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ABSTRACT

Measuring processes of a single spin-1/2 object and of a pair of spin-1/2
objects in the EPR-Bohm state are modeled by systems of differential equations.
These models are based on mainly the following two ideas: (1) as a result of
the interaction with a measuring apparatus, the state of the object changes and
approaches an attractor, in which the object possesses the measured value in the
phase space of states of objects; (ii) a quantum-mechanical state corresponds to
an ensemble of states in the corresponding attractor in the phase space. The
latter model is a local model with hidden variables of the EPR-Bohm gedanken
experiment. Although there is no dynamical interaction between the pair of
spin-1/2 objects, the model reproduces approximately the quantum-mechanical
correlations by using coincidence counting. Hence the Bell inequality is violated.
This result supports the idea that the coincidence counting is the source of the

apparent nonlocality in the EPR-Bohm gedankenexperiment.
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1. INTRODUCTION

The notion of probability is indispensable to quantum mechanics, because
outcomes of measurements behave probabilistically in quantum phenomena. It
1s natural to consider that the probabilistic behavior of outcomes of measurements
1s due to the lack of our knowledge about the state of the object. This lack of
our knowledge is compensated by finding variables that distinguish the states of
the object that produce different outcomes. Since these variables have not been
yet found experimentally, they are called hidden variables. The states of the
object specified by values of the hidden variables are called hidden states. Since
a state of the object is specified by sharp values of variables including hidden
ones, we can say that states of the object are classical, and they constitute a
classical phase space. Thus, in this viewpoint, a« quantum-mechanical state is
an ensemble of stales in the classical phase space. Therefore a reinterpretation
of quantum-mechanical probability based on this viewpoint will be called an

cnsemble interpretation of quantum-mechanical probability.

In the old days, there were attempts to interpret quantum-mechanical prob-
ability within the framework of usual probability theory, i.e., Kolmogorovian
probability theory(!) which is based on measure theory. Since a probability mea-
sure represents an ensemble of hidden states, these attempts may be also called
ensemble interpretations of quantum-mechanical probability. As is well known,
these attempts, however, did not success,(?3) because they postulated that the
prepared object always produces an outcome directly, i.e., statistical properties of
the object are calculated in a single probability space without conditioning. This
postulate is a natural consequence in Kolmogorovian probability theory. Since
quantum-mechanical probability is subject to a mathematical formalism based
on Hilbert space theory, it is totally different from Kolmogorovian probability
theory based on measure theory; this fact reflects the failure of these attempts.
Unfortunately, the failure induced misundersta,nding that no ensemble interpre-

tations is possible. This misunderstanding leads to an idea that the probability



is not secondary property but primary property of Nature. Moreover, it becomes
to be considered that wave functions give the complete description of physical
reality. The problem of this type of thought is that it needs the projection
postulate,(*) i.e. reduction of wave function, which can be considered as a source

of the Schrodinger cat paradox(®) and the de Broglie’s paradox.(®)

The impossibility of reinterpretation of quantum-mechanical probability with-
in the framework of Kolmogorovian probability theory means that many proba-
bility spaces are needed to describe quantum-mechanical probability. The choice
of the probability spaces depends on what kind of physical quantity 1s to be
measured. This dependence will be called contextuality of quantum-mechanical
probability. This ensemble interpretation with many probability spaces are also
called a contextual hidden-variable theory.(") As shown by Gudder,(®) contextual
hidden-variable theories are possible and contain no contradiction mathemati-
cally. But they have been regarded as just mathematical artifacts; there is space
lo discuss the meaning of the contextuality and to argue how quantum-mechanical
probability emerges. In particular, what causes the contextuality has become an
mmportant problem in physics since the argument made by Bell.(®) Bell proves
the so-called Bell inequality with assumption that a measurement of a spin does
not mfluence a result of measurement of other spin far from the former spatially,
wlere the pair of the two spins is in a singlet quantum-mechanical state. Since
quantum-mechanical probability violates the Bell inequality, it is believed that
the violation of the Bell inequality means existence of action at a distance. Does
such action at a distance truly exist in Nature? Because the argument of Bell
rests on Kolmogorovian probability theory, it should be considered that the prob-
lem of the violation of the Bell inequality is not the nonlocality but rather what

causes the contextuality.

