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On a denominator of a certain formal

power series attached to local densities

MASAKI HISASUE

Department of Mathematics, Hokkaido University, Sapporo 060 Japan

0. Introduction

Let p be a prime number. When A and B are non-degenerate symmetric matrices

over Z, of degree m and n (m > n), respectively, we define the local density
aP(Ba A) by

(0.1) ap(B,A) = lim p~*#A,.(B, A),

€—+00

where t = mn — n(n 4+ 1)/2, A,(B,A) = {X € Mmn(Zyp)[p® Mmn(Z,); A[X]
mod p®}, and A[X] =tXAX.

In spite of the importance of local densities, it is not easy to calculate their
explicit values.

In [9], Kitaoka introduced the formal power series

B

(0.2) P(B,A;z) =) a,(p"B, A)z".

r=0

He proved it is a rational function of z and obtained its denominator for A =
(Ok Ey,

Ey O
zero matrix of degree k). Moreover he conjectured the rationality for an arbi-
trary symmetric A. Its rationality and the denominator have been investigated by
Bocherer-Sato, Hironaka, and Katsurada in special cases.

In [2], Hironaka proved the rationality and the determined its denominator for
arbitrary A and B in the case p # 2.

Bocherer and Sato ([1]) showed the rationality of the series for arbitrary A and
B. They also determined its denominator in the following two cases by applying
Denef’s theory of p-adic integrals;

) where By, (resp. Og) is the identity matrix of degree k(resp. the

(1) m is even and A is unimodular,
(2) B is anisotropic.
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When B is decomposed into the form B = By L --- L By, they generalized (0.2)
and defined a formal power series of several variables

P((BO,Bl,...,Bs).A;:zzl....,:cs)

(0.3) = Y ap(Bo L p™ By L -+ Lp™B,, A)zlt .. . g".

If s =1 and deg(By) = 0, then this is nothing but the previous one. They proved
that this represents a rational function of Ti,...,z; and that every factor of the
denominator is of the form

o S L) 4

S ARG SRR L8 G150 04585 € ZY,

In [3], Katsurada introduced the local density with a congruence condition and
proved the rationality of (0.3) in the case that deg(Bj) = 0. He also obtained the
explicit denominator for any diagonal matrix B in the case p # 2 and deg(By) = 0.
Moreover, in [4], he modified formal power series into

R((Bl,...,Bs),A;.’El,...,JIS)

(0.4) 2 op(p™ By L L p™ By, A)zTt ...z,
1> >y >0

where Bo==iBy il <+« {08, deg(B;) = n;. He and the present author proved the
rationality of the series when A is even unimodular and B is diagonal in [5].

In the present paper, we show the rationality and determine the denominators
of this series when A and B are arbitrary matrices. We would like to emphasize
the method for p # 2 in [3] cannot be directly applied to the odd unimodular case.

We define the following formal power series;

Q((BO)Bla"'7B3)>A;$la"')$8)

(0.5) == Z ap(Bo Lp™By L--- L p™B,, A lufe.. hr,
71> D1 >0

Note that
Q((2,B1,...,Bs), Ajzy,...,1,) = R((Bl,...,Bs),A;:cl,...,a:s).

Our main results are as follows:

Theorem 1. Let A and B be are arbitrary non-degenerate symmetric matrices as
above. Lett be the Witt index of A. Put

Up =min(ny + - 4+ nyg — 1,¢t)

and

{1 t>ny+--- 4+ ny
3.

0 otherwise .




Then P((Bo, By,...,Bs), A;z1,-++ ,x,) is a rational function of x1,...,z, with a
denominator
3 Uk
H(l i, mk)vk H(l T p(77'_1+--'-+-nk-—'L')(—m-l-71-+-i-+-1)(:E1 e .’Ek)Q).
k=1 1==0

Theorem 1, in the case A is even unimodular and deg(B;) = 0, has been proved
by Katsurada and the present author in [6]. The crucial part of the present paper
is to prove Theorem 1 when A is odd unimodular.

Remark that the value of the local density coincides with the special value of
singular series, hence it is meaningful to study not only the even unimodular case
but also the arbitrary case.

If s =1 and By = &, then by definition P(B, A;z) = Q((2, B), A; z).
Corollary. The series P(B, A;z) is a rational function of z with a denominator

(1 e x)v H(l - p(n-'i)(—m+n+i+1)x2)’
1=0

where u = min(n — 1,t) and v =1 or 0 according as t > n or not.

Since P((By, B1,...,B;), A;z1,--+ ,x,) is a linear combination of the series sim-
ilar to Q((Bo, B1,...,Bs), A;z1, -+ ,z,), we have the following:

Theorem 2. Let A, B,t, uy and vy be as above. Then P((By, B, ...,Bs), A;zy, -+ , )

18 a rational function of x1,...,xs with a denominator
S Uk
H(l o g o B H(l G i D e ri)?).
k=1 1=0

Notation. For a set Z,#Z denotes the cardinality of Z. For a commutative
ring with an identity element R, we denote by M,,,(R) the ring of (m, n)-matrices :
with entries in R. Put My (R) = Mpmm(R). When m = 0 or n = 0, we understand
Mpn(R) = @. GLm(R) is the group of all invertible elements of M,,(R). We call l
elements of GL,,(R) unimodular. Further let S, (R) denote the set of all symmetric '
matrices in Mn(R). Put Zyo = {z € Z;z > 0}. By Q, and Z, we denote the p-adic
number field and the ring of p-adic integers, respectively. For any square matrix A,
tr(A) denotes the trace of A. For a symmetric unimodular matrix A with entries
in Z,, we say A is even unimodular if all the diagonal elements belong to 2Z,,
otherwise we say A is odd unimodular.

