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Abstract

We consider Hilbert space representations of a generalization of canonical com-
mutation relations (CCR): [Xj , Xk] := XjXk − XkXj = iΘjkI (j, k = 1, 2, . . . , 2n),
where Xj ’s are elements of an algebra with identity I, i is the imaginary unit, and
Θjk is a real number with Θjk = −Θkj (j, k = 1, . . . , 2n). Some basic aspects on
Hilbert space representations of the generalized CCR (GCCR) are discussed. We
define a Schrödinger type representation of the GCCR by analogy with the usual
Schrödinger representation of the CCR with n degrees of freedom. Also we intro-
duce a Weyl type representation of the GCCR. The main result of the present paper
is a uniqueness theorem on Weyl representations of the GCCR.
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1 Introduction

In this paper, we consider Hilbert space representations of a generalized canonical com-

mutation relations (GCCR) with n degrees of freedom ( n ∈ N := {1, 2, 3, . . .}) of the

following type:

[Xj, Xk] = iΘjkI (j, k = 1, . . . , 2n), (1.1)

where Xj’s are elements of an algebra with identity I, [Xj, Xk] := XjXk − XkXj, i is

the imaginary unit, and Θjk ∈ R (the set of real numbers) with anti-symmetry Θjk =
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−Θkj (j, k = 1, . . . , 2n) such that, for some pair (j, k), Θjk 6= 0. For convenience, we call

(1.1) the Θ-GCCR with n degrees of freedom and the 2n × 2n matrix

Θ := (Θjk)j,k=1,...,2n (1.2)

the non-commutative factor for {Xj}2n
j=1.

Note that, in the case where Θ is equal to

J :=

(
0 In

−In 0

)
, (1.3)

with In being the n × n unit matrix, (1.1) becomes the CCR with n degrees of freedom.

Namely, if we put Qj := Xj, Pj := Xn+j (j = 1, . . . , n) in the present case, then we

have

[Qj, Qk] = 0, [Pj, Pk] = 0, [Qj, Pk] = iδjkI (j, k = 1, . . . , n),

where δjk is the Kronecker delta. Thus (1.1) is a natural generalization of the CCR with

n degrees of freedom.

The GCCR also includes some of non-commutative space-times (e.g., [7, 10, 15]), non-

commutative spaces (e.g., [12]) and non-commutative phase spaces (e.g., [3, 4, 11, 13, 14,

19, 26]). In fact, one of the motivations for the present work is to investigate general

structures underlying those non-commutative objects. In this paper, however, we present

only some fundamental aspects of Hilbert space representations of the GCCR. The main

result is to establish a uniqueness theorem on Weyl type representations of the GCCR

(for the definition, see Section 4).

In Section 2, we define Hilbert space representations of the GCCR and discuss some

basic facts on them. It is shown that there exists a one-to-one correspondence between

representations of the GCCR and the CCR with the same degrees of freedom. In Section 3,

we introduce a Schrödinger type representation of the GCCR, whose representation space

is L2(Rn) as in the case of the Schrödinger representation of the CCR with n degrees of

freedom. In Section 4, Weyl type representations of the GCCR are defined by analogy

with Weyl representations of CCR. In the last section, we prove the uniqueness theorem

mentioned above. In Appendix, we present some basic properties of self-adjoint operators

obeying generalized Weyl relations, which are used in the text.

2 Basic Facts on Hilbert Space Representations of

the Θ-GCCR

Let H be a complex Hilbert space with inner product 〈 · , · 〉 (anti-linear in the first variable

and linear in the second one) and norm ‖ · ‖. For a linear operator A on H, we denote its
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domain by D(A). For linear operators A1, . . . , Ap on H,

D

(
p∑

i=1

Ai

)
:= ∩p

i=1D(Ai), D(A1A2) := {Ψ ∈ D(A2)|A2Ψ ∈ D(A1)},

D(A1 · · ·Ap) := D((A1 · · ·Ap−1)Ap) (p ≥ 3).

Definition 2.1 Let D be a dense subspace of H and Xj, j = 1, . . . , 2n, be symmetric

(not necessarily essentially self-adjoint) operators on H. We set X := (X1, . . . , X2n). We

say that the triple (H, D,X) is a symmetric representation of the Θ-GCCR with n degrees

of freedom if D ⊂ ∩2n
j,k=1D(XjXk) and (1.1) holds on D.