Sice the contextuality is built in the mathematical formalism of quantum-
mechanical probability theory, to discuss the cause of the contextuality 1t 1s
necessary to see quantum-mechancial probability from another viewpoint, say

ensemble interpretations. In this thesis, it is shown that there is a model based



on ensemble interpretation of quantum-mechanical probability that the contex-
tuality can be produced from another cause different from action at a distance.
The aim of this thesis is to show that quantum-mechanical probability can be

compatible to the traditional view of physics that there is no spooky action at a

distance.

In the following, we will review the argument made by Bell briefly according

to Ref. 10, and mention other attempts to save the physical locality.

Consider a pair of spin-1/2 particles in a singlet quantum-mechanical state,
where the particles move to opposite directions. Measurements of components of
the spins of the particles are performed at places far apart from each other. This
is the EPR-Bohm gedanken experiment. We denote an element of reality which
lixes all observables by A. Its probability density is denoted by p(A). Let A(X;a)
(B(A;b)) be a random variable that represents outcomes of measurements of
component of the spin of the one (other) particle along direction a (b). A();a)
assumes 1 (—1) if the outcome is spin-up (spin-down). It is similar for B();b).
Here, the locality assumption is used which says that A(\;a) does not depend

on b and B(A;b) does not depend on a. Put
Pla, b)) o= /d)\p(/\)A(/\;a)B(/\;b).
Since |A(X;a)| =1,

|P(a,b) — P(a,b)| < [ dAp(A)|A(X; a)(B(A;b) = B(A; b))

(1.1)
dAp(A)|B(A;b) — B(A; b))

Il
e L

In the same way,
|P(a’,b) + P(a’,b")]| < /d)\p(/\)lB()\; b) + B(A\; b')]. (1.2)

While we can see that |[B(A;b) — B(A;b')| + |B(A;b) + B(X;b')| = 2. By this



identity, (1.1), and (1.2),
A(a,b,a’,b") :=|P(a,b) — P(a,b’)| + |P(a',b) + P(a’,b")| < 2. (1.3)

This 1s called the Bell inequality. Bell concludes that if the Bell imequality is
violated, then the locality assumption is wrong; A(A;a) depends on b, i.e., the

setting up of the other measuring apparatus placed in the distance and so on.

Several EPR-Bohm type experiments have already been performed since
then, and violations of the Bell type inequalities have been observed.(!!) As a
result, it is widely believed that quantum mechanics has a nonlocal character

such as action at a distance.

It is little known, however, that several authors(12-16) showed, about ten years
ago, that violation of the Bell inequality does not necessarily imply the existence
of action at a distance, by making local models that violate the Bell type inequal-
ities. According to the literature,(1”) the Marshall-Santos-Selleri model(!®) rests
on the idea of a variable detection probability, namely, different photons behave
differently, when interacting with photon detectors, so that the no-enhancement
assumption('?) is not satisfied. This idea and other related models have been dis-
cussed extensively in Ref. 17; from it we can know subsequent development along
these lines up to 1988. A simple example proposed by Ferrero et al.(18) in 1990
shows that if the efficiency of photon detectors is low, then the so-called factor-
1zability is compatible with the quantum-mechanical prediction that is obtained
by taking all the corrections for nonideal behavior into account. Further, Santos
has shown(1%29 that no violation of the genuine Bell inequality is predicted by
quantum mechanics, when correctly used, in experiments with correlated optical
photon pairs, even if perfect polarizers and detectors were available. Reference
20 1s worth reading, because the interpretation of the quantum formalism, the
relation to realism, hidden variables, the Bell inequalities, etc. have been ar-
gued from the author’s viewpoint as a scientist. On the other hand, Scarela,(14)

Notarigo,(!*) and Pascazio(16) investigated other possibilities in order to save the




physical locality. They argue that the coincidence counting i1s a source of the
apparent nonlocality. They make models only for photons, since most of the
experiments were performed on pairs of photons. The attempts to save the phys-
ical locality have not yet disappeared. In 1993, Squires has argued the possibility
of absence of the superluminal interaction in the EPR-like situation, using the
Bolim hidden-variable model modified by the introduction of retarded positions

into the wave function.(?1)

Now, in this thesis, a local model for spin-1/2 objects, according to Bohm’s

version(22)

of the EPR gedanken experiment, will be presented. The model vio-
lates the Bell inequality as a result of the coincidence counting. A hidden-variable
model 1s suitable for the purpose of seeing clearly whether there exists action at
a distance or not, because it refers to the change of a state of the object be-
fore and after a measurement, i.e., a processes of measurement. For this reason,
the model comprises hidden variables. The purpose of this thesis is neither to
explain why the value of spin is quantized nor to replace quantum mechanics
by classical mechanics. The aim of this thesis is rather to find an example, at
least in thinking, that shows that the coincidence counting is the source of the
apparent nonlocality. In the model, in order to describe the time evolution of a
measuring process, we shall use a system of differential equations that has attrac-
tors. Since the attractors are invariant under the flow, they are invariant in the

measurement. From this fact, the attractors shall be related to corresponding

quantum-mechanical eigenstates. This is a new feature of the model.