Let M be a R-module and @ a mapping from M to R which satisfies the condi- :
tions (1) Q(rm) = r?Q(m) for r € R,m € M, (2) 2B(m,n) := Q(m+n) — Q(m) —
Q(n) is a symmetric bilinear form. We call (M, Q) or simply M a quadratic mod- i
ule over R, @ a quadratic form and B an associated symmetric bilinear form. For 5
quadratic modules M and N over Z,, if they are isometric, we write M ~ N. For

3 i
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R and an element X of M,,,(R), we often use the same symbol X for the class
X modulo aM,,,(R). We denote by 1,,, (resp. Omn) the (m,n)-matrices whose
components are all 1 (resp. 0). For any matrices A, B € M,(Z,), we say A and
B are Zy-equivalent if there exists a matrix X € GLy(Zy,) satisfying A[X] = B.
Finally, for an element a of Qp, v denotes the integer n such that a ¢ p"Z, and
a & p"t1Z,.

square matrices U and V', we denote by U L V. For an element a of

1. Preliminary results

For S € S5n(Zy),T € Sn(2,),Z = (&) € (Zp/p°Zy)™, and a non-negative integer
e, we put (cf. [2])

Ae(T, 8;8) = {X = (zi5) € Ae(T, 8); 20 = & mod p° for 1 < i < m}
and
AL, 5 2) = #A(L, 51 E).

For a non-negative integer 7 < m + n, put
V e X e
AriT.8) = (X € Moo (By/p'Z); (S L -D)( 3 )1= 0, mod 1)

where E is the identity matrix of degree r. Put
G\l e8] = #4.(r: T, 8),
Moreover, put

el 8 ) = lim p‘e(((m+"_r)r_<r>)ae(r;T, S).

=200

This limit exists as will be shown in Theorem 3.2. Note that if T = ¢ L Ty, then
we have ap(n — 1; T, S) = a,(T1, S L (-t)).

Vol i = <(1) é) and Y = <? ;).pr # 2, it is well known that a non-

degenerate symmetric matrix is equivalent over Zyp to a unique matrix of the fol-
lowing form: _

’L:l‘=0 pl(V; 4 4 Ui)?
where l

W e
7

Vezm H L oo L H withi; >0

and
U; =3,(c)orc; L cy withe,cq,¢5 € Z;‘ and — cicy ¢ (Z;‘)?.

Here @ denotes the empty matrix.




If p = 2, we review the result of Watson [12] in a modified way (cf.[6]). A non-

degenerate symmetric matrix with entries in Zy is equivalent over Z, to a unique
matrix of the following form:

"L::O QL(‘/L L Ui)v

where
L

N

Ve

W:H_L'-~_Lﬁ_l_YiwithliZOandY,L-zﬁorY

and
U, :J_fi___l Cij With ¢;; € Z5,0 < k; < 2

satisfying the following conditions:

(C1) ¢y =1or3ifk; =1, and (cia, i) = (1,£1), (1, £3), (-1, -1), or (-1,3)
itk =2,

(C2) k= ki =0 Yoy =¥,

(C.3) —detU, =1 mod 4 HY:=Y and k; =2,

(C4) (=1)*~'detU; =1 mod 4 if k;yq # 0, k, % 0,

(C5) Ui # -1 L —Ci2 if ki—l ?é 0,

(CG) o=y (1), 11 +1,-11 —1if kiyo # 0.

The matrix satisfying the above conditions (C.1) ~ (C.6) is said to be canonical
form. Let the notation be as above, and i1,....i, be non-negative integers such

that 4; < .-+ < 4, < r and deg(U;, L Vi) > 1 fork = 1,...,s. Then we call
(1,...,15) the exponent.

For Z,-modules V and W, let Homgz (W,V') be the set of Zp-homomorphisms
from W to V. For an element ¢ of Homz (W,V'), we use the same symbol ¢ for the
image of the natural projection 7 : Homz (W,V) — Homgz, (W,V) ® Z,/p°Z,.
For quadratic modules V, W over Zyp and an integer e > 0, we set

L.(W,V)

= {¢# € Homz, (W,V) ® Lp [p*Zyp; B(¢(w), p(w')) = B(w,w") mod p® for w,w' € Wi.

Further, for a quadratic submodule Wi of W and ¢, € L.(W1,V) put
Le(W7 Va (bl) = {QS £ Le(Wa V)7 qSlWl = ¢1 mOd peV}7

where ¢|W; denotes the restriction of ¢ to Wy,
Let V = Zp[v1,...,v,n] and W = Zyplwy, ..., w,] be quadratic modules over /%

satisfying (B(vi,v;)) = S, (B(w;,w;)) = T. Put p1(w1) = 30 &v; with &; € L
Then it is easy to see that

#Le(W,V) = #A4.(T, S),

and

#Le(W,V;¢1) = #A.(T, S; (&)).

