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Abstract

We consider Hilbert space representations of a generalization of canonical com-
mutation relations (CCR): [ X, Xj] := X; X, — X3 X; =101 (j,k=1,2,...,2n),
where X;’s are elements of an algebra with identity I, ¢ is the imaginary unit, and
O, is a real number with ©;, = —0y; (j,k = 1,...,2n). Some basic aspects on
Hilbert space representations of the generalized CCR (GCCR) are discussed. We
define a Schrodinger type representation of the GCCR, by analogy with the usual
Schrodinger representation of the CCR with n degrees of freedom. Also we intro-
duce a Weyl type representation of the GCCR. The main result of the present paper
is a uniqueness theorem on Weyl representations of the GCCR.
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1 Introduction

In this paper, we consider Hilbert space representations of a generalized canonical com-
mutation relations (GCCR) with n degrees of freedom ( n € N := {1,2,3,...}) of the
following type:

(X;, X)) =00 (jk=1,...,2n), (1.1)

where X;’s are elements of an algebra with identity I, [X;, Xi] = X; Xy — XX, i is

the imaginary unit, and ©;, € R (the set of real numbers) with anti-symmetry O, =



—0y,; (j,k =1,...,2n) such that, for some pair (j, k), ©;; # 0. For convenience, we call
(1.1) the ©-GCCR with n degrees of freedom and the 2n x 2n matrix

@ = (@jk)j,kzl,...,Zn (1.2)

the non-commutative factor for {X;}3",.

Note that, in the case where © is equal to

J = < _(}n i ) , (1.3)

with I, being the n X n unit matrix, (1.1) becomes the CCR with n degrees of freedom.
Namely, if we put Q; := X;, P;:= X,+; (j =1,...,n) in the present case, then we
have

[ijQk‘]:O’ [Pj?Pk‘]:O’ [prk]:i(sjkl (j,k=1,...,n),

where §;;, is the Kronecker delta. Thus (1.1) is a natural generalization of the CCR with
n degrees of freedom.

The GCCR also includes some of non-commutative space-times (e.g., [7, 10, 15]), non-
commutative spaces (e.g., [12]) and non-commutative phase spaces (e.g., [3, 4, 11, 13, 14,
19, 26]). In fact, one of the motivations for the present work is to investigate general
structures underlying those non-commutative objects. In this paper, however, we present
only some fundamental aspects of Hilbert space representations of the GCCR. The main
result is to establish a uniqueness theorem on Weyl type representations of the GCCR
(for the definition, see Section 4).

In Section 2, we define Hilbert space representations of the GCCR and discuss some
basic facts on them. It is shown that there exists a one-to-one correspondence between
representations of the GCCR and the CCR with the same degrees of freedom. In Section 3,
we introduce a Schrodinger type representation of the GCCR, whose representation space
is L*(R™) as in the case of the Schrodinger representation of the CCR with n degrees of
freedom. In Section 4, Weyl type representations of the GCCR are defined by analogy
with Weyl representations of CCR. In the last section, we prove the uniqueness theorem
mentioned above. In Appendix, we present some basic properties of self-adjoint operators

obeying generalized Weyl relations, which are used in the text.

2 Basic Facts on Hilbert Space Representations of
the 6-GCCR

Let H be a complex Hilbert space with inner product (-, -) (anti-linear in the first variable

and linear in the second one) and norm || - ||. For a linear operator A on H, we denote its
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domain by D(A). For linear operators A, ..., A, on H,

<2A> =M1 D(4A;), D(A1Az) = {¥ € D(Ay)[A¥ € D(A1)},
D(A;---4,) == D((Ar1---Ap-1)4,) (p=3).

Definition 2.1 Let D be a dense subspace of H and X,,j = 1,...,2n, be symmetric
(not necessarily essentially self-adjoint) operators on H. We set X := (Xl, ooy Xop). We
say that the triple (K, D, X) is a symmetric representation of the ©-GCCR with n degrees
of freedom if D € N} _, D(X;X}) and (1.1) holds on D.

If all the X;’s (j = 1,...,2n) are self-adjoint, we say that (H,D,X) is a self-adjoint
representation of the GCCR.

Remark 2.2 The concept of self-adjoint representation defined above is different from

the one used in representation theory of x-algebra (e.g., [22, p.205]).

