutually equivalent.
& » n
G aut g S B e T R
(2) |1 - aBlW > 0, max{|el, |BI} £1, and |1 - aB|W is in

(HS)(ra,B)'
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5 @ e

Suppose ' B are functions in 3 such that «aB
belongs to Hm. and W 1is a non-negative function in L1 such
that (o . — BN is not identically =zero. Suppose M 1is a
positive constant satisfying le - aBlW > 0 and max{lal, |B]|}
£ M. By Theorem 2.3, the following conditions are mutually

equivalent.

(1) 1lIs, glly < M.

A

T T et g e

When « and B are different complex constants and W 1is
in (HS), we have

0 < max{lel,[Bl} £ [Is, glly < =,

and .= ||P+||W < ., We shall show in the proof of Corollary
Zesgih At
o =iy S
+ W
where M = llSa BIIw (cf.[46]). This seems to be not written in

any paper. This 1is equivalent to the result of I.Gohberg-
N.Krupnik £E1T ] and I.Feldman-N.Krupnik-A.Marcus [12] which

appears in the statement of Corollary 2.83. In Corollary 2.2, we
do not assume aB is in Hm. Then we shall consider the norm of

the operator P_  on the Hilbert space L2(ll - aB|W) when S, 8

is a contraction operator on LZ(W). We use Theorem 2.3 to prove

Corollary 2.2. We use Corollary 2.2 to prove Corollary 2.3.
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Corollary 2.2. Suppose « and B are functions in L~

satisfying ess inf |le - Bl >0 and 1 - aB = e*®|1 - aB| for

some real constant c¢. Suppose W 1is a positive function in Ll

satisfying

115, g Tlly S 1If11 (F €A% AT,

Suppose N 1is a constant and k 1is a function satisfying

N = ||P+|I|1 _ oB|wr and
k = 271 ({la - BI?N? + 2Re(aB) + 2|aB|}}/?
+ {la - BI?N? + 2Re(aB) - 2|aB|}1/2).
Then, max{lel,IBl} £k, |1 - aB|W € (HS)(N_l) and
ess inf r . r £ 1
o T a/k,B/k =
Proof. By Corollary 2.1, max{lel, IBlI} £1, |1 - aB| >

0, and |1 - e¢B|W is in (HS)(ra B). By Theorem 2.3,

2y < "
IIra,8p+f”|1 - aBlw = IIfIII1 - aB|w

Since ess inf |a - B] > 0, ess inf s > 0. Hence,

1 & N = IIP+|||1 oB | W < {ess inf ra’ﬁ}_l < o,
Since
||P+f|||1 - oBlw = Nl|f|||1 _ aBlW
by Theorem 2.3, N =21 and |1 - a«B|W 1is in (HS)(N_l). Let

g = la - BI*N? + 2Re(aB),

O
gothat g iaetint LT,
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2 « 'S
g™ X ataa Tt el RS~ 1B 29, “and

ko= 25 Rlgante®, « HapBy gte,

Hence k is din L® and k% - gkz + la8|2 10y This implies
Nt r Since
a/k,B/k’ :
4
lal® - glal? + |aBl? = |al?la - B12(1 - N?) < o,
and
1B1% - glBl? + |aBl? = IBI%le - BI2(1 - N%) <o,
we have max{|a|l, [B|} £ k. This completes the proof.
We shall consider the connection between the norms of the
operators Sa B and P+ on LZ(W). Corollary 2.3 1s the

special case of the Feldman-Krupnik-Marcus theorem (cf. [12],
[17, Chapter 13, Lemma 5.3]). We shall give the another proof

using Corollary 2.2.

Corollary 2.3. Suppose « and B are constants, and W
is a positive function in Ll. Then
oM = {la - BI*N? + 2Re(aB) + 2]laBl}/?

+ {|la - B|°N? + 2Re(aB) - 2|aB|}1/2,
where

M= lIs, glly and N = [IP_I].

Proof. Suppose @t ET B Then, by the Helson-Szego

theorem and Proposition 2.8, M = IISa B||w is finite if and
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only if N = IIP+||W is finite. If M and N are infinite,
then N * = r = 0 d

: a/M,B/M - e
M = {}le - B|2N2 + 2Re(aB) + zlaﬁf»l}l/2
+ {la - BI?N? + 2Re(0B) - 2]aB|}l/2 . o,
Suppose M and N are finite. Then,
<
llSa/M,B/M fHW - Ilfllw'
Let
g = |la - B|2N2 + 2Re(aB), and
k = 27 ({g + 21aB1}1/2 + {g - 21aB[}1/2).
Then by Corollary 2.2, max{|a/k|, |B/k|]} £ 1, WE (HS)(N—l),
W e (HS)(ra/k,B/k) and
r < N1t r
a/M,B/M = a/k,B/k’
By Corollary 2.1,
= <
IISQ'B f||w kllsa/k,B/k f||w < k||f||w-
Hence M = IlSa B||w £ k < w, By the calculation, this implies

1

< g L
ra/k,B/k -4 ra/M,B/M' Hence, ra/k,B/k ra/M,B/M N ~-. Since
-1 4 2 2
- - = 2

Ca/M,B/M N M gM® + |aB] 0. Since M 2 max{lel, |Bl|},
& = g/2. Since (2M2 - g)2 = gz - 4IaB|2, we have

am? = 2¢ + 2(g2 - 4laB|?)1/2

= ({g + 21aB1}Y2 « {g - 21a8131/2%)2 - 22
Hence M = k. This equality holds even when « = B, since
| 1S = IIaIllw = |a|l. This completes the proof.

a,allw
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8§3. Invertibility of S¢

S is (left) invertible in L2%(W) if and only if §

a,B $,1

i's (left) invertible in L2(W) with ¢ = a/B. Hence we shall

consider the (left) invertibility of the singular integral
operators S¢ = S¢ 1 on LZ(W). We use Theorem B to prove

Theorem 3.1. We use Theorem 3.1 to prove the Widom-Devinatz-

Rochberg theorem.
Suppose a, B are functions in Lm, and W 1is a non-

negative function 1in Ll such that aW = BW. 1In this case,

Sa B becomes a multiplication operator on L2(W), and hence the
condition of the operator Sa B to become a bounded below
operator on LZ(W) is simple as follows. The following

conditions are mutually equivalent.