The organization of this thesis is as follows: In Sec. 2, we will construct a
model of a measurement for a single spin-1/2 object. This section also contains
preparations of the next section. In Sec. 3, we will make an extension of the model
of Sec. 2 to the EPR-Bohm situation. The heart of this thesis is in this section.
By taking an appropriate closing time in sampling data, the model approximately
reproduces the correlations predicted by quantum mechanics. Section 4 is devoted

to discussion and summary.




2. A HIDDEN-VARIABLE MODEL OF A
MEASUREMENT OF A SINGLE SPIN-1/2 OBJECT

In this section, we will construct a model of measuring processes of a spin-
1/2 object. A measuring apparatus changes a state of the object due to the
interaction between them; this change is not instantaneous generally. To describe
this change, we use a system of ordinary differential equations. TFor another
setting of the measuring apparatus, time evolution of a state of the object 1s
governed by another system of differential equations. Therefore the probability
spaces of outcomes are different for different settings of the Imeasuring apparatus.

Thus our model becomes a contextual hidden-variable th eory.

A spin-1/2 object is not a mere point-particle, but a system of many degrees
of freedom, because the spin can be considered as those degrees of freedom that
describe a rotation of the object about some axis. We denote these degrees
of freedom by § = (S;,S5,,S5;) € R3 TFor the sake of convenience, we use
units in which A=1, and put j = 1/2, J = \/3_/2 We denote the quantum-
mechanical observables of the spin by a triple of operators (523;, gy, Sz) Then
quantum mechanics gives us the following information about the spin: the spin-
up(-down) eigenstate of S, has the eigenvalue +j(—j) for S, and J? for S:mz %
§y2 + 522, respectively. Hence the spin-up eigenstate of S, may correspond to
an ensemble of states whose members have such properties that S, = 47 and
S| = J. S is yet insufficient to describe a state of the spin-1/2 object, since
the vector S possessing the above properties is not parallel to the z-axis. We
must take account of other degrees of freedom that express whether a state is a
member of an ensemble corresponding to the spin-up eigenstate. Let us denote

them by U = (U, Uy, U,), the value of which is parallel to the z-axis for any

state in the ensemble corresponding to the spin-up eigenstate of S,, and so on.

In actual experiments, it does not matter when the object enters the measur-
ing apparatus and escapes from it. Hence we do not have to take account of such

details of the motion of the object in the actual space. However, they become




important for coincidence counting; we will take them into account in the next
section. In this section, we shall see that the six degrees of freedom are sufficient

to model the measuring process of a single spin-1/2 object.

We denote a six-dimensional space R® by I' whose coordinates are given as
(8, U= 15,5, 9.0, Uy,U.). A state of the object is represented by a point
(S,U) in I'. Let a; be a subset of I that is defined as

Q/l:{(S,U)GI*ISZ:+]"|S|2:J2’UQ:: y:Uz__,]:()}_

As stated before, we will identify an ensemble of states distributed u niformly in

oy with the spin-up eigenstate of S,. In the same way, let ay be a subset of I’

that 1s defined as

v ={(8,U)el|S,=—j,|8?=J% Uy = Uy =U, + J =0},

and we will identify an ensemble of states distributed uniformly in «y with the

spin-down eigenstate of S, .