Remark 2.3 In each symmetric representation (H,D,X) of the ©-GCCR, H is infi-
nite dimensional (if I were finite dimensional, then, for (j,k) such that ©;, # 0,
0 = trace of [X;, Xi] = 10, dim H # 0 and hence one is led to a contradiction).

Remark 2.4 It follows from a well known fact on commutation properties of linear op-
erators (e.g., [16, Theorem 1.2.3]) that, for (j, k) with ©;; # 0, at least one of X; and X},

is unbounded. Hence one has to be careful about domains of X;’s.

Remark 2.5 In the case of Hilbert space representations of CCR, symmetric represen-
tations, but non-self-adjoint ones, also play important roles. For example, such repre-
sentations appear in mathematical theories of time operators [2] (see also [23, 24] for
investigations from purely operator-theoretic points of view). Thus it is expected that,
in addition to self-adjoint representations of the ©-GCCR, non-self-adjoint symmetric

representations of it may have any importance in applications to quantum physics.

Remark 2.6 In the context of quantum mechanics, for a symmetric operator A and a
unit vector ¢ € D(A), (AA)y = [[(A — (¥, A))1| is called the uncertainty of A in
the vector state 1. Let (H,D,X) be a symmetric representation of the ©-GCCR, with
n degrees of freedom. Then one has uncertainty relations of Robertson type [20]: for all
unit vectors ¢ € D and j,k=1,...,2n,

—_

(AX)y(AXk)y > S (¥, O0) |-

[\]

Let (H, D, X) be a symmetric representation of the ©-GCCR as in Definition 2.1. We

assume for simplicity the following:



Assumption: The non-commutative factor © is regular (invertible).

Under this assumption, © is a regular anti-symmetric real matrix. Hence, by a well
known fact in the theory of linear algebra (e.g., [21, p.173, Problem 9]), the following fact
holds:

Lemma 2.7 There exists a reqular 2n x 2n real matriz Ty such that *TyOT, = J, where
YTo is the transposed matriz of Ty and J is defined by (1.3).

The matrix 7 in Lemma 2.7 belongs to the set
Me = {T|T is a 2n x 2n real matrix such that *TOT = J}. (2.1)

It is easy to see that, for each T € Mg, there exists a unique 2n x 2n symplectic matrix
W (i.e., *WJW = J) such that T = T,WW. Hence

Mo = {TyW|'WJW = J}. (2.2)

For a 2n x 2n real matrix L = (Ljk);k=1,. 20, We define

.....

2n
X[ =Y LyXe, j=1....2n. (2.3)
k=1

We call the correspondence X +— X% := (XL ... XL the L-transform of X.
Let

@L = tL@L (24)
Proposition 2.8
(i) Forallj=1,...,2n, XjL 18 a symmetric operator on H.
(ii) Forall j,k=1,...,2n,
[(XF, X[ =i(O1) (2.5)

on D.
(iii) For each T € Mg and 5,k =1,...,2n,

(X7, X5 ] = i (2.6)
on D.

Proof. An easy exercise. 1

Proposition 2.8-(i) and (ii) show that (H, D, X¥) is a symmetric representation of the
O.-GCCR with n degrees of freedom.
Proposition 2.8-(iii) implies the following:
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Corollary 2.9 LetT' € Mg and
Qi =X/, P=Xl, (j=1,...,n).

Then (J{,D,{Qj,Pj}?:l) 15 a symmeltric representation of the CCR with n degrees of

freedom.

Corollary 2.9 means that, for each T' € Mg, the T-transform of X gives a correspon-
dence from a symmetric representation of the ©-GCCR with n degrees of freedom to a
symmetric representation of the CCR with the same degrees of freedom.

One can easily see that (2.3) with L =T € Mg implies that

2n

X = Y (T T .7
k=1
on ﬂ?ilD(X ;). Thus every symmetric representation of the ©-GCCR with n degrees of
freedom is constructed from a symmetric representation of the CCR with the same degrees
of freedom via (2.7).
Conversely, if a symmetric representation (3, D, {Q;, P;}7_,) of the CCR with n de-
grees of freedom is given and let

n

X;(QP;T) = (T )iiQi + > (T ) tnsnyi P (2.8)
k=1 k=1
with Q := (Q1,...,Q,) and P := (Py,..., P,). Then (H,D,X(Q,P;T)) is a symmetric
representation of the ©-GCCR and (2.3) holds with L =T, X = Q;, X1, = P; (j =
1,...,n)and X; = X,;(Q,P;T) (j =1,...,2n). Hence every symmetric representation
of the CCR with n degrees of freedom is constructed from a symmetric representation
of the ©-GCCR with the same degrees of freedom. Thus, for each T' € Mg, there exists
a one-to-one correspondence between a symmetric representation of the ©-GCCR and a

symmetric representation of the CCR with n degrees of freedom.