% 5
(1) Is, g flly = TIflly B AR TAL)
: S A
(2)  llaflly 2z [lell, (f€A+A).
(3) lalw 2 w.
Suppose a, B are functions in Lm, and W 1is a non-

negative function in Ll such that aW = BW. Then the following

conditions are mutually equivalent.

(1) Sa 8 is a bounded operator on L2(W) which has a bounded

inverse operator.
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{2) Sa 8 is a bounded operator on L2(W) which has a bounded

left inverse operator.

{3) There exists a positive constant Cl and C2 such that

& 2
clw £ |la|lw £ czw.

The following theorem (cf. [29]) is essentially the same as
Theorem A. We shall give 1t's proof for the sake of

completeness.

Main Theorem B. Suppose «, B are functions in Lm,

and W is a non-negative function in L1 such that (a — B)W

i not identically zero. Then the following conditions are

n

mutually equivalent.

(1) "Sa,s f,lIW > IIfIlW (£ &%-A 7,

(2) |1 - eBlW > 0, min{lel, |Bl} 2 1, and there exists an

inner function Q and a real function t in Ll such that

~

(174 ol IE  ABT R e ¥e,
= et o
and |1 - aB|We is in (HS)(ra,B)‘
2 2
Proof. Let Wy = (lel” - 1)W, Wy = (1Bl - 1)w, Wy =

(¢B - 1)W. We shall show that (1) implies (2). By (1), for all

fl & A —and f2 & Ao’

g 2 2 >
IT {Ifll Wy o# |f2| W, + 2Re(flf2W3)}dm =0,
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By the Cotlar-Sadosky theorem, W] = 0, W2 2 0, and there

exists a ko in II1 such that |W. Hence,

S |2 < W.W
" O %

2

(@B - )W - k1% < (lal® - 1) (IBI? - 1w

Let %k = —ko, so that

(1 - aB)W - k12 £ (1 - lal®)y(1 - |BI?)w2.

By Lemma B, loglk| and 1log(l1 - aB|W) are in $t, Hence W >
0. Since W, 2 0 and W, 2 0, we have min{lel, [BI} 2 1.
Hence L £ 1. By Lemma B, (2) holds. We shall show that (2)

implies (1). Since min{leal, |B|} =2 1, we have Wl > W2 = 0

and o B e " By Lemma B, (2) implies that there exists a

Tinetion k in H1 such that
S0 R A e o G R P B e s L

Hence lw3 + k|2 < W.W

Wy By the Cotlar-Sadosky theorem, for all

fl € A and fz & AO,

. f i f o : -
fT {Ifll wl + Ile w2 + 2Re(flf2W3)}dm =0,

This implies (1). This completes the proof.

T 5 is left invertible, then

o, B
ess inf |al > 0, and ess inf |B| > 0.
L.et & = /B, so that

BS

S8 = PSass,1

$,1
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= B(#P, + P_) = B(P,4P_+ P_)(I + P_4P).

It a wetght "funetion W is in (HS), P, and P_ becomes

bounded operators, and hence I + P_¢P_ has a bounded inverse
2 w1

operator in L™(W). Then, (I + P_¢P ) =L =P S . "When W

is in (HS) and B is 1nvertible 1in Lm, the following

conditions are mutually equivalent.

(1) S is (left) invertible.

a,B

(2) S¢ = S¢,1 is (left) invertible.

(3) Pi$PLiw-PL 18 {keft) Invertible.

(4) T is (left) invertible.

Lemma 3.1. Suppose $ =& 1n Lm, and W 1is a non-

negative function in L1 such that ¢W 1is not identically zero.
Then the following conditions are mutually equivalent.

(1) There exists a k in Hl and a constant € such that 0

O il < TR 1, 7 |

[¢W - k| £ (1 - €)|e|W.

(2) ldlWw > o0, and there exists an inner function Q and a

. 1 it S
real function t in L such that ¢/|¢| = Qe -, and |¢]|We
is in (HS).

Proof. We shall show that (1) implies (2). By (1),

oW - k|% £ (1 - €)%|ew]? £ (1 - £2)|ew]2.
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By Lemma A, |$|W > 0, and there exists an inner function Q
and a real function 5 i LY guch that d/|d| = oW/ | dW| =
Qei%. and |¢’|We—t is in (HS)(€). By Proposition 2.3, l&t:IWe_t

is in (HS). We shall show that (2) implies (1). By Proposition

2.5, ltt!Wle_t is in (HS)(r) for some constant r satisfying 0

~/

A R Y Since [eW| > 0 and oW/ |dW| = Qeit, by Lemma A,
there exists a function k 1in Hl such that

| dW - k|2 < (1 - r2)|¢w|2.

This completes the proof.

When W ise 1in (HS), then a simple necessary and

sufficient condition for that there exists a positive constant &

such that
X —
18y, Tlly 2 81Ifl, (f €A+ A)
is known as one of the Widom-Devinatz-Rochberg theorem. If ess
infli - | = 0, W 1is not in (HS), and W 1is not identically
Zero, then it becomes too complicated to wright. When ess inf

|1 - ¢|] > 0, Prof. T. Nakazi and the author could give it as the
following theorem (cf. [29]). We do not assume W & (HS) instead

of the assumption: ess inf |1 - ¢| > 0. When ¢ = 1, S¢

becomes an identity operator, and hence S¢ is left invertible.

We shall give the another proof of Theorem 3.1 using Theorem B.




41

Theorem 3.1. Suppose ¢ 1is in L° such that ess inf |1
- ¢| > 0. Suppose W 1is a positive function in Ll. Then the
following conditions are mutually equivalent.
(1) There exists a positive constant § such that

" by
lls¢fllw_6||f||w (18 Ko A0,
(2) ess inf [¢] > 0, and there exists an inner function Q
and a real function t in Ll such that
$/1¢| = qelt,
=

and We ig in (HS).