If all the Xj’s (j = 1, . . . , 2n) are self-adjoint, we say that (H,D,X) is a self-adjoint

representation of the GCCR.

Remark 2.2 The concept of self-adjoint representation defined above is different from

the one used in representation theory of ∗-algebra (e.g., [22, p.205]).

Remark 2.3 In each symmetric representation (H,D,X) of the Θ-GCCR, H is infi-

nite dimensional (if H were finite dimensional, then, for (j, k) such that Θjk 6= 0,

0 = trace of [Xj, Xk] = iΘjk dim H 6= 0 and hence one is led to a contradiction).

Remark 2.4 It follows from a well known fact on commutation properties of linear op-

erators (e.g., [16, Theorem 1.2.3]) that, for (j, k) with Θjk 6= 0, at least one of Xj and Xk

is unbounded. Hence one has to be careful about domains of Xj’s.

Remark 2.5 In the case of Hilbert space representations of CCR, symmetric represen-

tations, but non-self-adjoint ones, also play important roles. For example, such repre-

sentations appear in mathematical theories of time operators [2] (see also [23, 24] for

investigations from purely operator-theoretic points of view). Thus it is expected that,

in addition to self-adjoint representations of the Θ-GCCR, non-self-adjoint symmetric

representations of it may have any importance in applications to quantum physics.

Remark 2.6 In the context of quantum mechanics, for a symmetric operator A and a

unit vector ψ ∈ D(A), (∆A)ψ := ‖(A − 〈ψ,Aψ〉)ψ‖ is called the uncertainty of A in

the vector state ψ. Let (H,D,X) be a symmetric representation of the Θ-GCCR with

n degrees of freedom. Then one has uncertainty relations of Robertson type [20]: for all

unit vectors ψ ∈ D and j, k = 1, . . . , 2n,

(∆Xj)ψ(∆Xk)ψ ≥ 1

2
| 〈ψ, Θjkψ〉 |.

Let (H,D,X) be a symmetric representation of the Θ-GCCR as in Definition 2.1. We

assume for simplicity the following:
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Assumption: The non-commutative factor Θ is regular (invertible).

Under this assumption, Θ is a regular anti-symmetric real matrix. Hence, by a well

known fact in the theory of linear algebra (e.g., [21, p.173, Problem 9]), the following fact

holds:

Lemma 2.7 There exists a regular 2n × 2n real matrix T0 such that tT0ΘT0 = J , where
tT0 is the transposed matrix of T0 and J is defined by (1.3).

The matrix T0 in Lemma 2.7 belongs to the set

MΘ := {T |T is a 2n × 2n real matrix such that tTΘT = J}. (2.1)

It is easy to see that, for each T ∈ MΘ, there exists a unique 2n × 2n symplectic matrix

W (i.e., tWJW = J) such that T = T0W . Hence

MΘ = {T0W |tWJW = J}. (2.2)

For a 2n × 2n real matrix L = (Ljk)j,k=1,...,2n, we define

XL
j :=

2n∑
k=1

LkjXk, j = 1, . . . , 2n. (2.3)

We call the correspondence X 7→ XL := (XL
1 , . . . , XL

2n) the L-transform of X.

Let

ΘL := tLΘL. (2.4)

Proposition 2.8

(i) For all j = 1, . . . , 2n, XL
j is a symmetric operator on H.

(ii) For all j, k = 1, . . . , 2n,

[XL
j , XL

k ] = i(ΘL)jk (2.5)

on D.

(iii) For each T ∈ MΘ and j, k = 1, . . . , 2n,

[XT
j , XT

k ] = iJjk (2.6)

on D.

Proof. An easy exercise.

Proposition 2.8-(i) and (ii) show that (H,D,XL) is a symmetric representation of the

ΘL-GCCR with n degrees of freedom.

Proposition 2.8-(iii) implies the following:
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Corollary 2.9 Let T ∈ MΘ and

Qj := XT
j , Pj := XT

n+j (j = 1, . . . , n).