3 Representations of Schrodinger Type

Let T € Mg. By the fact on X(Q,P;T) stated in the preceding section, we can de-
fine a class of representations of the ©-GCCR. Let (L*(R"), Cg°(R™), {g;,p;}}-,) be the
Schrodinger representation of the CCR with n degrees of freedom, i.e., ¢; is the multipli-
cation operator by the jth component z; of x = (z1,...,2,) € R" and p; := —iD; with
D; being the generalized partial differential operator in z;, acting in L*(R"). Let

n

Xi(@p;T) =Y (T kjar+ D (T wswyipn,
k=1

k=1
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which is (2.8) with Q = q and P = p. We denote the closure of X;(q,p;T) by X,(q,p;T)
and set

X(q,p;T) = (X1(q,p; T), - -, Xon(q, ;7))
We call the triple 7 := (L*(R"), C&°(R"), X (q, p; T)) the T-Schridinger representation
of the ©-GCCR.

It is easy to see that, for all j = 1,...,2n, X;(q,p;7T) is essentially self-adjoint on
C$°(R™) (apply, e.g., the Nelson commutator theorem [18, Theorem X.37] with dominat-
ing operator N = Zgbzl(qu +p3)+1)". Hence X ;(q,p;T) is self-adjoint. Thus we obtain
the following:

Proposition 3.1 For each T € Mg, the T-Schrodinger representation 7l is a self-adjoint
representation of the ©-GCCR.

4 Representations of Weyl Type

Based on an analogy with Weyl representations of CCR, we introduce a concept of Weyl
representation for ©-GCCR.

Definition 4.1 Let {X; ?Zl be a set of self-adjoint operators on a Hilbert space JH{. We
say that {X; 327:‘1 is a Weyl representation of the ©-GCCR with n degrees of freedom if,

forall s,te Rand j,k=1,...,2n,

it X

e j eiSXk

—ist@]’k e’iSXk

e, (4.1)

=e
We call these relations the ©-Weyl relations.
For a linear operator A on a Hilbert space, we denote its spectrum by o(A).

Proposition 4.2 Let {X; 32.21 be a Weyl representation of the ©-GCCR on H. Then
there is a dense subspace Dy C H left invariant by each X; (7 = 1,...,2n) such that
(H, Do, X) is a self-adjoint representation of the ©-GCCR. Moreover, for every pair
(X, Xk) such that ©,, # 0, X; and X}, are purely absolutely continuous with

o(Xj;)=0(Xp) =R, j=1,...,2n. (4.2)

Proof. By (4.1), we can apply the results described in Appendix A of the present
paper. In the present context, we need only to take, in the notation in Appendix A,
N =2n, aj;, = Oj; and A; = X;. By Proposition A.4-(iii) and Corollary A.5, there exists
a dense subspace Dy left invariant by X; (j = 1,...,2n) and [X;, X}| = i©;; on Dy. Thus
the first half of the proposition is derived. The second half follows from Proposition A.1.1

!This can be proved also by applying Proposition 4.6 below.
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Remark 4.3 As in the case of self-adjoint representations of CCR (e.g., [1, 9, 24]), the
converse of Proposition 4.2 does not hold (i.e., a self-adjoint representation of the ©-GCCR

is not necessarily a Weyl one).

We recall that a set {Q;, P; }?:1 of self-adjoint operators on H is a Weyl representation
of the CCR with n degrees of freedom if, for all s, € R and j,k =1,...,n, the following
Wey relations hold:

ethj ezst — e—zst(Sjkelst ethj’ ethj eszk — 615Qk €thj, ethj ezst — ezst €ZtPj.

Remark 4.4 A set {Q;, P;}}_, of self-adjoint operators on 3 is a Weyl representation of
the CCR with n degrees of freedom if and only if {X;}3", with X; := Q;, X,,s; = P; (j =
1,...,n) is a Weyl representation of the J-GCCR, where J is given by (1.3).