Proof. We shall show that (1) implies (2). Let

c = (ess inf [¢]|)(ess inf [1 - &)/l + 1).

Suppose 0 < & < min{e, 1}. By Theorem B, (1) implies that |&]|

= 3, and there exists an inner function Q and a real function

; in L1 such that

R R L
2 -t
and ¢ - 8“|We is in (HS)(r¢/8,1/6)‘ Hence there exists a
positive constant C and real functions u, v such that |¢ -
82|We-t'= e TV w  1e in Ll, vl £ /2, and
r ST, Y g 2(cos V).
$/8,1/86 .

Since ess inf |1 - ¢|] > 0, ess inf T6/85.1/6 > 0. Since

u =13
28 e >

2re /5,178 = To/5,1/8
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== ],
lvl £ cos r¢/8 178" Hence u 1is in L. Since l¢#] = & and

0<8§<1, | - 62| 2y LEES o Sdinee 62/|¢l £ 8 <1, there

exists a real function s 1in LUO such that
&= 4718 ~ B2 = thrlele™®, and

ls| € sin"1(8%/19]).

Let 1. = t' #+ g, so that there exists a real constant ¢ such
that

$/|e| = (Qeic)eit, and

-t (ool Togle - 8910 & ity = &7

We = Ce 3 y

where u - logle - 62| is in L*. Since Ba B cos—lr
~ B0, 1 /8"
v = 8l < vl +« |sl

L t/2 - {Sin—1r¢/6,1/6 - sin_l(62/|¢|)}-

Let € = &8(c - 8)/(ess inf |¢|), so that

@
< &
0 < g = Te/85.1/6 5°/1¢| < 1.
Hence,
lv - sl € ®w/2 - sin"Y(e{1 - (1 - £)%31/2y,
Hence We ' is in (HS). We shall show that (2) implies (1).
. -1 e} -t 2

Since ¢ and ¢ belong to L , |¢]|We is in (HS). Since
ldlw > o0, by Lemma 3.1, there exists a k in H' and a

A

constant € such that 0 < g€ 12 and

leWw - k| £ (1 - €)|s]|W.

Then,
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(1 - B la? ~ 6%y LN e

£l = 82161~ - &1L + &)}

- T PRE™ L  Y  TOR

Hence,
low = k|2 2 (1 - £2)(1el? - e2)w2,

For all f, €A and f., € A ,
1 W ()

f A Ll sz)lfllzw AT sz)llezw + 2(Re £ F,eW)}dm 2 0.
: 4

Hence,
; 2 2 2
LS, £l1y," - (e%/2) £l
I |¢f1 + fZIZde - (SZ/Z)I lfl + f2|2de
i} T
> |4t + £,]Wdm - szf (1, 1% + 1£,1%) Wdn
T

=P

- {(le]%-e%) |1,
P

et sz)lfllzw + (1 - 82)|f2|2W
*F

19, (1—82)|f2|2W + 2(Re £ F,4W)}dm

+ 2(Re . f,(dW - k) }dm

1 2(
x 2] e, B, 08001 - )20 - ) 2w - lew - kl}am 2 o.
ik

This completes the proof.

If W € (HS), then S, 1is left invertible in L2 W) - i

and only if S£¢ is left invertible in LZ(W) for some positive
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constant € > 0. We shall give the another proof of the Widom-
Devinatz-Rochberg theorem (I) (cf. [35]) wusing Theorem 3.1. We
shall give the another proof of the Widom-Devinatz-Rochberg
theorem (II) using the Widom-Devinatz-Rochberg theorem (I). The
condition (3) of the Widom-Devinatz-Rochberg theorem (I) seems to

be not written in any paper.

Widom-Devinatz-Rochberg theorem (1I). Suppose ¢ 1is in

Lm. Suppose W is .a non-zero function in (HS). Then the

following conditions are mutually equivalent.

(1) S¢ is left invertible in L2(W), that is, there exists a

positive constant & such that

||s¢ fllwzé‘llfllw (f€A+AO).

(2) T¢ is left invertible in Hz(W), that is, there exists a

positive constant § such that

LT, £lly 2 811l (f € A).
(3) ¢~1 & 41 Lm, and there exists an inner function Q and
a real function t 1in L' such that ¢/|d| = Qei%, and We U
is in (HS).

Proof. We: shall | show ! ‘that 1) implies (2) (efs [15,
P28 Since W is in (HS), |IP+IIW < o, and hence ||I +
P_¢P+|Iw < ¢ <o for some constant c¢. Since,

S = $P_ P = AP SP_ » P I s+ P SE ), and
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(1 +) BodP, M PodPL ) e 1;

by. (1), Forsatils Ff ldpn oA

AR - d ] R Bk R R R s Rt e

< Scll(T - P_¢P+)f|lw < C||S¢(I o P_¢P+)f||w

ciitPdb, "x Pl = cllp ()] ]y = CI|T¢f||w.

We shall show that (2) implies (1). By (2), for all f in A +

slielly, < sl elly, + sllp_zll,

g i
< ||T¢P+f||w + allp_fllw

1P 4P £l « 8lIP_fll,
=
< Llp,s,rll, + 8l1p s rll,

< max{l1P, Il 8IIP_Ily }Is,rll,.

We shall show that (2) implies (3). Since ¢ 1is in Lm, there
exists a positive constant € such that ess inf |1 - €¢| > 0.

Since

b f 2 ST f € A
we have

i Sllfllw (L & A A -

[ 1S¢q, W

By Theorem 3.1, this implies (3). By the proof of Theorem 3.1,

(3) implies (1). This completes the proof.
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Widom-Devinatz-Rochberg thecorem (I11). Suppose ¢ is in

Lm. Suppose W is a non-zero function in (HS). Then the

following conditions are mutually equivalent.

(1) Scb has a bounded inverse operator on L2(W).