5
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Let V and W be as above, and V1, V2 be quadratic submodules of V such that
V =V1 & V5. Assume that the Zyp-rank of V; and W is equal. Let v= {85 00 5O b
w= {wy,... , Wn } be the Zp-basis of V; and W, respectively. Then we set

Le(W,V,V1,Vo;w,v) = {¢ € L (W, V)i Pry g, v, $(w;) = 6i5v; for 1 < 4,5 < n},

where §;; is the Kronecker’s delta and Pry_z (v denotes the projection of V to

Zyp[v;]. Further for W; = Zp[wy] and ¢ € Le.(W1,V) such that Pry_z [v)®1(w1) =
(52'1‘01‘ (1 S 7 S n) put

LG(W)V;‘G)‘/?;W)V; Wl>¢1) == {d) g Lt’(Wa V: Vl,%;W,V);(ﬁlW] - QSI}

The above two sets depend on w.v as well as W,V, Vi and V5. However we have

the following([6]).

Proposition 1.1. Assume that W = Lplwy, . .., wy] is totally singular and V =
Vi LV, where Va = Zy[vs,...,v,]. Let V§ = Zplvy, ..., vh] be a quadratic module
such that

B(vé,v;) = —B(v;,v;) (1<14,5 <n).

Then there exists a bijection from L.(W,V: Vi,Vao;w,v) to Lo(VY,Vi). Further
this induces a bijection from Lo(W,V; V4, Vy: W, V; Zp[v1], ¢1) to Le(Vy, Vi; ¢)) where
$1 € Le(Zplw1],V) such that Pry_z,(wi91(w1) = §qv; for 1 < i < n and P €
Le(Zp[v1], V1) such that ¢ (v}) =Pry_v, ¢1(wy).

2. Some propositions

In this section we will prove an essential proposition to get a recursion formula.

Definition. We call an element T of Sn(Zp) or < T > of level p if I 1s the least
integer such that p'T 1! is even integral.

Proposition 2.1([10, p91]). Let L = Z,[vs,...,v,] and M = LZplwy, . .., w,] be
quadratic lattices over Z,, with rankL =rankM = n and suppose that Q, L s reqular.
Let h be the level of the dual lattice L* of L, i.e. L* = {xr € Q,L; B(z, L) C Zp}. If
B(vi,v;) = B(wi,w;) mod p"*t'Z, and Q(v;) = Q(w;) mod 2p"*1Z, then there
exists an 1sometry n: L ~ M satisfying n(vi) = w; mod phtIM*,

Let A=V L U be a symmetric unimodular matrix with canonical form. Let
V=L HL1Y' where Y’ =Y or @ and U =L, ¢; as above. Note that if p # 2,
we have always Y’ = &. Then for 0 < r <[ set

AN =1, HI1Y' 1Uand A*=V

S B

NS T e
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Lemma 2.2. Let ky, ko, k3 and k be non-negative integers such that k = Zf’:l k.
Let K = Zplz1, ..., z] be a quadratic module over Z, such that

(B2, i eivk wib L. F,

with S =V L U be a unimodular matriz as above such that deg V = k; and deg
U=k andT =p°Ty L T, € My, (Zy), where deg(Ty) < 2 and s > 2 + 62p. Put
Kl —= Zp[zl, “oy g Zk1]> K2 = Zp[zle, & Aty Zk1+k2] and K3 = Zp[zk1+k2+1) - (570 Zk].
For any elements u; € K; (1 <1< 2) such that uj + ug is primitive, we put
z] = u1 + uy + Zky+kot1-
(1)Assume that uy is primitive and Q(u1 + u2) = 0 mod 2p, then there exist
elements {z}}r<i<k of K such that

/ / / /

W4 et (535 3EH) = (n ) v emom ez

§o VAL z;ﬂ+k2] is 1sometric to < S(1) >

(©)Zplzk, 4 1yt1> - 21] 18 isometric to Kj,

(d) K =Z,|21,25] L Z,[2,..., Bkl R e s ST

(e) ;= 2; € Uglzy, .. 3 Zkytkat1] for ki + ke +1<j < k.

(2)Let p = 2. Assume that u; = 0 mod p and Q(u1 + u2) = 0 mod p?, then
there exist elements {Zl{}zs.is]c of K such that

B(%,21) B(z.z) m M ,
/ 1§ R s et 3
(a‘) 2y € Ky and (B(zé,z{) B(zéazé) 5 with my €p Zp’772’773 &

2 73
Zx |
p’
(b)Zpl23, . .., 21, 11,] is a submodule of Ky L Ky isometric to < V >
(C)Zp[z;cl+k2+1, ..y 23] 1s isometric to K,
(d) K 7 Zp[z:;J Zé] _L Zp[z:/37 = 2 Z;Cl-{—k‘g] _L Zp[z;cl+k2+1’ e ’223]7

(e) 2j — 2; € 2Zp[z1, ..., 2k, 4hyp1] for by + ko +1 < j < k. S

Proof. ,
(1) This can be proved by the same argument as that in the proof of [3, Lemma |
2.3] so we omit the proof.

(2) In this case, we may assume that ak,+1 # 0 mod p. Then put z, = 2k, +1-
Then such a 2; satisfies the statement (a). It is easy to see that

K] _LK2 ZZp[ul+UQ,ZQ,21,...,Z]C1]. .
Then there exist elements {11;}1<j<k, 4, {v;h1<j<ki+k, of Z, such that
Bz + pi(ur +u2) +v52,2) =0 (1<j<hi+ky,1<i<2).
Put 2,5 = 2; + pj(us +up) + v;2) for 1 < j < k;. Then by Proposition 2.1, we
have (b).
Moreover there exist elements {8 byt v 1 gich s a2 {V5 byt hat1<s<hy ot

of Z, such that

B(zj+/$jz{+z/jz§,zl’.):0 (k1 +k2+1§jgk1+k2+2’1§i§2)_

7




Put
z,_{zj+ujz{+ujz§, k1i+ko+1<j3<ki+ky+2
i 25, k1+k+3<j<k.