A good measuring apparatus for the z-component of the spin must effect
a state of the object to approach to either a; or ay. Therefore the measuring
process of the z-component of the spin may be modeled by a system of differential
equations for which a; and oy are attractors.(?*) The simplest ones among such

systems of differential equations may be the following:

dS
T =U XS = aPa gy~ {0(S. - D)oy +0(=5. + B)o_ e
clU (2.1)

dt = — €3 Py U — 62{Uz — sign(S5; — ﬂ)']}ez i GZUZ{IUIZ x ']2}83’




where ¢; = 10.0, ¢ = 0.05, and

)
)

w(U) = cos—l(Uz/,Ul),
)

={jcosw — /J? —jzcos(g(l — cosw))sinw}

x {0.986(| cos w| — 0.99) + 6(0.99 — | cosw]) },
0 1 0 0
e =101, Pey=10 10
1 0 0 0
Here 6(2) is the step function which is defined as f(z) = 1, if 2 > 0, Bla) = 0,
otherwise; sign(x) is the sign function which is defined as sign(z) = 1, if = >

0, sign(z) = —1, otherwise. For simplicity’s sake, the unit of time is chosen
appropriately. Thus we assume that the evolution of a state (S, U) during the

measurement of S;, i.e., the z-component of the spin, is governed by Eq. (211

It seems convenient to make some remarks on Eq. (2.1). The terms containing
€;’s, 1 = 1,2, in Eq.(2.1) are crucial for the existence of the attractors a1 and .
To see this, suppose that there are no terms on the right-hand sides of Eq. (2.1)
except for —e; Pry(0%/0S)tp. Then (dy?/dt)=2(0%/08S) - (dS/dt)hp=—8¢ (S +
Sg)p? < 0. As far as neither S§+55 nor 1 vanishes, ¥(S(t))? is strictly monotone
decreasing as a function of time t. As ¢t — oo, %? may vanish, i.c., |S|> may
approach J2. This is similar for the other terms containing €; or €¢;. The role of
the function #(w) is to give a border between S, — +j and S, — —j. Thus, the

terms containing ¢;’s, i = 1, 2, effectively represent the influence of the measuring

apparatus on a state of the object.

In the actual experiments, for example, the Stern-Gerlach magnet is used
as a measuring apparatus of S,. In this case, the z-component of the spin is
not directly measured. The experimenter judges S, = +j or —j according to

the sign of the z-component of the velocity of the object gained eventually by

10




the imhomogeneous magnetic field. In our model, if S is stabilized in a neigh-
borhood of a;(a3), in which S, > 0(< 0), then'since S may behave as if it
represented a magnetic dipole, the z-component of the velocity shall become
positive(negative). From these considerations, let us regard the measurement of
S I our model as the following procedure: a state (S, U) of the object begins to
evolve by Eq. (2.1), when the interaction between the object and the measuring
apparatus is switched on; when the state in I' comes into an appropriate neigh-
borhood G(a1) = {(S,U) € ' : |S, — j| < 6} of @1, 6 = 0.01, the measurement
finishes and we obtain the outcome +j; otherwise, when the state in I' comes
into an appropriate neighborhood G(ay) = {(S,U) €I':[S, +j| < 6} of ay,
the measurement finishes and we obtain the outcome —J. Rigorously speaking,
the measured z-component of the spin is not represented by S,; rather, it is

represented by a slightly modified function S, defined on I' as

+j, if P € G((Xl),
SAp) =< —j,  if p€Glay),
S:(p), otherwise.

For brevity, we will write that S, = j in place of S, = 7 and so on hereafter.

We have completed modeling the measuring process of S, here. Measuring
processes of other components of the spin are modeled in the natural manner.
It suffices to transform all the quantities of the model of the measurement of S,
under the rotation that transform the z-direction into the direction along which

the spin 1s measured.

To see whether our model goes well, we will study measurements of S, for
several initial ensembles corresponding to the eigenstates of other components
of the spin. First, each initial ensemble is defined in the following. Let Tj
be a rotation (matrix) in R® through an angle 6 about an axis lying in the
zy-plane, say, the y-axis. When we perform a measurement of S - Tye,, the
evolution of a state is given by the system of differential equations that is in-

duced from Eq. (2.1) by the rotation. Let 8y be a subset of I' defined as

11




Po = {(T4S", TyU') e T : (8", U € ai}, i.e., it is obtained by rotating ;.
Then the £y is an attractor on which S - Tye, = +j. An ensemble of states
distributed uniformly in the 8y is identified with the spin-up eigenstate of the
quantum-mechanical observable corresponding to S - Tye,. This is because that
when we perform the measurements of S - Tye, on this ensemble, S - The, = j

holds with certainty, since all the members of the ensemble are already in the

neighborhood G(f3y) of the attractor Bg.