(2) T¢ has a bounded inverse operator on HZ(W).

(3) ¢—1 is in Lm, and there exists a real constant ¢ and a
real function t in o such that ¢/|¢]| = ghic # t), and
= :
We is. In (HS]) .,
Proof . Since W is in (HS), P, and P_ are bounded in
L2(W). Since
(I + P_¢P+)(I - P_¢P+) = I,
L+ P 9P 18 invertibie in LZ(W), and
A - L, SR BT
- + - +
Since
S¢ =2PRRS & B on (P+¢P+ il )R P_¢P+).
Sy 1s (left) invertible in L*(W) if and only if P_4P, + P_

is (left) invertible in L2(W). Then P _¢P_ + P_ 1is invertible

in LZ(W) if and only if T¢ is invertible in HZ(W). Hence,

S is (left) invertible in L2(W) if and only if T

i left
+ s (left)

¢

invertible 1in HZ(W). Hence (1) and (2) are equivalent. We
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shall show that (2) implies (3). Since W 1is in (HS), W 1! 1is

is left invertible in HZ(W) and T- 1is

i | Y B @by T
n ¥ {2) b

¢

left 1invertible in H2(W_l). Hence S is left invertible in

b
LWy - wiia Sy 1s left invertible in L*(W!). By the Widom-
Devinatz-Rochberg theorem (I), there exist inner functions s
5 e and real functions t, t° in Ll such that
dplwll Fg@t T we T fg fn (S
bolel = gre™t g A is in (HS).
Hence QQ'ei(t e = 1, and et ¥ is in Ll/z. Since
Bt R e B Dtk
ot G is a non-negative function in Hl/z. By the Neuwirth-
: AR TR i ! ,
Newman theorem, e is a constant, and hence QQ' = 1.

Hence Q and Q' are constants. We shall show that (3) implies

ei(c + %) t

(2%, Since ¢/l = and We i1s in (HS), by the

Widom-Devinatz-Rochberg theorem (1), T¢ is left invertible in

H2(W). Since o/ld] = akl-¢ - ) and wle (-%t) g in (HS),

T - T- is 1left invertible in HZ(w !

" ¢ i Hence T¢ is

invertible in HZ(W). This completes the proof.
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§4. Invertibility and Lz((W)).
As we have shown 1in Section 3, if we assume one of

conditions W € (HS) or ess inf|l - ¢| > 0, then the condition

of the operator S¢ to be bounded below in L2(W) becomes

simple. In the case that W 1is not in (HS) and ess inf|1 - ¢]|

= 0, we can not give a simple necessary and sufficient condition

for an operator S¢ to be bounded below in LZ(W). In Theorem
N we shall show that the necessary and sufficient condition
of two operators S¢ and S_¢ to be bounded below in L2(W)
becomes simple even in this case. When W € (HS), if S¢ is
bounded below in LZ(W), then S_¢ is also bounded below in
LZ(W). Hence the equivalence of conditions (5) and (2) of
Theorem 4.2 covers the Widom-Devinatz-Rochberg theorem L

Since we can not give a simple necessary and sufficient

conditions for an operator S¢ to be bounded below in LZ(W),

we introduce a new space and get a necessary and sufficient

conditions for an operator S¢ to be a left invertible operator

from Lz((W)) to LZ(W). In this section, we shall say that W
is a weight function when W 1is a positive function in Ll. Let

L2((W)) denote the Hilbert space which is the completion of the

pre-Hilbert space A + AO with the inner product

(8l LB UL TP R R T
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and the norm

1/2 _ 2 2,1/2
Then |Ifll, < 2Y2||¢]] If W €
) w = (W) (HS), then two norms
llfll(w) and ||f||w are equivalent. Hence the equivalence of

conditions (1) and (2) of Theorem 4.2 covers the Widom-Devinatz-

Rochberg theorem (I). We shall say that S¢ 1s left invertible,

when S¢ is bounded above and below as an operator from Lz((W))

to Lz(W). For every weight function W and every function ¢
in Lm, an operator S¢ becomes a bounded operator from
Lz((W)) to L2(W). Hence S¢ is left invertible as an operator

from L2((W)) to LZ(W) if and only if S¢ is bounded below as

an operator from L2((W)) to L2(W). In Theorem 4.1 and Theorem

4.2, we shall give necessary and sufficient conditions for S¢

to be left invertible as an operator from L2((W)) to LZ(W). We
use the Cotlar-Sadosky theorem to prove Theorem 4.1 (cf. [45]).
We use Theorem 4.1 to prove Theorem 4.2. Each theorem involves

the Helson-Szego theorem (cf. [18]). We shall consider weighted

«

LZ norm inequalities. When p # 2, our technique is not useful

to study the weighted Lp norm inequality. Prof.T.Nakazi [27]

could give da simple necessary and sufficient condition for the

Lp—type (left) invertibility of the operator T¢ from some new




space to HZ(W) in general, and he applied it to the operator

Sa B His results cover the Widom-Devinatz-Rochberg theorem for

any p satisfying 1 € p < m,

Theorem 4.1. Suppose |¢| =1, W 1is a weight, & 18 a
constant satisfying 0 < & £ 1, and let
r = 8(2 - 82)1/2,

Then the following conditions are mutually equivalent.

L o)
(1) Slifhlegy = lstlly (£ €A+ A
(2) There exists an inner function Q and a real function i
in L2 such that ¢ = Qeit, and We Y 1is in (HS)(r).
{3 There exists an inner function Q, a real function t in
il w
Y u and' v 1Iin L such that
e Qelt' We_t e gl V’
-1 -1
Ilvllw £ cos r, lul £ cosh “{(cos v)/r}.
Proof. We shall use the idea of R.Rochberg (c¢f. [35]) and

the idea of R.Arocena, M.Cotlar and C.Sadosky (cf. [2],[7]). We
shall show that (1) implies (2). By (1),

5% (LR S e 1% W A £ f 19 + £.12 W dm,
T 1 2 T JF 2

for all fl in A and fz in AO. Hence

2 2 s 2
| < + Ile ) + 2(Re ¢f1f2)}de 2.0,

2
Bu SR AT
Ja 1
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By the Cotlar-Sadosky theorem, & £ 1 and there exists a k in
B! such that |[¢W - k| £ (1 - BZ)W. Hence,

oW - kl1% € (1 - r2)w2.