Then we can easily see that the statement (c),(d), and (e) are satisfied by such z;'s.
This completes the proof. O

By applying Lemma 2.2, we have the following proposition.

Proposition 2.3. Let mq,my and n be non-negatie integers such that m = my +

my. Let K = Zplz1,...,2myn] and W = Lplwy, . .., wy] be quadratic modules over
Ly such that

(B2, 25) hicijemen = A L B, (B{wi; wi)hicijen = On,

where A =V L U is unimodular and a canonical form, deg(V') = mq, deg(U) = my
and B = (b;;) is a non-degenerate matriz of degree n and assume that by, €
4pr. Put M1 = Zp[zl, ¢ el Zml],Mg = Zp[zml+1, ove ,Zm], M = M1 & MZ,N =
LZp|zm+1, - -« Zmyn] and Wy = Zp[wy]. Let ¢, € Le(W1, K) such that Prg_né1(wy) =
Zm+1-

(1) Let p # 2. Assume that Prg_am, $1(W1) & pMy. Then there exist elements
{z}3<i<m+n of K such that

(B(z, Z;))sgi,jngm =AM | B

and

#Le(W, K; M, N;w,v; Wi, ¢1) = #L.(W,K'; M', N'; w’,v),
where W = Zy[w,, . .. yWal, M' = Zp[25, ..., 20, 1], N’ = Lipl2mggse oy Zimpn)y W =
{wa,...,wp} and v’ = TR S

(2) Let p = 2. Assume that Prg_.v, 1(Wh) & pMy or U #1 1 —1. Then there
exist elements {2{}3<i<m+n of K such that

(B(z;, Z_;'))3Si,j_<_m+n =A1 | B

and

#Le(Wa K7 Ma N;W7V; W17 ¢1) o #Ltf(Wa K’) M’7NI;W,7V,)7

where the notations are the same as in (1),

(3) Let p = 2. Assume that Prxmdo1(W1) € pM and Prg_m ¢1(W1) C pM;
and U =1 L —1, then there ezist elements {z{}s<i<m+n of K such that

2

(B(ZL z_;))3Si,j$m+n =A" 1B

and
#Le(W,K; M, N;w,v; W1, ¢1) = #L.(W,K': M',N';w’v’),

where the notations are the same as in (1).

Proof. The statement (1) is treated in Katsurada and the present author in [6]. (2) “
is a slight modification of (1), therefore we shall prove only (3). '

8
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Put 2; = ¢1(w1). Then we have
(2.1) B(21,2]) = 0 mod p°.

Put K; = M; for i = 1,2 and K3 = N. Then for the modules K7,..., K3, and the

elements 21, {zi}1<i<m+n stated above, there exist elements {2} 2<i<m+n satisfying
the conditions (a) ~ (e) of Lemma 2.2 (2). Let

m+n

£2.2) % = Z §ijzi (1 <j <m+n) with (i) € GLminlZy)-

=1

Then by (a),(d) and (e) of Lemma 2.2 (2), the matrix (Esp i icmin can be ex-
pressed as

93 s 511 Z12 Em)
) (is) <:21 On—1,m E23 /)’

where =53 = E,,_; mod 2.
The assumption that Prg_, y¢; (wy) = Zm+1 1mplies

PO N
(2.4) By de (On_1,1> .

Then by (a) ~ (e) of Lemma 2.2 (2), we have

(B(Z;, Z;'))SSi,jSm-{-n e A* Y
Thus, it suffices to prove that there exists a bijection of L{(W,K;M,N;w,v; Wi, b1)
to L. (W, K'; M',N’;w’v’). To prove this for an element ¢’ of Homz (W, K') by
¢’ =Prg_ x+¢|W. Then ¢’ belongs to Le(W,K’). In fact for 1 <5 <n

m-+n

(2.5) $(w;) = > zijzi With (zi5) € Mminn(Z,).

=1
Then for 1 < 7 < n we have

m+n

(26) B(w;) = ) 7l

with
m+n

(2.7) Tiy =Y Eiutly.
a=1

Since ¢(w1) = 21 mod p® and ¢'(w,) = ¢(w;) — 1721 — Th;25 (2 < j < n), we have
B(p(wr), p(w;)) = B(z1, 1,21 + 25;23) = 0 mod p® for 2 < j < n. Thus by (2.3)
and (a) of Lemma 2.2 (1) we have T3; = 0 mod p® for 2 < j < n. Thus we have

(2.8) B(¢'(w;), ¢'(w;)) = B(qS(wi), ¢(w;)) mod p® for any 2 < i.j < n.