Second, since we cannot solve Eq. (2.1) analytically, we must make numerical
calculations. By solving Eq. (2.1) numerically for each member of the ensem-
bles as an initial condition, the probabilities that the trajectories come into the
neighborhoods G(a1) of a; and G(az) of ay were calculated. In effect, 72 states
distributed uniformly in g (6 = 10n°, n =0, ...,36) were taken as the initial
conditions. Equation (2.1) was solved by the Euler method with two different
step-sizes A1=0.001, 0.0001. For each 6, the probabilities were calculated as rel-
ative frequencies for the 72 samples. Since the results in the two step-sizes are
almost the same, it can be said that the errors from the Fuler method are very
small in these numerical calculations. The maximum time when a state comes
into one of the neighborhoods of the two attractors is short; it is 0.2447. This

may be the reason why the errors are small, though the Euler method is used.

Figure 1 represents the probabilities of outcomes of the measurements of
S; = S-e, being +; with respect to the ensembles of states distributed uniformly
in ffy for several relative angles # (calculated with At = 0.0001). The result fits
with the prediction of quantum mechanics. In this sense, we can say that the

model of this section is the one of measuring processes of a single spin-1/2 object.

Before closing this section, we note the following remark. We call the time
when the interaction between the object and the measuring apparatus is switched
on a beginning time. We call the time when a state comes into one of the neigh-
borhoods of the two attractors a finishing fime. Since we may put the beginning

time for each state to be zero without loss of generality, we will do so hereafter.
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Then the finishing time for each object depends both on what kinds of physical
quantities is measured and on the initial states. ‘We note that finishing times
gencrally fluctuate due to the variation of initial states, even if the beginning
times are the same. This fluctuation plays an important role when we use the

coincidence counting as in the next section.

3. A LOCAL MODEL OF THE EPR-BOHM
GEDANKEN EXPERIMENT

Now we will make an extension of the previous model to the EPR-Bohm
gedanken experiment. We consider two spin-1/2 objects which are distinguished
by being labeled as A and as B. Let I'4y and I'p be the phase spaces of the
spin-1/2 objects A and B, respectively. The whole phase space I'4p is given
by the direct product I'y x I'p. Suppose that two measuring apparatuses are
placed apart on the y-axis at equal distance from the origin. We will measure

components of the spins along directions perpendicular to the y-axis.

The EPR-Bohm quantum-mechanical state is the singlet state. We note that
1t 1s rotationally invariant, and the pair of spins, in this quantum-mechanical

state, has completely negative correlations. Let s be a subset of I'4p defined as

I

s = U U{(SA,UA»SB;UB) €l'yp SA+SB:(),UA+U]3=O,
$=00=0

(By(~8) Ro(=9)S 4, Ry(—8) Ro(—)U 1) € al},

where 1,(¢4) and R, (6) represent the rotation about the z-axis through an angle
¢ and the rotation about the y-axis through an angle 4, respectively. An ensemble
of states of pairs distributed uniformly in the subset s has the above mentioned
two features of the EPR-Bohm quantum-mechanical state. Hence let us take this
cnsemble as the initial condition just before measurements in the EPR-Bohm

situation.

13




In the actual experiments, the coincidence counting is used in order to iden-
tify detected objects as a pair. Therefore the time when the object escapes from
the measuring apparatus is important. Since the actual motion of the object in
the measuring apparatus may be complicated, instead of modeling the details of
the motion concretely, we just assume that there exists a threshold time 7" such
that if the finishing time is greater than 7', then the value of the y-coordinate
of the object becomes random as a result of the interaction with the measuring
apparatus. We can also rephrase this assumption as follows: there is 7" such that
if the finishing time is greater than 7', then the time when the object escapes from
the measuring apparatus fluctuates. It should be emphasized that this assump-
tion concerns itself with a single object (A or B) and the measuring apparatus
for 1t, so no action at a distance is stolen into our model by this assumption. It
shall be shown at the end of this section that by the coincidence counting, a pair
of spin-1/2 objects is taken into account as outcomes of measurements, only if

their finishing times are less than 7. Hence we call T" a closing time in sampling

data.

Correlations of the spins of the objects A and B with a closing time T'=
0.133 were calculated numerically as in the previous section. First, 3852 states
distributed uniformly in s were taken as initial conditions for the differential
equations, and they were solved by the Euler method with step-size At = 0.001
with respect to various closing times 7. It was found that 7=0.133 is the best.
Next, 15192 states distributed uniformly in s were taken as initial conditions
for the differential equations, and they were solved in the same way but with
step-size At = 0.0001 with respect to closing times 7'=0.133. The correlations
obtained from the two kinds of calculations with different sizes of samples and
the step-sizes agree well; it can be said that the errors are very small in these

numerical calculations.