By Lemma A, there exists an inner function Q and a real
1 L it L

function t in L such that ¢ = ¢W/[eW| = Qe” ", and |oW]|e

f8 A0 _AHS) {r)i. 'Hents We *: i85 in (HS)(r). We shall show that

(2) ilmplies (3). By {(2), there exists a positive constant C,

~/

n o+ v i

real functions u and v such that W = Ce oo s LT el
£ w/2, and roal | oM £ 2(cos v). Hence,

2. Y *logr  -(u+ logr) £ 2(cos Vv)/r.
Hence, |vl £ cos™'r, |u + log r| £ cosh™ {(cos v)/r}, and

+ log r)+ ?

W = (C/r)e(u This implies (3). The proof is

reversible. This completes the proof.

Corollary 4.1.([45]) Suppose ¢ is in L” and W 1is a

weight. Then the following conditions are mutually equivalent.

(1) S is an isometry from L2((W)) to L2(W), that is.

¢
||S¢f||w = Ilfll(w) (EaEndm+ olighs
(2) l¢] = 1, and,
IIfII(W) < IIS¢f||w (f € A + A) .
(3) There exists an inner function Q and a real function t

in Ll such that ¢ = Qe1t and W = et.
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Proof. By (1), for all f] in A,
f (1412 - 1)|fl|z W dm = 0.
T
This implies l$#| = 1. Hence (1) implies (2). By Theorem 4.1,

(2) and (8) are equivalent. By (3),

SW = Qet + 1t

and ¢W is in Ll. This implies W is in H1 and hence

f lof. + £.1% W dm - f (12,12 + 1£.1%)W dm
T 1 2 T 1 2

=  "2Re IT ¢flf2W dm = 0 (fl & A, f2 & AO).

This implies (1). This completes the proof .

Let HZ(W) ® ﬁg(W) denote the algebraic direct sum of

H2(W)  and ﬁg(W) (¢f.[10, p.78]). Then HZ(W) ® ﬁg(W) fs the

Hilbert space equipped with the inner product

and the norm

ety o>l s (<fy. fg>, <fy. £5>) gy
For any 3 in L2((W)), there exists a sequence fln in A
and a sequence f2n in AO such that fln + f2n converges to

f in the norm of L2((W)). Then there exists an fl in HZ(W)

and an f, 1in ﬁg(W) such that <f f., > converges to

¢ 44 2n
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<f1, f2> in the norm of H2(W) ® ﬁg(W).

Let J denote the isometry from L2((W)) onto Hz(W) ®

fg(W) defined by

This definition 1is correct in the sense that it does not depend

on the particular choice of the Cauchy sequence which defines fl

and f

& W denote the operator from H2(W) ® ﬁg(W) to

LZ(W) defined by

fl’ f,> = of. + f

o 2 1 2

’ 2 —2
For all <f1. f2> in H™(W) ® HO(W),

< .
IIR¢,W<fl. fo>lly £ max{l|s|]_, LRCLEE bl o Ghgagan

< 21/2

max{l 1ol 1, 13l1<r , £,501 .

Hence is bounded.

Re,w

Sometimes we shall wright S¢ = S¢,(W) when we consider

S as an operator from Lz((W)) to Lz(W). Since

& Se, (W)

R¢ WJ and J 1is an isometry, we have the following lemma (cf.

[45]). The proof of Lemma 4.1 1is clear.

Lemma 4.1. Suppose ¢ is in Lm. and W 1is a weight.

Then Ry w is a bounded operator from HZ(W) ® ﬁg(W) to LZ(W).
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R is (left) invertible if =
b W ( ) and only if S¢ S¢,(W) is (left)
invertible as an operator from Lz((W)) to LZ(W).
Lemma 4.2.([45]) Suppose ¢, ¢_l are in Luo and W
is a weight. If there exists an inner function Q, outer
functions o, B such that |a|2W, IBIZW are in (HS), and ¢

=  QB/¢c, then R¢,W becomes

HZ(W) ® ﬁg(W) to LZ(W), and

operator from LZ((W)) to LZ(W).

by

Tf = <aP, (Qf/B),
for ail’ £ 16 LEWE, | bhen .
and JM  is the left inverse to

o SR AR (aP+ +

for all g 1in A + AO.

a left invertible operator from
S¢ becomes a left invertible

If an operator T 1is defined

QBP_(Qf/B)>,

is the left inverse to R¢,W'

S Then

e

QBP_) (Qe/B),

Proof . since  lal®w, |BI?W are in (HS), (lel2w)~1,
(IBIZW)—1 are also in (HS). Hence (la|2W)—l, (IBIZW)—1 are
in Ll. For alLl .=f sin L2(W), by the Schwarz inequality, f/B

. 3 1
is 2% IR R

constants ¥, 7' such that

<W>

By the Helson-Szego theorem (cf. [18]), there exist

el g2 = [ lep,@t/B) 1% am + [ [aBP_(3£/B) 1% am
T T
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g f 1a£/B121al?W dm  + ' j 1ar/B121812w dm
i i i
< e 2w v [ 1e1%w am,
A0

For all fl in HZ(W) and fz in ﬁg(W), by the Schwarz

inequality, £, /a is in H* and sz/E is in ﬁé. Let f =

¢f1 + f2, so that

aP (Qf/B) = aP (f,/a + Qf,/B) - aP (f /@) = T,

QBP_(Qf/B) = QBP_(f,/a + Qf,/B) = QBP_(Qf,/B) = f

o
Hence aP (Qf/B) € H*(W),  aBP_(Qr/B) € A2(W), and

TR¢,w<f1’ f2> A i <f1, f2>.
Hence T 1is the left-inverse to R¢ w- BY Lemma 4.1, e i
the 1left 1inverse to S¢,(W)' For any g 1in ¢A + AO, there

exists a gl in A and a gz in A such that g = ¢gl + g

0 2"

By the calculation, aP (Qg/B) = gq s and QBP_(Qg/B) = £o
Hence oaP (Qg/B) 1s in A, and QBP (Qg/B) is in AO. Hence
=1

J7'rg = 37'<aP, (Qg/B), QBP_(Qg/B)>

= oP, (Qg/B) + QBP_(Qe/B) = (aP, + QBP_)(Qe/B).

