Title	Human physiological and behavioral responses to cold
Author(s)	Rintamäki, Hannu
Citation	フィンランド-日本 共同シンポジウムシリーズ : 北方圏の環境研究に関するシンポジウム2012(Joint Finnish- Japanese Symposium Series Northern Environmental Research Symposium 2012). 2012年9月10日-14日. オウル大学 、オウランカ研究所, フィンランド.
Issue Date	2012-09-10
Doc URL	http://hdl.handle.net/2115/51369
Туре	conference presentation
File Information	06_HannuRintamaki.pdf

Instructions for use

Human physiological and behavioral responses to cold

Hannu Rintamäki

Physical Work Capacity team, Finnish Institute of Occupational Health

University of Oulu, Institute of Biomedicine, Department of Physiology

Arctic zone

Temperate zone

•warm or hot days

cooler nights

Requirements for thermal comfort

- Body is in heat balance
- Core temperature is 36.5 37.1° C
- Mean skin temperature is 32.5 35° C
- Difference in local skin temperatures is less than 5° C
- Regulation of heat loss only by the adjustment of skin and peripheral circulation
 - no sweating
 - no shivering

How to get a feeling of thermal comfort?

Keep warm

- torso (especially abdomen)
- neck

Thermal limits of humans

- 33° C Thermal comfort in water
- 27° C Thermal comfort in air
- 24° C Safest temperature for Mediterranean population
- 14° C Safest temperature for Finnish population
- 10° C Upper limit for cold work
- -1° C One hour without hypothermia (when naked and at rest)

Mortality is affected by ambient temperature

Deaths/day in Finland

KUVA 2. Kokonaiskuolleisuus ja päivän keskilämpötila (Jokioinen) Suomessa vuosina 1961–1997. Tasoitetut luvut (lowessmenetelmä). Aineistot: Tilastokeskus ja Ilmatieteen laitos.

Näyhä 2005

Physical work

Metabolic heat production

Human
heat
balance

Environment

Thermal stress:

- low temperature
- wind

Godning

Thermal insulation

Required thermal insulation of clothing

Basic thermoregulatory responses

Core and shell temperatures

Core temperature is regulated to maintain homeostasis and performance

Shell (skin and extremities) temperature is regulated to adjust heat loss

Circulation

In cold:

- Constriction in small arteries and veins in skin and limbs
 - not in head
- **Increases blood** pressure by 20-60 mmHg
- Increase in work load of heart

10

Cold Induced Vasodilatation (CIVD)

CIVD: opening of anastomoses between small arteries and veins CIVD is facilitated by cold adaptation

Negative effects of cold

- Discomfort
- Performance decrement
- Pain (skin temperature ca. 15° C)
 - Numbness (skin temperature below 7°C)
 - Frostbite (sharp increase below air temperature of -22° C)
 - Hypothermia
- Increased morbidity and mortality in risk grops
 - old people
 - people with cardiovascular or respiratory diseases

12

Benefits of cold

- Heavy work is possible without heat stress
- Increased arousal
 - mental performance is best when thermal sensation is "slightly cool"

There is brown adipose tissue also in aduld humans

lean

Activity found in PET-CT-scanning

lean

obese

17.2.20

Effect of clothing on energy costs and performance

- Increased energy costs are due to
 - weight
 - bulkiness
 - friction
- Weight of clothing increases energy cost by
 ca. 3 %/additional kg
 - x 1.2 for the head
 - x 1.9 for the hands
 - x 4 6 for the feet
- Increased energy costs
 ≈ decrease in physical performance
 - task specific

Even a 0.3 mm coating prevents contact cooling

measurement by artificial fingertip

Don't do this

-10°C, wind 2 m/s

Single snow immersion cools finger by 8° C

Temperature of the little finger (° C)

Do this: Moderate exercise opens circulation in hands and feet

Cold/dry air may cause constriction of upper airways

Cold air is always dry

Air temperature (°C)	Water (g) in a m ³ of air (relative humidity is 100 %)
30	30.4
20	17.3
10	9.4
0	4.8
-10	2.4
-20	1.1
-30	0.4

Heavy work cools airways

Increased ventilation

- → strong cooling and drying
- → strong constriction of upper airways
- → wheezing of breating

Good experiences from moisture and heat exchangers

Responses to cold water

Conclusions

More information (in Finnish)/

Ilmarinen Raija, Lindholm Harri, Läärä Jukka, Peltonen Oula-Matti, Rintamäki Hannu ja Tammela Erja: Hypotermia - Kylmän haitat työssä ja vapaa-aikana. Työterveyslaitos 2011

https://verkkokauppa.ttl.fi/