The results are plotted in Fig. 2 and compared with the quantum-mechanical
correlations. The correlations obtained from our model approximate the quantum-

mechanical correlations. For comparison, the correlations without the closing

14




time, 1.e., without using the coincidence counting, were also calculated. The
results are plotted in Fig. 3. In this case, since no closing time is imstituted,
the correlations are calculated essentially in a single probability space. Since our
model has no action at a distance, as expected from the no-go theorems(*?3) of
noncontextual hidden-variable theories; the result without the closing time does

not agree with quantum mechanics.

Figure 4 represents the results of calculations of the quantity F(¢4) that ap-
pears in Ref. 24. The Bell inequality implies that //(¢) does not exceed 2. The
results with the closing time 7" = 0.133 agree with quantum mechanics approxi-
mately, and the Bell inequality is violated. The results without the closing time,
on the other hand, satisfy the Bell inequality, and do not agree with quantum

mechanics.

Our task is now to express the assumption for the motion of the position
of the object more concretely, and to show that the coincidence counting leads
to the institution of a closing time in sampling data. Suppose that the devices
of the gedanken experiment are arranged as follows (see Fig. 5): the source of
pairs of the objects is at the origin; measuring apparatuses, whose lengths in
the y-direction are the same W, for the object A and the object B are placed
apart on the y-axis at equal distance from the origin; a detector for the object A4
is placed behind the measuring apparatus, say on (0, —L,0), viz., on the y-axis
at the distance L from the origin to the negative direction; in the same way, a
detector for the object B is placed on (0,L,0). Let ty be the earliest time when
the object reaches the detector. Recall here that all the beginning times are zero.
Let vy be the modulus of the y-component of the velocity of each object at the
outside of the measuring apparatus. For the object whose finishing time is less
than T, we denote the modulus of the y-component of the velocity at the inside

of the measuring apparatus by v (=const).

Then our assumption can be expressed concretely as follows: for an object

with its finishing time 7, if 7 < T, then the time when the object escapes from

15




the measuring apparatus is W/v; if 7 > T, then the time when the object
escapes from the measuring apparatus fluctuates uniformly in a time interval
[W/v, (W/v) + 7] as a result of the interaction between the object and the mea-
suring apparatus. Thus, the closing time T characterizes the way of diffusion of

the position of the object in the measuring process.

Let 74 be a finishing time for the spin-1/2 object A. Then the probability of
the object A existing in an interval [y, y + Ay| on the y-axis, 0 < Ay < 1, at the

time 19 becomes approximately

X[ L~ LrAgil#)s 7 R
/)A(y)Ay 5 { 1

VOTA X[—L,—L+U0TA](y)A1 ) If TA > ,]1

Here we used the notation x g to represent the characteristic (defining) function
of a subset E' of the real line which is defined as yp(z) = 1,if ¢ € E; yp(z) =0,
otherwise. In the same way, let 75 be a finishing time for the spin-1/2 object B.
The probability of detection of the object B in an interval [y, y+Ay], 0 < Ay < 1,

at the time ¢y becomes approximately

X[L—Ay,L](y)a if 7 < ,[1)

pB(y)Ay = { {

VoTB X[L—UOTB,L](?/)Aya trg > T,

For the objects A and B whose finishing times are 74 and 7p, respectively, we
estimate the probability p, of coincidence detection. We partition the y-axis into
ntervals [yn, yn41), n € Z, whose lengths are Ay, where y, = nAy. Since the
coincidence detection is done not only at the time ¢y but also at delayed times,

pe becomes, for Ay < 1,

pe =Y pal=yn)Dypp(yn) Ay

z/dypA(—y)pB(y)Ay

{17 ifTA)TB_<_’T)
L 0(A4y), otherwise.

This means that in the limit where the accuracy Ay of position approaches zero,
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if at least one of the finishing times 74 and 7p is greater than 7', then the
probability p. of the objects A and B being detected at the same time vanishes.
Therefore any objects A and B detected at coincidence have finishing times 74

and 7p both of which are less than T" with certainty.

Accordingly, as far as we use the coincidence counting, our local model vio-

lates the Bell inequality.