Let T' € Mg be arbitrarily fixed. The next proposition shows that the T-transform
of each Weyl representation of the ©-GCCR is a Weyl representation of the CCR with n

degrees of freedom:

Proposition 4.5 Let {X;}3", be a Weyl representation of the ©-GCCR on H and let
X" be the T-transform of X. Then each X] is essentially self-adjoint and {X]}3", is a
Weyl representation of the J-GCCR.

Proof. The essential self-adjointness of X]-T follows from a simple application of Theo-
rem A.6 in Appendix. Corollary A.7 in Appendix and the relation *T'OT = J imply that
{X7}3n, satisfies the J-Weyl relations. ]

In the same way as in the proof of Proposition 4.5, we can prove the following propo-

sition:

Proposition 4.6 Let {Q, Pj}?:l be a Weyl representation of the CCR with n degrees of
freedom on a Hilbert space H. Let X;(Q,P;T) (j =1,...,2n) be defined by (2.8). Then
each X;(Q, P;T) is essentially self-adjoint and {X;(Q,P;T) ?Ql is a Weyl representation
of ©-GCCR with n degrees of freedom.

This proposition shows that the converse of Proposition 4.5 holds too. Thus, for each
T € Mg, there exists a one-to-one correspondence between a Weyl representation of the
CCR with n degrees of freedom and that of the ©-GCCR with the same degrees of freedom.
It is well known [25] that the Schrodinger representation {g;, p;}j_, is a Weyl repre-

sentation o the CCR with n degrees of freedom. Hence we obtain the following result:

Corollary 4.7 For each T € Mg, the T-Schridinger representation {X;(q,p;T) ?Zl is
a Weyl representation of the ©-GCCR.



We say that a Weyl representation {X;}5", of the ©-GCCR on H is irreducible if every
closed subspace M of H which is invariant under the action of e®Xi (t € R,j =1,...,2n)
is {0} or .

Proposition 4.8 Let T € Mg. Then the T-Schridinger representation {X ;(q, p; T) ?Ql
as a Weyl representation of the ©-GCCR 1s irreducible.

Proof. Let M be an invariant closed subspace of e#Xi/@PT) (1 e R j =1,... 2n). We
have o o
G =Y T Xu(@,»;T), pj= ThtnipXe(a,p; 1)
k=1 k=1
on N2, D(X;(q,p;T)) = N7, D(g;) N D(p;). Hence, by an application of Theorem A.6
in Appendix, e and ePi (t € R) can be written respectively as a scalar multiple
of etXu@pT)  citXan(@pT)  Hence M is invariant under the action of €% and e
(teR,j=1,...,n). It is well known that {e% it € R,j = 1,...,n} is irreducible.
Thus M = {0} or . ]

5 Uniqueness Theorem on Weyl Representations of
the 6-GCCR

In this section, we prove the main result of the present paper, i.e., a uniqueness theorem
on Weyl representations of the ©-GCCR, which may be regarded as a GCCR version of
the celebrated von Neumann uniqueness theorem of Weyl representations of CCR ([16,
Theorem 4.11.1], [17, Theorem VIII.14], [25]).

Theorem 5.1 Let {Xj}?il be a Weyl representation of the ©-GCCR on a separable
Hilbert space 3. Then, for each T € Mg, there exist mutually orthogonal closed sub-
spaces Hy (0 =1,...,N; N € N or co) such that the following (i)—(iii) hold:

(i) H = @?:15{2-

(i) For each j =1,...,2n, X; is reduced by each Hy,, ¢ =1,...,N. We denote by
XJ(Z) the reduced part of X; to H,.

(iii) For each {, there exists a unitary operator U, : Hy — L*(R™) such that
UXU7 =X (@ T), j=1,....2n, (5.1)

where {X;(q,p; T)}3", is the T-Schridinger representation of the ©-GCCR.