9




Since B(¢(w:), $(w;)) = B(ws,w;) mod p* for any 2 < i,j < n, ¢' belongs to
L.(W,K'). Furthermore by (2.3),(2.4) and (2.7), we have Tij = z;; mod p® (m +
2<tEsm+n2<i<n) Thus wehavefor 1 <i<n—-1,1<j<n-1,
(2.9) PI‘K__,NQb(’lUj) — 5ijzm+.i if and only if PrK/_*N/ ¢'('wj+1) —- 6ijz':n+«i+1-
Thus ¢’ belongs to L.(W,K'; M', N': w’,v’). Thus we can define a mapping 7 from
L(W,K;M,N;w,v;W1,¢1) to L. (W,K';M',N';w’v’) by

(p) = ¢'.
Let ¢ be an element of L.(W, K; M, N; w,v; Wy, ¢1). Then by (2.2), (2.4) and (2.7),

we have

(2.10) Tm41,5 = -’13/1]' ¥ §m+1,m+133,m+1,j LE €m+1,m+2$;n+2,j'

Then we have for 2 < j <n

(2.11)

Prg_n(d(w;)) = 61j2m+1 if and only if :Ellj = _§m+1,m+1$;n+1,j_£m+1,m+2$,m+2,j mod p°,

this shows the injectivity of .
Lastly we prove 7 is surjective. Take an element ¢’ in L.(W,K'; M', N'; w’,v*)
and put

m+n
¢ (wi) = yi;7 (2<j < n).
=0
Put y1;, = —$mt1,m+1Yme15 — {m+1,m+2Ym42; and define a mapping ¢ from W to
K by
m+n
Bwy) = 21, $p(wj) = —y1;20 + > izl (2<§ <n).
1=3

Then by construction and (2.8),(2.9) and (2.10), we have
¢ € L(W,K;M,N;w,v; Wy, 1) and 7(¢) = ¢'.
Thus we complete the proof. O

Remark. (1) Under the above notaion we see easily that :
#L(W,K'; M',N';w’ V') = #A4,(n —1,-B, AM)
or g
#L(W,K'; M',N';w’,v’) = #A.(n—1,-B, A%)
according as in (1), (2) or in (3).

(2) In the above proposition, assume that N = N; L ]\7, where Ny and N H
are quadratic submodules of rank 1 and n — 1, respectwvely, and M =< A > is 3
unimodular and ¢1 € L.(N1, M), where for a quadratic module L =< S > we write
L' =< —S >. Then by Proposition 1.3 and Prorosition 2.3 we have 5
#L(N', M; ¢1) = #L(N', MM L Ny) or #L(N', M; 1) = #L(N', M* L Ny)

where M) =< A > and M* =< A* > according as the case (1),(2) or (3) in
Proposition 2.3. A part of the former case is nothing but [2, Proposition 2.2 (1.b)].

Summarizing Proposition 1.1 and Proposition 2.3, we have the following propo-
sition. :




Proposition 2.4.. Let A=V L U and B be as the same in Proposition 2.3. Let
Z="%E1 22 Ej3) € A.(b11,A), where Z; € (Zp[P°Zp)™ ,Ey € (Zp[p°Zy)™2

—
= =1
_

and e > 2. Assume that (il > Z 0 mod p.

=2

(1) Let p # 2. Assume that Z; 20 mod p. Then we have
Ge(B, A;E) = a.(n - 1; B, AM).

(2) Let p=2. Assume that =1 Z0 mod p or U # 1 L —1. Then we have
Gl A: E) =.a.(n ~1: B, A(l)).

(3) Let p=2. Assume that 21 =0 mod p and U =1 1L —1. Then we have
ae(B,A;E) = a.(n—1; B, A").

Remark. Assume that the level of T € St—1(Zp) is equal to or smaller than

v(271by) — 1. Then the matriz T + bl(y.iyj)lsi’jg_l 18 equivalent to T for any
(y;) € Z;)_l. Thus for any symmetric matriz S we have

ae(t —1;b1 L T, 8 = Z (Le(T = bl(']ji’!/j)lgi,jgt—la S)
('Ui)E(Zp/pCZp)t—l

:pe(t“l)ae(T,S).

Thus we have

Gp(B~1: by L T, 8 = 0 (TSN

3. A recursion formula

For § € Si(Z2),T € Sp(Z2),0 = (0;) € (Z,/pZy,)™, and a non-negative integer
e, put (cf. [3])

A(T,S;0) = {(zij) € Ae(T,S); 21 = 0; mod 2 for any 1 <4 < m},

and

Bt TS (:)) = #Ae(T, S;0).
We note that .
(_LG(T, S, @) = Zae(Ta S;E)a

where Z runs through all representatives of (Z,/p°Z,)™ such that £ = © mod p.
For symmetric matrices A and B of degree m and n(m > n > 1), respectively,
with entries in the ring Z,, of p-adic integers, define a primitive local density Sl 9}
by 4
Bp(B, A) = lim p~**#B,(B, A),

€— 00

where t = mn — n(n + 1)/2 and

B.(B,A) = {X € A(B, A); X is primitive }.

Here X is said to be primitive if its reduction modulo p has the maximal rank.




Lemma 3.1. Let A=V LU € S,,(Z2) N GLm(Z3) be a unimodular matriz such
that V' (resp. U) is an even unimodular (resp. odd unimodular) part of degree m;
(resp. my). Let ©; € (Z2/2Z2)™, 0, € ( (Zo [2Z9)™ and b € 2Z,.