4. DISCUSSION AND CONCLUSION

As we have seen in the previous section, there exists a local model that
violates the Bell inequality even for spin-1/2 objects. This fact supports the idea
that the coincidence counting is the source of the apparent nonlocality, and that

there exists no action at a distance in the EPR-Bohm situation.

The model is an example that shows that interaction between the object and
the measuring apparatus is not the unique reason of the contextuality, i.e., the
probability spaces of outcomes of measurements are different according to what
are measured. In fact, by introducing the closing time 7', the model of Sec.
3 produces different probability spaces of outcomes according to the choice of
different settings of the measuring apparatuses. Thus this local model becomes
a contextual hidden-variable theory. In the model, the sample space changes
according to the choice of 6,1, which is the angle between the directions a and
b of the spins of the objects A and B to be measured. Nevertheless, as shown
in Iig. 6, the variation of the number of samples is small (less than 10%). This
results seem to be consistent with the results of the experiment of Aspect et
al. (2%) though it was done for photons, in which the number of samples is found

constant when the setting of the measuring apparatuses is changed.

In Sec. 2, we identified the ensemble of the states of the object distributed
uniformly in each attractors with the corresponding eigenstates. In Sec. 3, we
have identified the ensemble distributed in the subset s of I'yp with the EPR-

Bohm quantum-mechanical state. One may ask what ensemble corresponds to a
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given quantum-mechanical state. The question is beyond the scope of this thesis,
because 1t 1s almost equivalent to understanding the superposition principle of
quantum states. In fact, in order to find the answer, we must understand the
meaning of a phase of a quantum-mechanical state vector. The phenomenological

model in this thesis lacks this information of the phase.

However, 1t 1s interesting and important to find the answer, because this has
deep connection with whether our human reason can understand things existing
in the external world or not. It is known that propositions for quantum phenom-
ena are subject to some non-Boolean logic.(26) These propositions are concerned
with outcomes of measurements. But, since the human reason is subject to the
Boolean logic, the outcomes of the measurements contradict the human reason.
Accordingly, in order to understand the things behind the quantum phenomena
by the human reason, we cannot help assuming something that is subject to the
Boolean logic. Thus, to understand the things in the external world necessarily
means mtroduction of some hidden variables. In addition, we must also compre-
hend how the Boolean object characterized by the hidden variables produces such
non-Boolean phenomena as quantum phenomena. Although the model in this
thesis is so restricted that it may have less connection with the things existing
in the external world, it gives an example such that a Boolean object leads to
non-Boolean phenomena. In this sense, the model is instructive. The model also

suggests that the things existing in the external world would be local.

The results of this thesis are summarized in the following. A local hidden-
variable model of spin-1/2 objects in the EPR-Bohm gedanken experiment is con-
structed. By instituting the appropriate closing time in sampling data, the cor-
relations that are calculated by the model approximate the quantum-mechanical
correlations. Consequently, as far as the coincidence counting is used, the lo-
cal model violates the Bell inequality with no action at a distance. Therefore
quantum-mechanical probability can be compatible to the traditional view of

physics that there is no action at a distance.
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FIGURES

g, 1.
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The probability of S, being +; for the ensemble of states distributed
uniformly in By plotted versus the relative angle 6. o represents the results

of our model, and the solid curve is the corresponding results of quantum

mechanics.
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correlation
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The correlation of S4 - e, and Sp - Tye, for the ensemble of states dis-
tributed uniformly in s plotted versus the relative angle 6. o represents
the results of our model, and the solid curve is the corresponding results

of quantum mechanics. The value of the closing time T in sampling data

1s 0.133.




correlation
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The correlation of S4 -e, and Sj - Tye,, without the closing time, for the

ensemble of states distributed uniformly in s plotted versus the relative
angle 8. o represents the results of our model, and the solid curve is the

corresponding results of quantum mechanics.
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IMig. 4.
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¢

Graph of F'(¢) given in Ref. 22 against the relative angle ¢. o represents

the results of our model with the closing time 7'=0.133. x represents
the results of our model without the closing time. The solid curve is the

corresponding results of quantumn mechanics.
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I'ig. 5. A schematic diagram of the arrangement of the devices. Each clock shows

the time when the object, whose finishing time is less than T, exists at

each indicated place.
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Graph of the number of samples in the calculations of the correlations

for the ensemble of states distributed uniformly in s against the relative

angle . The value of the closing time 7" is 0.133.
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