Proof. Let T € Mg, XT be the T-transform of X and Q; := X_J.T, P := m (j =
1,...,n). Then, by Proposition 4.5 and Remark 4.4, {Q;, P;}%_, is a Weyl representation
of the CCR with n degrees of freedom. Hence, by the von Neumann uniqueness theorem
mentioned above, there exist mutually orthogonal closed subspaces H; such that (i) given

above and the following (a) and (b) hold:

(a) For each j = 1,...,n and all t € R, €% and e leave each H, invariant

(¢=1,...,N).
(b) For each £, there exists a unitary operator Uy : 3, — L*(R™) such that

U™ @U 1 = e Upe™iU =€) teR,j=1,...,n. (5.2)

By (2.7), we have X; = X;(Q,P;T) on N7%, D(X;). Hence X; C X,(Q,P;T). By
Proposition 4.6, X;(Q,P;T) is self-adjoint. Hence X; = X;(Q,P;T). Therefore, by
Theorem A.6 in Appendix, we obtain

. ) 2 -1 -1 . . . .
6’Lth — elt ZkZm Tem (T™ ) (T )mj/262tQ1 L. e’Lthe’Ltpl . €ZtPn, ] — 1’ . m.

Hence each ¢Xi leaves H, invariant (¢ = 1,..., N). Therefore X; is reduced by each H,.
We denote the reduced part of X; to 3, by X]@. Then, we have by (5.2)

1y (0) 12 52 -1 -1 ; : : ; g .
Ug€Zth Ug_l _ ezt Yz Jem (T~ (T )mj/2€7,tq1 . 6thn€ztp1 L 67,tpn _ 67,th(q,p,T),

Thus (5.1) follows. ]

Theorem 5.1 tells us that every Weyl representation of the ©-GCCR on a separable
Hilbert space is unitarily equivalent to a direct sum of the T-Schrodinger representation

of the ©-GCCR, where T' € Mg is arbitrary.

The next corollary immediately follows from Theorem 5.1:

Corollary 5.2 Let {Xj}?il be an irreducible Weyl representation of the ©-GCCR on
a separable Hilbert space H. Then, for each T € Mg, there exists a unitary operator
U:H — L*(R"™) such that

UX;U'=X,(q,p;;T), j=1,...,2n. (5.3)

The following result shows that the arbitrariness of the choice of T" in the T-Schrodinger
representation of the ©-GCCR is implemented by unitary operators.

Corollary 5.3 Let S,T € Mg. Then there exists a unitary operator V on L*(R™) such
that
VXia,pS)V ' =Xa,p;T), j=1,...,2n. (5.4)



Proof. We need only to apply Corollary 5.2 to the case where X; = yj(q, p;S). |

Remark 5.4 As in the case of non-Weyl representations of CCR, for non-Weyl represen-
tations of the ©-GCCR, the conclusion of Theorem 5.1 does not hold in general. Examples
of such representations of the ©-GCCR can be constructed from non-Weyl representations

of CCR (e.g., [1, 9, 23, 24]). A detailed description of some examples is given in [3].

A Some Properties of Self-Adjoint Operators Satis-
fying Relations of Weyl Type

Let N > 2 be an integer and A; (j = 1,...,N) be self-adjoint operators on a Hilbert
space H satisfying relations of Weyl type:

et gtk — e’itsaﬂ"“eimkeimi, t,seR, j,k=1,...,N, (A.1)
where a;;’s are real constants. It follows that aj; is anti-symmetric in (j, k):

A = —agj, ],k‘: 1,...,N. (AQ)

The unitarity of €4 and functional calculus imply that

exp(ise™ Ape ") = exp(is(Ay, — taj)), s,t € R.
Hence we have the operator equality
et Ape " = Ay —taj, teR,jk=1,...,N. (A.3)
For a linear operator A on a Hilbert space, we denote the spectrum of A by o(A).

Proposition A.1 Suppose that there exists a pair (j,k) such that a;i, # 0 (hence j # k).
Then
o(Aj) =R, o(A) =R. (A.4)

Moreover, A; and Ay are purely absolutely continuous.

Proof. By (A.3) and the unitary invariance of spectrum, we have o(Ay) = o(Ay —ta;i)
for all t € R. Since a;j;, # 0, this implies the second equation of (A.4). By (A.2), we have
ar; # 0. Hence, by considering the case of (j, k) replaced by (k,j), we obtain the first
equation of (A.4).

Relation (A.3) means that (Ag, A;) is a weak Weyl representation of the CCR with
one degree of freedom ([2, 6], [23]). Hence A; is purely absolutely continuous [2, 23].