(1) Assume that e > 2,0; # Om, 1mod2,02 = 0,,,1 0r 1, 1 mod2. Then we
have

oA-milieg (b A ((99))

&

|@|

esther if ©2 = 0pp, 1 mod 2 and V[©4] = bmod 4

2—7n+2’ )
i or if ©2 = 1,,, 1 mod 2 and V(0] = —tn(U) + bmod 4,
0, otherunse.
(2) Assume that e > 3. U = ((1) Bl) ,©1 =0, 1 mod2. Then we have

2=m+3 if U[©,] = 0mod 8,

0, otherwsse.

o(=m+l)eg (0, 4;8) = {

Proof. For e > 1, put
A (O) = AKX =A{Ba)e (Z5/2°Z5)™; A[X] = b mod 2°T! z;; = 6; mod 2}.

For e > 2, consider the map ® : A.(h,4;0) — A'._1(0) defined by X mod
2° — X mod 2¢~! for e > 2. It is a surjection, and we have F#O W X =27 for

any X € A’,_1(©). Next consider the map ¥ : A',(0) — — A'._1(0) defined by X
mod 2° — X mod 2°71. Obviously it is a surjection.
(1) It is easy to see that if Oy # 0,,, 1, 1,n, 1 mod 2, then

Ge(b, A;©) = 0.

First assume that ©; = 0,,,; mod 2. For any Y = <§1> € /—l’e_l(@), put
2

X = Y + ge=17 = .«Zl'e(@),Z = (gl) € (Z2/2Z2)m Then
2
AX]|= A[Y]+2°-'Z1A*Y; =b mod 2°H1.
Since ©1 # 0,,, 1 mod 2, we have A*Y; = A*f; & 0m,,1 mod 2, and #{Z; €
(Z2/2Zy)™;'Z1A*Y: = 27°(b — A[Y]) mod 2} = 2™~ Thus ¥~1(Y) = 2m-1,
Moreover #.A4’1(©) = 1. After all, we obtain that

Ge(b, 4;0) = 2M# A, _1(0) = - - = 2m2le-Am-1)y X1 (@)
= 2m2(e—2)(m—1)

for e > 2.
By similar argument as above we get a.(b, A4; ©) = 2m2(e=2)(m+1) £, , > 2 when
©; =1,,,1 mod 2.




(2) Similar argument implies

a.(0, A; (:)) — 2’”#[1/6_1(@) gow o UL 2m2(6"3)(m—1)#/’1/2(@)_

Since

#A'2(0) = #{X € (22/4Z2)™; A*[X1] + V[X3] = 0 mod 8,
X1 =0 mod 2, X; =1 mod 2}
= Qm—z#{(a;i) € (Z2/4Z,)?; 2% — z3 =0 mod 8,77 = 7o = 1 mod 2},
we have A’5(©) = 2™, this completes the proof. O

We shall make a distinction of the following types as above.

(case I) p # 2,

(case 1D p=2and I £ 1.1,

(case II1) p=2and U =1 L —1.

The next theorem in the case for p # 2 and that B is diagonal is given in (3] and
in the case that A is even unimodular is given in [6],[7]. We get here the generalized
formula without such restrictions such that we shall prove the odd unimodular case.

Theorem 3.2. Let A = A* L U be a symmetric unimodular matriz of degree m
and B be a non-degenerate matriz of degree n as above. Then we have

(B, A) =T e A BT L B 5] A

Bp(0, A)ap(n — 1; B, AD)), (case I) ,
= ¢ P2 {Bp(0, A*) + Bp(tr(-U), A*)}ap(n — 1; B, AD), (case II),
P~ Bp(0, A*)ap(n — 1; B, AD) + p~m+3q (n — 1; B, A*), (case III) |

where we make the convention that o,(n — 1; B, A1) = 0 if the Witt index of A 1s
0 and Bp(tr(=U),A*) =0 ifU = @.

Proof. The proof in the case 4 is even unimodular is completed in [6] and [7], so
we shall prove the case that A is odd unimodular and p = 2.
We assume that e > 3. Then we have

a(B,A)= Y @B, 4;0).
OE(Z2/2Z2)™

Let deg(A*) = m; and deg(U) = ms.
Put for a € Z,,

S(a) ={© € (Z3/2Z,)™";© # 0,,, 1 mod 2, A*[O] = a mod 4}.

Further put

S ={0 € (Zy/2Z2)™;U[O] = 0,,,,1 mod 8,0 # 0 mod %5
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and

8" = {(01,02) € (22/2Z2)™ x (Z3/2Z,)™; A*[©1] + U[O,] = 0mod 4,

©1 # 0241 mod 2,0, # 0,,, ; mod 2}.

Then we have

(3.1) ae(B,A) = 6.(B, A; 0n1)

= S R

©,€85(0)

_01 ), we have S = @. If deg(U) = 1 then it is to see
that S’ = @. Next we assume df)g(U) =2. If (01,0,) € S, then Oy = 15;. In fact,
since A*[©;] = 0mod 2 for any ©; € (Z,/2Z,)™!, so that we have U[©;] = 0mod 2
therefore @y = I1. Then U[O;] = tr(U) mod 4, and we have

(case II) Since U # (é

?

a,e(B,A) = (_Le(B,A; (_)ml)

+ 3 ae<B,A;<0©11>>

= ma,
©,€S5(0)

+ Y ae(B,A;<Ié1 )).