Then (H,D, {Qj, Pj}n
j=1) is a symmetric representation of the CCR with n degrees of

freedom.

Corollary 2.9 means that, for each T ∈ MΘ, the T -transform of X gives a correspon-

dence from a symmetric representation of the Θ-GCCR with n degrees of freedom to a

symmetric representation of the CCR with the same degrees of freedom.

One can easily see that (2.3) with L = T ∈ MΘ implies that

Xj =
2n∑

k=1

(T−1)kjX
T
k (2.7)

on ∩2n
j=1D(Xj). Thus every symmetric representation of the Θ-GCCR with n degrees of

freedom is constructed from a symmetric representation of the CCR with the same degrees

of freedom via (2.7).

Conversely, if a symmetric representation (H,D, {Qj, Pj}n
j=1) of the CCR with n de-

grees of freedom is given and let

Xj(Q,P; T ) :=
n∑

k=1

(T−1)kjQk +
n∑

k=1

(T−1)(n+k)jPk (2.8)

with Q := (Q1, . . . , Qn) and P := (P1, . . . , Pn). Then (H,D,X(Q,P; T )) is a symmetric

representation of the Θ-GCCR and (2.3) holds with L = T , XT
j = Qj, X

T
n+j = Pj (j =

1, . . . , n) and Xj = Xj(Q,P; T ) (j = 1, . . . , 2n). Hence every symmetric representation

of the CCR with n degrees of freedom is constructed from a symmetric representation

of the Θ-GCCR with the same degrees of freedom. Thus, for each T ∈ MΘ, there exists

a one-to-one correspondence between a symmetric representation of the Θ-GCCR and a

symmetric representation of the CCR with n degrees of freedom.

3 Representations of Schrödinger Type

Let T ∈ MΘ. By the fact on X(Q,P; T ) stated in the preceding section, we can de-

fine a class of representations of the Θ-GCCR. Let (L2(Rn), C∞
0 (Rn), {qj, pj}n

j=1) be the

Schrödinger representation of the CCR with n degrees of freedom, i.e., qj is the multipli-

cation operator by the jth component xj of x = (x1, . . . , xn) ∈ Rn and pj := −iDj with

Dj being the generalized partial differential operator in xj, acting in L2(Rn). Let

Xj(q,p; T ) =
n∑

k=1

(T−1)kjqk +
n∑

k=1

(T−1)(n+k)jpk,
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which is (2.8) with Q = q and P = p. We denote the closure of Xj(q,p; T ) by Xj(q,p; T )

and set

X(q,p; T ) := (X1(q,p; T ), . . . , X2n(q,p; T )).

We call the triple πT
S := (L2(Rn), C∞

0 (Rn),X(q,p; T )) the T -Schrödinger representation

of the Θ-GCCR.

It is easy to see that, for all j = 1, . . . , 2n, Xj(q,p; T ) is essentially self-adjoint on

C∞
0 (Rn) ( apply, e.g., the Nelson commutator theorem [18, Theorem X.37] with dominat-

ing operator N =
∑n

j=1(q
2
j + p2

j) + I)1. Hence Xj(q,p; T ) is self-adjoint. Thus we obtain

the following:

Proposition 3.1 For each T ∈ MΘ, the T -Schrödinger representation πT
S is a self-adjoint

representation of the Θ-GCCR.

4 Representations of Weyl Type

Based on an analogy with Weyl representations of CCR, we introduce a concept of Weyl

representation for Θ-GCCR.

Definition 4.1 Let {Xj}2n
j=1 be a set of self-adjoint operators on a Hilbert space H. We

say that {Xj}2n
j=1 is a Weyl representation of the Θ-GCCR with n degrees of freedom if,

for all s, t ∈ R and j, k = 1, . . . , 2n,

eitXjeisXk = e−istΘjkeisXkeitXj . (4.1)

We call these relations the Θ-Weyl relations.

For a linear operator A on a Hilbert space, we denote its spectrum by σ(A).