Similarly we can show that A, is purely absolutely continuous. 1
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Proposition A.2 Let j and k be fized. Then, for all v € D(A;) N D(A;Ax), ¢ is in
D(A,A;)) and

[Aj, Aplp = daii. (A.5)

Proof. An easy exercise (use (A.3)). ]

For each function f € C§°(RY) and each vector ¢ € H, we define a vector ¢y by
b= [ F)en vyt (A.6)
RN

where t = (t1,...,tx) € RY and the integral on the right hand side is taken in the strong

sense. We introduce
Dy = Span{i; i) € H, f € C5°(RV)}, (A7)

where Span{---} denotes the subspace algebraically spanned by the vectors in the set
{---}. It is easy to see that Dy is dense in H.
For f: RY — C (the set of complex numbers), we set || f[|; :== [pn [ f(t)]dt.

Lemma A.3 Let f,, f € C(RY) such that || f,— f|l1 — 0(n — 00). Then ||¢y, —y| —

0(n — o0).

Proof. Since €54 is unitary, we have |[¢y, — ¥|| < || fo — fll1]|#]|. Thus the desired
result follows. ]

For each j =1,..., N, we define a function g; on RY by

0 for j =1 N
i(t) = i t € RY. A.
5O ={ Sty et ey tE (A.8)
Proposition A.4
(i) Forallt e R and j = 1,..., N, e leaves Dy invariant.

(i) For each j =1,...,N, A; leaves Dy invariant (i.e., A;Dy C Dy) and, for all

¢ eN,

Aﬁwf = (_i)Z@DFJ@(f), f e G RY), (A.9)
where F; : C°(RY) — C5°(RY) is defined by

Fy(f) = —0;f —ig;f, f € C&RY) (A.10)

and Ff is the € times composition of F; with F]Q =1 (identity).
(iii) For all ty,...,¢0n € NU{0},

AL ARy = ()T ] € CERY). (A.11)

()’
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Proof. (i) Let 1y be as above. Then we have eiipy = [0 f(t)eteittdr. .. elnAnydg,
By (A.1), we have

eitA]' eit1A1 . eitNAN — ef’itgj(t)eitlAl .. eitjflAjflei(tj+t)Aj eitj+1Aj+1 . itNAN.

..6

Hence
et Aipy =1 - (A.12)
with
FO) = ety ty — bt . ty)e 9

It is easy to see that f](t) is in C5°(RY). Hence fo € Dy. Thus €4 leaves Dy invariant.
(ii) By (A.12), we have for all t € R\ {0} (e — 1)/t = /lp(f;t)if)/t.

see that ||(f1” — f)/t — Ej(f)]li — 0(t — 0). Hence, by Lemma A.3,
iy

Therefore ¢y is in D(A;) and iA;9; = ¥p,(5). Hence (A.9) with £ = 1 holds. Then one
can prove (A.9) by induction.

It is easy to
= YE(f)-

(iii) This easily follows from (ii). ]

Propositions A.2 and A.4 immediately yield the following result:

Corollary A.5 For all j,k=1,...,N, [Aj, A;] = ia;i on Dy.

Theorem A.6 Forallc; cR,j=1,...,N, Zjvzl c;Aj is essentially self-adjoint on Dy
and
eitZ?/:l cjAj _ it® YDA ajkejer/2 iter A gitea Az |

.. giten AN (A.13)

where, for a closable operator C, C denotes the closure of C.

Proof. For each t € R, we define an operator U(t) by

. N . . .
U(t) — ezt2 Zj<k ajijck/2€ztc1A1€zt02A2 . eltCNAN_

By using (A.1), one can show that {U(¢)}wcr is a strongly continuous one-parameter
unitary group. Hence, by the Stone theorem, there exists a unique self-adjoint operator
A on H such that U(t) = 4, t € R. By Proposition A.4, U(t) leaves Dy invariant and
strongly differentiable on Dy with

N

0 = ’L.ZC]‘A]‘@ZJ, ’QZ) S D[)-

j=1

dU(t)¢

dt

t=

12



Hence Dy is a core of A (e.g., [17, Theorem VIII.10]). Hence Ay = Zjvzl c;jAjp, € Dy.
Thus the desired result follows. |

Forallc; e R,7=1,..., N, we set

N
A(c) ::chAj, c=(cy,...,cy) €RY. (A.14)
=1

Corollary A.7 For allc,d € RN andt,s € R,

pitA(e) isA(d) _ —its SNy ajkcidy pisA(d) gitA(e) (A.15)
Proof. By direct computations using (A.13) and (A.1). ]
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