This completes the proof.
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Theorem 4.2.([45]) Suppose ¢ is in Lm and W 1is a
weight. Then the following conditions on $ and W are

mutually equivalent.

(1) S¢ is 1left invertible as an operator from L2((W)) to

LZ(w).

i $ is in Lm, and there exists an inner function Q and

~

a real function t in L1 such that ¢/|¢]| = Qeit and We ©

iag in. {HS}.

(3) ¢-1 is 1in Lm, and there exists an inner function Q,

outer functions a, B such that lalzw, IBIZW are in (HS),
and ¢ = Qﬁ/a.

GEC, Wy RS R L and there exists a k in H' and a

positive constant € such that
leW - k| £ (1 - €)|4|W.

(5) Both of two operators S¢ and S_¢ are bounded below as

an operator on L2(W). That 1is, there exists a positive

constant & such that
Sllfllw 5 min{lls¢f|lw ; IIS_¢fllw} LEEA =k )

Proof. We shall show that (1) implies (4). By (1),
there exists a positive constant § such that

SIIEIT yy = TIS,FIly, .

for all € 1o A ¥ AO. Hence,




5T
[ tcae12 - s%H1e12 « (1 - 62)11,12 + 2Re(of,T,) }Wdn 2 0,
T i) 2 ey
for all iy in A and f, Ain Ao' By the Cotlar-Sadosky
theorem, 0 < & £ 1, &6 £ |¢| and there exists a k in Hl
such that
[ew =T 2" i 8% M3 615 551/ 3y
< (1 - 8532 41w,
This implies (4). By Lemma 3.1, (2) and (4) are equivalent.
We shall show that (2) implies (3). Put u = log |¢|, then u
(06]
s ST k. Put
g o-fu*t o+ i(u s t)N}/z,
8 - e{u -t + i(u - t) }/2,
then o, B are outer functions, and ¢ = QB/c. Since We—t
is 1in (HS), Ia|2W and |B|2W are in (HS). This implies (3).

By Lemma 4.2, (3) implies (1). We shall show that (4) implies

LBy - t4 ), there exists a constant & and a k in H1 such

that 0 <8 <1, &< [|#|% and |eW - k| £ (1 - 8)|¢|W. Then
(1 = B%p(1al® = 8%) = (d-~ B3] $) %

8(1~ 8)¢214)% - 8(1 1+ D)}

> 2801 - &)(lel? - 8) = o.

Hence

oW - k|2 £ (1 - 82)(1el2 - &%) w2.




By the Cotlar-Sados
[ tae1? - 82
rI‘

This implies (1).

IISfllw
Hence,

RESTF
Since S¢,(W) is

constant & such t

sClitlly,
Hence °,

SIITI

slistlly,
Since Szf = f
we have
Hence

5||Sf||w
Since T € A + Ro

sty

We shall show that
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ky theorem, for all f, € A and By € Ao’

s §2 L omA T 2 B
fll % 13 5 )Ile + 2Re(¢flf2)}de 2 0.

We shall show that (1) implies (5). Since

- we have

< IISfII(W) = llfll(w).

HIstlily £ 2111 gy

left 1invertible, there exists a positive
hat for all f € A + Ao’

= K £
+ LIstlly) = 281121y £ Tsgflly .

<
< IlS¢f||w, and

<
< |IS¢fI|W ;

and S¢Sf = S¢(P+ W E e LR el i S W

< ||S_¢Sf||w (TG A A Y,
if and only if Sf € A + Ao’ we have

< ||S_¢f||w AR RS

(5) implies (1). Since
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< i
SHitlle = Nis gty . ;
we have ?
< = e
slifll, < IIS¢Sf||w (f &€& + AY, it
Hence, i
Slistlly = lsgehly (f €a+iA ). o]
Hence, e
SCHITHy + Tstlly) < 21ls,ell, (f €A+ A).
Since
2 2, 2 2
Ilfllw + IISfIIw = IIP+f + P_fIIw + IIP+f - P_fllw
i 2 2. 2
= 2(I|P+f||w + IIP_fIIw ) = 2|lfll(w),
we have
2172121 < el + |lsfl]
(W) = W w*
Hence,
172 .
<
2 allfll(w) = 2||S¢fllw (f € A + A).

This completes the proof.

Remark. ta)y  1IFf S¢ (W) is left invertible, then log W
is 1n Ll. and there exists an inner function Q, real
functions u, v in L” such that ||V|lm < 1®/2 and

Qe1{v - (u - log W)~}.

¢/ ||
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(b) By condition (2), S¢ (W) is left invertible if and only

_1 (00]
if ¢ i in 'L and S¢/|¢I,(W) is left invertible.

The equivalence of conditions (3) and (4) in Corollary 4.2

is the Helson-Szegd theorem (cf. [18]). Since llfllw2 +
; - 4 2
1/2
=
[ PEI T e R
Corollary 4.2.([45]) For a weight W, the following
conditions are mutually equivalent.
1/2 I
(1) IlSl (W)ll & oy 2 : That 1is, there exists a positive

constant € such that

el & 0252 <iendifid (f €A+ K.

(W)

(27 S

51 (W) is 1left invertible. That "'1sg, there exists a

positive constant & such that
- g 7
Sl gy Eh)E il | G o BT
(3) There exists a positive constant ¥ such that
P tHly = allflly (£ €A+ A).
(4) W is in (HS).