0,e8(—tr(U)) e

Note that the last term on the right-hand side is 0 if deg(U) # 2.
We can show

(3.2) Phrrt SN DS B D= 2 BT B )

for a sufficiently large e in the same way as in the proof of [3, Proposition 3.6(2)].
Next we show that

(33) 28(——mn+n(n+l)/2) Z &e(B,A; (6@1 ))

mg,l

©,€S5(0)

= [2(0, A" )as(n — 1; B,A(l)),
for a sufficient large e. By (2) of Proposition 2.4, for any = ¢ Z5* such that

(0@1 ) mod 2, we have

mo o

[1]

Il

ae(B, 4; E) = a.(n — 1; B, A1),

14
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Thus we have

D (B4 (061 ))

a mo,1
©,€5(0)

- Y San-18.40)

©,€85(0) =

- Z (Tz,e(bl,A;<—®1 ))ae(n—l;B,A(l)).

= Om')l
©,€5(0) L

r— 9 . . — (;-)
where E runs over elements of (Zy/2°Zy)™ satisfying that = = (6 ') mod?2.
m'_>,1
Therefore we have

e(—mn+n(n+1)/2) - . _él
2 3 ae(BgA,<0 1))

_ o(—m+1)e . o
=2 i 1 ae(bl,A,(G ,>)

@165(0)
X 26(—(m~1)(n—1)+(n—1)n/2)ae(n = B,A(l)).

By Lemma 3.1 (1), for any ©; € S(0), we have

2(—m+1)e&e(b1’A; (_61 )) — 9—m+2

Om2 ,1

Thus we have

e(—mn+n(n+1)/2) - i é1 :
2 ] Z ae(B, A; <(‘)m2’1))
©,€S5(0)

I 2_m+2#5(0)26(_(111—1)(71—1)+(n-1)n/2)ae(n ~1: B’A(l))
= 2_2ﬁ2(0, A*)Oéz(n =1 15, A(l))

for a sufficiently large e, which implies (3.3). Similarly, we have

(34) 26(—mn+n(n+1)/2) Z de(B, A, (191 : >)
6, €5(~tx(1)) oF

= 2726y (—t1(U), A*)az(n — 1; B, AM),

for a sufficiently large e. Thus the assertion (case II) follows from (3.2), (3.3), and
(3.4).

R R R T I S T R B et




U ——————

Next we prove (case III). We have

ae(B,A) = 8.(B, A;0,,1)

+ > {a.(B,4; (

: ))+de(B>A:, (
6,€5(0) &

- . Oml.l
+ . Cle(B,A,< (:)2 >>*

©]
o O

(@]

§)>}

where ®, runs over the set

& - ¥
0 -1

Since tr(U) = 0, we see similarly as in (3.4) that

P N &e<B-A?<

S’ = {é e (ZQ/QZQ)QQ <

O]

) [©] =0 mod 8,0 # 0,7 mod 2}.

1))
21
©,€S5(0)

=2716,(0, A")az(n — 1; B, AD)

for a sufficiently large e. After all, the assertion (case III) reduces to (3.5) below.

=i

(35> 26(—mn+n(n+1)/2) E ae(B’ A; <081,1 >) =% 2——m+3a2(n s 1; B, A*)
o 2
6268”

for a sufficiently large e. By (3) of Proposition 2.4, for any = € Z3y* such that

Om1,1
( 0, > mod 2, we have

(1]

ae(B, A;E) = a.(n —1; B, AV).

Thus we have

@26811

where = runs over elements of (Z3/2°Z2)™ satisfying that = = (Og"l> mod 2.
2
Thus we have
e(—mn+n(n+1)/2) — . (—)7111 .1
2 _Z (Le(B, A’ ( @2 ) ) 1
OPY= :
AP
— o(—m+1)e - i my,1 5
=9 Z ae(B,A,( 5, ))
O,e8" E

% 26(—(777,—1)(n—1)+n(”+1)/2)a (T), - 1: B. A*)

A
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Then by Lemma 3.1 (2), for any ©, € S”, we have

2(=mH1)eq, (by, 4; (Og"l )) i

Noting that #S5” = 1, we have

28(—mn+n(n+1)/2) Z (_Le(B,A:((—)TEI'l))

@268”
- 2_m+3#S//Qe(—(m,—l)(n—1)+(n_l)"/2>a (n - 1: B,A*)

= 2_m+3a2(n =1 B A"

for a sufficiently large e, which proves (3.5) and the assertion (case III). O

Remark. It can be easily proved that

ﬁz(O,A*) +132(—tT‘(U),A*) e 2degUﬁ2(0>A)'

Propositon 3.3([6]). Let ¢y be an integer. Let S and T be non-degenerate sym-
metric matrices of degree s,t — 1 respectively, and T be of level pt. Assume that
I > eq+1—62p. Then we have for a sufficiently large e

U)(]. __p—s+t—1)pe(—st+t(t+1)/2)peo—e Z #Ae(peoa ik T, S)
a€Z, [p¢~°0Z,

= Y {Q-p?-pHt g, (p®a L T,S)
a€Zy /(2 )?

+ (1 — p‘l)p_lap(pe°+l(z i 5N +p“2ap(pe°+2a LT, 83},

where a runs over all elements of Z3/(Z))* and w = #(Zy [(Z))?).

4. Properties

In this section we give some concrete formulae for local densities to get an in-

teresting result. Note that the results in this section are treated by Katsurada and
the present author in [6].

We set
/Bp(OaA)ap(BaA(l))a (case I),
F(B) =4 p7*{Bp(0,4") + Bp(tr(=U), A*)}ap(B, AD), (case II) ,
P~ Bp(0, A*)ay(B, A) + p~m+3o (B, A*), (case III) .