Proposition 4.2 Let {Xj}2n
j=1 be a Weyl representation of the Θ-GCCR on H. Then

there is a dense subspace D0 ⊂ H left invariant by each Xj (j = 1, . . . , 2n) such that

(H,D0,X) is a self-adjoint representation of the Θ-GCCR. Moreover, for every pair

(Xj, Xk) such that Θjk 6= 0, Xj and Xk are purely absolutely continuous with

σ(Xj) = σ(Xk) = R, j = 1, . . . , 2n. (4.2)

Proof. By (4.1), we can apply the results described in Appendix A of the present

paper. In the present context, we need only to take, in the notation in Appendix A,

N = 2n, ajk = Θjk and Aj = Xj. By Proposition A.4-(iii) and Corollary A.5, there exists

a dense subspace D0 left invariant by Xj (j = 1, . . . , 2n) and [Xj, Xk] = iΘjk on D0. Thus

the first half of the proposition is derived. The second half follows from Proposition A.1.

1This can be proved also by applying Proposition 4.6 below.
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Remark 4.3 As in the case of self-adjoint representations of CCR (e.g., [1, 9, 24]), the

converse of Proposition 4.2 does not hold (i.e., a self-adjoint representation of the Θ-GCCR

is not necessarily a Weyl one).

We recall that a set {Qj, Pj}n
j=1 of self-adjoint operators on H is a Weyl representation

of the CCR with n degrees of freedom if, for all s, t ∈ R and j, k = 1, . . . , n, the following

Wey relations hold:

eitQjeisPk = e−istδjkeisPkeitQj , eitQjeisQk = eisQkeitQj , eitPjeisPk = eisPkeitPj .

Remark 4.4 A set {Qj, Pj}n
j=1 of self-adjoint operators on H is a Weyl representation of

the CCR with n degrees of freedom if and only if {Xj}2n
j=1 with Xj := Qj, Xn+j = Pj (j =

1, . . . , n) is a Weyl representation of the J-GCCR, where J is given by (1.3).

Let T ∈ MΘ be arbitrarily fixed. The next proposition shows that the T -transform

of each Weyl representation of the Θ-GCCR is a Weyl representation of the CCR with n

degrees of freedom:

Proposition 4.5 Let {Xj}2n
j=1 be a Weyl representation of the Θ-GCCR on H and let

XT be the T -transform of X. Then each XT
j is essentially self-adjoint and {XT

j }2n
j=1 is a

Weyl representation of the J-GCCR.

Proof. The essential self-adjointness of XT
j follows from a simple application of Theo-

rem A.6 in Appendix. Corollary A.7 in Appendix and the relation tTΘT = J imply that

{XT
j }2n

j=1 satisfies the J-Weyl relations.

In the same way as in the proof of Proposition 4.5, we can prove the following propo-

sition:

Proposition 4.6 Let {Qj, Pj}n
j=1 be a Weyl representation of the CCR with n degrees of

freedom on a Hilbert space H. Let Xj(Q,P; T ) (j = 1, . . . , 2n) be defined by (2.8). Then

each Xj(Q,P; T ) is essentially self-adjoint and {Xj(Q,P; T )}2n
j=1 is a Weyl representation

of Θ-GCCR with n degrees of freedom.

This proposition shows that the converse of Proposition 4.5 holds too. Thus, for each

T ∈ MΘ, there exists a one-to-one correspondence between a Weyl representation of the

CCR with n degrees of freedom and that of the Θ-GCCR with the same degrees of freedom.

It is well known [25] that the Schrödinger representation {qj, pj}n
j=1 is a Weyl repre-

sentation o the CCR with n degrees of freedom. Hence we obtain the following result:

Corollary 4.7 For each T ∈ MΘ, the T -Schrödinger representation {Xj(q,p; T )}2n
j=1 is

a Weyl representation of the Θ-GCCR.
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We say that a Weyl representation {Xj}2n
j=1 of the Θ-GCCR on H is irreducible if every

closed subspace M of H which is invariant under the action of eitXj (t ∈ R, j = 1, . . . , 2n)

is {0} or H.

Proposition 4.8 Let T ∈ MΘ. Then the T -Schrödinger representation {Xj(q,p; T )}2n
j=1

as a Weyl representation of the Θ-GCCR is irreducible.