(5 ) There exists a k 1in Hl and a positive constant € such

that

W= k£ S 8w,

A B i o 2y,
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Proof. We shall show that (1) implies (2). By (1),

there exists a positive constant § such that

2 2 2 &
< .
||f1 + f2||w = (2 & )(||fl||w + ||f2||w )

for all f. € A and f., € A . Hence,

1 2 0

2 2 2 2

(L = 8T T g™ % @2 =BT, H g™ * 2Relr, £.), 2 0.
Hence,
2 /2

sC1e, 112 « M, 1,DY2 s 11, + 2,00,

This implies (2). Since I|P+fI|W -4 Ilfll(w), (2) implies

(3). We shall show that (3) implies (2). By (3),

* g (]
[IP_tlly < 1Pl + HIell, £ v llell,,

for some constant #°'. Hence
2 2 2 2 b 2
= < '
llfll(w) IIP+fIIw + IIP_fIIw < (" + 7 )IIfIIw .
This implies (2). We shall show that (2) implies (4). By
Theorem 4.2, there exists an inner function Q and a real
’ 1 - it
function t in 1 such that We is in (HS) and Qe = 1,
Since W_let 18 also in (HS), W_let is in Ll. By the Schwarz
‘ inequality, et/z i8 1n Ll. Since Qet * X% = et, a positive
| t 1/2
l function C is in H . By the Neuwirth-Newman theorem
(et f3h] i, V is a constant. Hence W 1is in (HS). Conversely

when W is in (HS), we can choose Q =1, t =0, and ¢ = 1
in the condiﬁion (2) of Theorem 4.2. Hence (4) implies (2). By

Theorem 4.2 with g = 1, (2) and (5) are equivalent. This

completes the proof.
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8
Butrir WEeERantoly Setfi®, | dielPieldl? & s ket Pyra
18,2 1
b | 5% g then kK 1s in H and ¢W + k = 0. By Theoren
4.2, this implies S¢ (W) is 1left invertible. Hence there

exists a positive constant & such that

..1/2 e,
< <
27070y £ 8litll ey S lsyelly (r€a+ i),
Simee "W Tanse in Ll, W 1s not in (HS). By Corollary 4.2,
Sl,(W) is not 1left invertible. Sl,W is an isometry. But we

have the following result.

Corollary 4.3.([29],[45]) Suppose ¢ € L% and

ess infl1 - ¢| > 0, and W is a weight. If there exists a

positive constant § such that

Slilly £ lisyelly, (fe€a i),

then for any constant ¢ satisfying 0 £ € < 62 there exists a

positive constant &' such that

ST gy £ IS, oflly (€A «A,
that 1is S¢—£ is left invertible as an operator from L2((W))
to L2(W).

Proof. If € = 0, then by Theorem 3.1 and Theorem 4.2

give the result. Suppose 0 < € £ 62. Then,

IT{(I¢IZ - g)lfllz + (1 - S)Ilez + 2Re( (¢ — S)flfz)}de > 0.
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By the Cotlar-Sadosky theorem, £ = |¢|2. € £1 and there
exists a k 1in H1 such that

(¢ - &)W - kl2 < (1 - &)(l¢]% - g)w?

5 2 2

= {1 - g(le - 11/1¢ - e} (¢ - £)W]|“.

Since ¢ and (b - 1)—l are in Lw, there exists a constant p,

0 £ P <1 such that

e(le - 11/1e - e2 21 - p2,
Hence
[(¢ - €)W - k| < pled - g]|W.
Since
¢ - €] =2 |¢] - € 2 81/2(1 - 81/2) -~ o T

(b - 8)_1 is in L%, and
[(¢ - €)W - k| £ pled - ¢]|wW.

By Theorem 4.2, this implies is left invertible.

Se—g, (W)

Corollary 4.4.([45]) Suppose ¢ is in Ve and W 1is a

weight. If there exists a real function s 1in Ll such that ¢
= eisl¢|, and we® is in Ll, then the following conditions
are mutually equivalent.

(1) 5 and S are bounded below operators on L2(W).

¢ —$

s

(2) ¢-l is in L°, and We® 1is in (HS).
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Proof. By Theorem 4.2, (1) implies ¢—1 is in L00 and

there exists a Kk in Hl such that

11 - k/7(eW) || < 1.

Hence

11 - (ke = 15)/(lelWe) 1] < 1.
Since |¢lWeg is in Ll, ke'g =R Wt L ad By Corollary
4.2, |¢|Weg is in (HS) and hence Weg is in (HS). Conversely,

(2) implies |&|We® 1is in (HS). By Corollary 4.2, there exists

at s Ke An H1 siieh *that

11 - k/Clelwe®) 1] < 1.

is

Hence |[1 - ke'® 7 S/(¢#W)||_ < 1. By Theorem 4.2, this implies

(1). This completes the proof.

Corollary 4.5.([45]) Suppose ¢ 1is in L00 and W 1is a
weight. Suppose the argument of ¢ 1is in Ll and it's harmonic

conjugate function 1is in Bk (This condition is satisfied if

a

¢ is 1invertible 1n H , or the argument of ¢ 1is Dini

continuous.) Then the following conditions are mutually

equivalent.

(1) S¢ and S_¢ are bounded below operators on LZ(W).

(2) 41 isin L®, and W 1is in (HS).
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Proof. There exists a real function s in L1 such that
¢ = eis|¢l and S ig 1in L. Henee: We® 16 im Lt By

Corollary 4.4, ¢ and W satisfy (1) if and only if ¢ 1 is in

~ ~

Lm. and We® is in (HS). Since e® 1is invertible in Lm, We®

is in (HS) if and only if W 1is in (HS). This completes the

proof .

When P, 1s continuous in the norm of Lp(W), 1 <p < »,
R.Rochberg [35] solved the invertibility problem of the Toeplitz

operator on the weighted Hardy space Hp(W). Even when I

not continuous 1in the norm of Lp(W), T.Nakazi [27] solved the
invertibility problem of the Toeplitz operator on some new
spaces. We shall consider the case p = 2, and use the Hilbert

space argument. When S¢ (W) has a bounded inverse operator,

we shall say S¢,(W) is invertible.

Prof.T.Nakazi privately communicated me the equivalence of
simple conditions (1) and (2) in Theorem 4.3 (cf. [45]) . We
shall prove Theorem 4.3 using Theorem 4.2. In Theorem 4.3, we

shall give the‘form of the inverse to S¢ (W) *
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Theorem 4.3. Suppose ¢ is in Lm and W 1s a weight.

Then the following conditions are mutually equivalent.

(1) S¢ is invertible as an operator from L2((W)) to L2(W).

(2) ¢_1 is in Lm. and there exists a real constant ¢ and a

real function t in L1 such that We Y 1is in (HS), and

$7le) &M N
(3) T is 4in e and there exist outer functions a, B
s s 2 e
such that |eal“Ww, [|B|“W are in (HS), and ¢ = B/ca.
(4) ¢_1 is in Lm, and there exists an outer function k in

H™ and a positive constant € such that
l¢W - k| < (1 - €)|o|W.
Suppose one of these conditions are satisfied. Let T be

-1
Se, (W)

the operator defined 1in Lemma 4.2 with Q = 1. Then

(aP, + BP_)(1/B)(S, &) = f (£ €A+ K.

(This formula 1is essentially the same as one of H.Widom,
A.Devinatz, R.Rochberg and M.Shinbrot.)
Proof. We shall show that (1) implies (2). Since

S¢ (W) is invertible, by Theorem 4.2, there exists an inner

t

function Q and a real function t in Ll such that We is

a4

in (HS), and ¢/|¢| = Qeit. Since S, (wy is invertible,
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there exists an f 1in L2((W)) such that S¢ (W)f = 1. Hence

there exists an fl in HZ(W) and an fz in ﬁg(W) such that

¢f1 + f2 = 1 ... Then,
Qf (1 - Fett T T = 1 -, W/ (lelwe™) 2 0.
Since ¢ is invertible in L and We ' is in (HS),
({lwe™®3" 1 15 1n 1. Since £, in AZ(W), |1 - £,1°W 1is in
Ll. Hence the left hand side 1is a non-negative function in
1/2 P i
H ; By the Neuwirth-Newman theorem, Q = e for some real
0 ibe w8 )
constant c. Hence ¢/l = e . This implies (2). By
Theorem 4.2 and it's proof with Q = eic, (2) implies (3). We

shall show that (3) implies (1). By Lemma 4.1 and Lemma 4.2, it

is sufficient to show that R¢ W is right invertible. Let T

be the operator defined in Lemma 4.2 with Q = 1. By (3), log W
i 1n Ll. Hence there exists an outer function h in H2 such
that W = |h|2. Since |B|2W is in (HS), (|B|2W)p is also in

(HS) for some p, p > 1. Hence (IBIZW)—p 1s 4n ¥ por a11

Fp B e

i

< ¢ ie1?w dm}p/‘p*l’{fT<|s|2w>'p amy'/ (P < o
f 3
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Since 2p/(p + 1) > 1, by the Rlesz theorem (ecf.[22, p.132]1),
P (£/B) 1s in  w2P/(P*1)  gynce lal®W is in (HS), by the
Helson-Szego theorem, there exists a constant 9 such that for

all. € in L2(W).

J

< v [t/ flel® an = vl 2 [ dr1Pwdn < e,
T T

lahp, (£/B)1% dan = [ [P (£/B)1%lal®W dn

T T

Hence ahP+(f/§) is in HZ. Similarly, BhP (f/B) 1is in ﬁg.

By the Beurling theorem (cf.[22, p.110]), there exists a

sequence g, in A such that hgn converges to ahP+(f/§) in

the norm of Lz. Hence gn converges to aP+(f/§) in the norm

of L*(W). This implies aP, (f/B) 1is in H*(W). Similarly,
BP_(f/B) is in ﬁg(W). Hence

R Tf = R

&, W ¢’W<aP+(f/§), BP (f/B)>

= ¢aP (f/B) + BP_(£/B) = B(P,_ + P_)(£/B) = f.

Hence T = R¢_&. By the proof of Lemma A, (2) and (4) are

equivalent. This completes the proof.

t

Remark . (a) R.Rochberg[35] showed that if We and

-t' ei(c + %) _ e1(c' + %')

We are in (HS), and , then t - t'

is a constant.
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(b) I1f lel®w, IBI%W, la'|®W and |B'I%W are in (HS) and
B/a = B'/a', then there exists a constant ¢ such that a' = co
and B' = <¢B, since a'/a, B'/B and their complex conjugate
functions are in Hl, and hence they are constants.
(c) If W1 is in L' and s is invertible then S
$, (W) ' ¢, W
and S_¢ W have a dense range, and there exists a positive
constant & such that
& E.
SLIfITy = min{lISyflly o TIs_,fllgt  (fF €A+ A)).

Corol]afy 4.6.(1451) Suppose ¢

weight such that Wt dg dn Lt Then,

if and only if S and S$,(W_l) are

$, (W)

Proof. Suppose S¢,(W) and

invertible. By Theorem 4.2, there exist

and real functions t, t* in L1 su

are in (HS), and &¢/|¢| = Qeiz, $/|¢| =
QQ'e(t L T 6 i S -

since W lel, Web .are in Br, aoet ©

Neuwirth-Newman theorem, Q and Q' are

(06]
En Ser and W 1is a

S¢,(W) is invertible

left invertible.

S$,(W_1) are left

inner functions Q, Q'

ch that We—t, wte T
Q'eit . Hence

b ety

)/2 is in Ll. By the

constants. By Theorem

s i S¢,(W) is invertible. Suppose S¢,(W) is invertible. By
Theorem 4.3, there exists a real constant ¢ and a real
function t in L' such that we™t is in (HS), and $/|e| =
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By Theorem 4.2, this implies S$ (W—l) is left invertible.

This completes the proof.




|
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