Proof. Let M be an invariant closed subspace of eitXj(q,p;T ) (t ∈ R, j = 1, . . . , 2n). We

have

qj =
2n∑

k=1

TkjXk(q,p; T ), pj =
2n∑

k=1

Tk(n+j)Xk(q,p; T ).

on ∩2n
j=1D(Xj(q,p; T )) = ∩n

j=1D(qj) ∩ D(pj). Hence, by an application of Theorem A.6

in Appendix, eitqj and eitpj (t ∈ R) can be written respectively as a scalar multiple

of eitX1(q,p;T ) . . . eitX2n(q,p;T ). Hence M is invariant under the action of eitqj and eitpj

(t ∈ R, j = 1, . . . , n). It is well known that {eitqj , eitpj |t ∈ R, j = 1, . . . , n} is irreducible.

Thus M = {0} or H.

5 Uniqueness Theorem on Weyl Representations of

the Θ-GCCR

In this section, we prove the main result of the present paper, i.e., a uniqueness theorem

on Weyl representations of the Θ-GCCR, which may be regarded as a GCCR version of

the celebrated von Neumann uniqueness theorem of Weyl representations of CCR ([16,

Theorem 4.11.1], [17, Theorem VIII.14], [25]).

Theorem 5.1 Let {Xj}2n
j=1 be a Weyl representation of the Θ-GCCR on a separable

Hilbert space H. Then, for each T ∈ MΘ, there exist mutually orthogonal closed sub-

spaces H` (` = 1, . . . , N ; N ∈ N or ∞) such that the following (i)–(iii) hold:

(i) H = ⊕N
`=1H`.

(ii) For each j = 1, . . . , 2n, Xj is reduced by each H`, ` = 1, . . . , N . We denote by

X
(`)
j the reduced part of Xj to H`.

(iii) For each `, there exists a unitary operator U` : H` → L2(Rn) such that

U`X
(`)
j U−1

` = Xj(q,p; T ), j = 1, . . . , 2n, (5.1)

where {Xj(q,p; T )}2n
j=1 is the T -Schrödinger representation of the Θ-GCCR.
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Proof. Let T ∈ MΘ, XT be the T -transform of X and Qj := XT
j , Pj := XT

n+j (j =

1, . . . , n). Then, by Proposition 4.5 and Remark 4.4, {Qj, Pj}n
j=1 is a Weyl representation

of the CCR with n degrees of freedom. Hence, by the von Neumann uniqueness theorem

mentioned above, there exist mutually orthogonal closed subspaces H` such that (i) given

above and the following (a) and (b) hold:

(a) For each j = 1, . . . , n and all t ∈ R, eitQj and eitPj leave each H` invariant

(` = 1, . . . , N).

(b) For each `, there exists a unitary operator U` : H` → L2(Rn) such that

U`e
itQjU−1

` = eitqj , U`e
itPjU−1

` = eitpj , t ∈ R, j = 1, . . . , n. (5.2)

By (2.7), we have Xj = Xj(Q,P; T ) on ∩2n
j=1D(Xj). Hence Xj ⊂ Xj(Q,P; T ). By

Proposition 4.6, Xj(Q,P; T ) is self-adjoint. Hence Xj = Xj(Q,P; T ). Therefore, by

Theorem A.6 in Appendix, we obtain

eitXj = eit2
P2n

k<m Jkm(T−1)kj(T
−1)mj/2eitQ1 · · · eitQneitP1 · · · eitPn , j = 1, . . . , 2n.

Hence each eitXj leaves H` invariant (` = 1, . . . , N). Therefore Xj is reduced by each H`.

We denote the reduced part of Xj to H` by X
(`)
j . Then, we have by (5.2)

U`e
itX

(`)
j U−1

` = eit2
P2n

k<m Jkm(T−1)kj(T
−1)mj/2eitq1 · · · eitqneitp1 · · · eitpn = eitXj(q,p;T ),

Thus (5.1) follows.

Theorem 5.1 tells us that every Weyl representation of the Θ-GCCR on a separable

Hilbert space is unitarily equivalent to a direct sum of the T -Schrödinger representation

of the Θ-GCCR, where T ∈ MΘ is arbitrary.

The next corollary immediately follows from Theorem 5.1:

Corollary 5.2 Let {Xj}2n
j=1 be an irreducible Weyl representation of the Θ-GCCR on

a separable Hilbert space H. Then, for each T ∈ MΘ, there exists a unitary operator

U : H → L2(Rn) such that

UXjU
−1 = Xj(q,p; T ), j = 1, . . . , 2n. (5.3)

The following result shows that the arbitrariness of the choice of T in the T -Schrödinger

representation of the Θ-GCCR is implemented by unitary operators.

Corollary 5.3 Let S, T ∈ MΘ. Then there exists a unitary operator V on L2(Rn) such

that

V Xj(q,p; S)V −1 = Xj(q,p; T ), j = 1, . . . , 2n. (5.4)
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Proof. We need only to apply Corollary 5.2 to the case where Xj = Xj(q,p; S).

Remark 5.4 As in the case of non-Weyl representations of CCR, for non-Weyl represen-

tations of the Θ-GCCR, the conclusion of Theorem 5.1 does not hold in general. Examples

of such representations of the Θ-GCCR can be constructed from non-Weyl representations

of CCR (e.g., [1, 9, 23, 24]). A detailed description of some examples is given in [3].

A Some Properties of Self-Adjoint Operators Satis-

fying Relations of Weyl Type

Let N ≥ 2 be an integer and Aj (j = 1, . . . , N) be self-adjoint operators on a Hilbert

space H satisfying relations of Weyl type:

eitAjeisAk = e−itsajkeisAkeitAj , t, s ∈ R, j, k = 1, . . . , N, (A.1)

where ajk’s are real constants. It follows that ajk is anti-symmetric in (j, k):

ajk = −akj, j, k = 1, . . . , N. (A.2)

The unitarity of eitAj and functional calculus imply that

exp(iseitAjAke
−itAj) = exp(is(Ak − tajk)), s, t ∈ R.

Hence we have the operator equality

eitAjAke
−itAj = Ak − tajk, t ∈ R, j, k = 1, . . . , N. (A.3)

For a linear operator A on a Hilbert space, we denote the spectrum of A by σ(A).

Proposition A.1 Suppose that there exists a pair (j, k) such that ajk 6= 0 (hence j 6= k).

Then

σ(Aj) = R, σ(Ak) = R. (A.4)

Moreover, Aj and Ak are purely absolutely continuous.

Proof. By (A.3) and the unitary invariance of spectrum, we have σ(Ak) = σ(Ak−tajk)

for all t ∈ R. Since ajk 6= 0, this implies the second equation of (A.4). By (A.2), we have

akj 6= 0. Hence, by considering the case of (j, k) replaced by (k, j), we obtain the first

equation of (A.4).

Relation (A.3) means that (Ak, Aj) is a weak Weyl representation of the CCR with

one degree of freedom ([2, 6], [23]). Hence Aj is purely absolutely continuous [2, 23].

Similarly we can show that Ak is purely absolutely continuous.
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Proposition A.2 Let j and k be fixed. Then, for all ψ ∈ D(Aj) ∩ D(AjAk), ψ is in

D(AkAj) and

[Aj, Ak]ψ = iajkψ. (A.5)

Proof. An easy exercise (use (A.3)).

For each function f ∈ C∞
0 (RN) and each vector ψ ∈ H, we define a vector ψf by

ψf :=

∫
RN

f(t)eit1A1 · · · eitNAN ψdt, (A.6)

where t = (t1, . . . , tN) ∈ RN and the integral on the right hand side is taken in the strong

sense. We introduce

D0 := Span{ψf |ψ ∈ H, f ∈ C∞
0 (RN)}, (A.7)

where Span{· · ·} denotes the subspace algebraically spanned by the vectors in the set

{· · ·}. It is easy to see that D0 is dense in H.

For f : RN → C (the set of complex numbers), we set ‖f‖1 :=
∫

RN |f(t)|dt.

Lemma A.3 Let fn, f ∈ C∞
0 (RN) such that ‖fn−f‖1 → 0 (n → ∞). Then ‖ψfn−ψf‖ →

0 (n → ∞).

Proof. Since eitjAj is unitary, we have ‖ψfn − ψf‖ ≤ ‖fn − f‖1‖ψ‖. Thus the desired

result follows.

For each j = 1, . . . , N , we define a function gj on RN by

gj(t) :=

{
0 for j = 1∑j−1

k=1 ajktk for 2 ≤ j ≤ N
, t ∈ RN . (A.8)

Proposition A.4

(i) For all t ∈ R and j = 1, . . . , N , eitAj leaves D0 invariant.

(ii) For each j = 1, . . . , N , Aj leaves D0 invariant (i.e., AjD0 ⊂ D0) and, for all

` ∈ N,

A`
jψf = (−i)`ψF `

j (f), f ∈ C∞
0 (RN), (A.9)

where Fj : C∞
0 (RN) → C∞

0 (RN) is defined by

Fj(f) := −∂jf − igjf, f ∈ C∞
0 (RN) (A.10)

and F `
j is the ` times composition of Fj with F 0

j := I (identity).

(iii) For all `1, . . . , `N ∈ N ∪ {0},

A`1
1 A`2

2 · · ·A`N
N ψf = (−i)`1+···+`N ψ

F
`1
1 ···F `N

N (f)
, f ∈ C∞

0 (RN). (A.11)
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Proof. (i) Let ψf be as above. Then we have eitAjψf =
∫

RN f(t)eitAjeit1A1 · · · eitNAN ψdt.

By (A.1), we have

eitAjeit1A1 · · · eitNAN = e−itgj(t)eit1A1 · · · eitj−1Aj−1ei(tj+t)Ajeitj+1Aj+1 · · · eitNAN .

Hence

eitAjψf = ψ
f
(t)
j

. (A.12)

with

f
(t)
j (t) := f(t1, . . . , tj−1, tj − t, tj+1, . . . , tN)e−itgj(t).

It is easy to see that f
(t)
j is in C∞

0 (RN). Hence ψ
f
(t)
j

∈ D0. Thus eitAj leaves D0 invariant.

(ii) By (A.12), we have for all t ∈ R \ {0} (eitAj − 1)ψf/t = ψ
(f

(t)
j −f)/t

. It is easy to

see that ‖(f (t)
j − f)/t − Fj(f)‖1 → 0(t → 0). Hence, by Lemma A.3,

lim
t→0

(eitAj − 1)ψf

t
= ψFj(f).

Therefore ψf is in D(Aj) and iAjψf = ψFj(f). Hence (A.9) with ` = 1 holds. Then one

can prove (A.9) by induction.

(iii) This easily follows from (ii).

Propositions A.2 and A.4 immediately yield the following result:

Corollary A.5 For all j, k = 1, . . . , N , [Aj, Ak] = iajk on D0.

Theorem A.6 For all cj ∈ R, j = 1, . . . , N ,
∑N

j=1 cjAj is essentially self-adjoint on D0

and

eit
PN

j=1 cjAj = eit2
PN

j<k ajkcjck/2eitc1A1eitc2A2 · · · eitcNAN , (A.13)

where, for a closable operator C, C denotes the closure of C.

Proof. For each t ∈ R, we define an operator U(t) by

U(t) := eit2
PN

j<k ajkcjck/2eitc1A1eitc2A2 · · · eitcNAN .

By using (A.1), one can show that {U(t)}t∈R is a strongly continuous one-parameter

unitary group. Hence, by the Stone theorem, there exists a unique self-adjoint operator

A on H such that U(t) = eitA, t ∈ R. By Proposition A.4, U(t) leaves D0 invariant and

strongly differentiable on D0 with

dU(t)ψ

dt

∣∣∣
t=0

= i

N∑
j=1

cjAjψ, ψ ∈ D0.

12



Hence D0 is a core of A (e.g., [17, Theorem VIII.10]). Hence Aψ =
∑N

j=1 cjAjψ, ψ ∈ D0.

Thus the desired result follows.

For all cj ∈ R, j = 1, . . . , N , we set

A(c) :=
N∑

j=1

cjAj, c = (c1, . . . , cN) ∈ RN . (A.14)

Corollary A.7 For all c,d ∈ RN and t, s ∈ R,

eitA(c)eisA(d) = e−its
PN

j,k=1 ajkcjdkeisA(d)eitA(c). (A.15)

Proof. By direct computations using (A.13) and (A.1).
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