First assume that p # 2.

i
f
e
i 15
5
<
;
9 ‘
e
X
1)
=
Ry
i
i
2
2
3
=
A
5
;




Thorem 4.1. Let A be as above. Let B — p"By L By where degB; < 2 and p® the
level of Bs.

(1) Letr > s+ 1 and By = (¢) with c € Zy . Then we have

ap(B, A) —p~" "o, (Blp™! L E,_q], A)
= f(Ba).

(2) Let r > s+ 1 and By = ¢11 L cq5 with —ciely & (Z))*. Then we have

op(B, 4) — p~™ "0, (Bp~" 1 B, 4], 4)
p—1

=p~' ) F(p"(c110® + c13) L By).

a=[)

(3) Letr > s and By = H. Then we have
ap(B, 4) — p~ ™o (Blp™ L B, _y], 4)
el 1 —1 m—m+n i
= 2 = pm) Za:{(l B g )f(p"a L By)

+(1=p ) (" a L By) +p 2 f(pH2a L B,)),

where a runs over a complete set of representatives of Z;‘/(Z;)Q.

Proof. (1)The assertion can be easily proved by Theorem 3.2.
(2)By Theorem 3.2, we have

aP(B>A) -p—m+n+laP<B[p—l de En—l]vA)

= ﬁp(O,A)ap(prclg 1 By A 4 —p"c11).

By assumption, c;19% + ¢y is a unit for any y € Zy.
Thus we have

ap(pTerz L By, AN L —pTeyy)
=P Z ap(p"(cr1a® + c12) L By, Ay, :

Thus the assertion holds.
(3) For a sufficiently large ¢ we have

ae(n —1; B, A)

= 2p"y1 Py’ (1)
= Z a€(<pr.t/ B , AYY)

(v3)EMy 21 (2, /p°Z,) ik st :
Ly (EmrERE 0

e O 32 ) ) 71
(y,')EMl',,_l(Zp/pCZ,,)
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where 'y’ = (y2,...,yn—1). By assumption, 2p7y1 — p*" By [ty'] € p’"z;p/p"‘Zp
for any (y1,...,Yn-1) € (Zp/p°Zy)»~'. Thus the map & from ( (Zp/p°Zp)"™1 to

P Zp/p°Zyp given by &((y1,...,yn—1)) = 2p"y; — p*" By '[ty’] is a surjection and for
any y € p"Zy, we have #&~1(y) = pe(»=2+r Thus we have

ac(n—1; B, A1) = pHn=2fn Z ae(p"a L By, AD).
aEZp/pe—"Zp

Thus the assertion holds by applying Theorem 3.2 and Proposition 3.3. O

Corollary 4.2. Let By, By and B; be non-degenerate symmetric matrices of level
p't,p'2 and p's, respectively, with entries in Ly Put B = p" By 1p" 2By 1 Bs. As
sume that B 1s a canonical form, By is a unmmdulm matriz of degree < 2,1, <1

and r > I3 + 1. Put By = (p~1b),p by Lpby or H according as By = (bl) By e
by Lby with —biby & (Z5)?, or H. Then we have

ap(B,A) — p_m+”+1ap(pr—lél 1p"~2B, 1 B3, A)

= ZC(B,; Bi1,B;)f(p"*B' LBy),

where where B' runs over a certain finitely many symmetric matrices of degree
degBy + degBy — 1, and ¢(B’; By, By) is a rational number determined by B1, B,

and A such that
X B By Ba)=1.
BI

Next we consider the case for p = 2. We have only to analize ay(n — 1; B, A())
“since the same argument holds for cy(n—1; B, A*) without any modification. More-
over, if deg(B) = 1, then a recursion formula is obtained easily so we assume assume

deg(B) > 1.

Theorem 4.3. Let B=1]_, 21(U; L V;) be a canonical form, and degU; = k;, as
above.
(1) Assume that U, = (c,) and V, = &. Put

B, = A S Upes L 2Vr——la

and | |
B =l T o

Then we have
QQ(B,A) - 2—m+n+1a2<2r——20r L QT_QBT_l i 4 BT_Q,A)

i 8——lr-—l’—kr—l_kr—2 Z f(QT—QBr—l((yi)) 1 Br“z)’
(vi)

where (y;) runs over all elements of (Zg/8Zg)l’+kr“‘+kr—2 and B._1((y;)) is a cer-

tain symmetric matriz of degree I, + kr_y 4 kr—y with entries in Zy determined by
B._y and (y;) such that v(det B,_1((y;))) < 3.
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(2) Assume that U, = c,1 L cry with ¢,q,cpp € Zy; and V., = @. Put
B'r'—l == L[r—l
and
Beopadfio D -ty
For U, put [jr = Uy, =U,,Y, or H according as —c,1¢,2 = —1 mod 8, —Cr1Crog = 3
mod 8, ~cricra =5 mod 8, or —¢,1¢00 =1 mod 8. Then we have
el B A) =~ T P (PN 107 R s LR o A
ke N e o
B B B B,
(y:)

where (y;) runs over all elements of (Zo /8Z3)*r—1F1 and B,_1((yi)) s a certain
symmetric matriz of degree kr_y + 1 determined by B,_y and ((y;)) such that

v(det Br_1((y:)))
<3.
(3) Assume that V. =Y. Let

B'r‘—l = 2U’r‘7
and |
Bpwsi= L2240 T2V

Then we have

Oy (B A )2 TN g DT 1L 3) L 2T By B )

= 9~ kr—1 Z f(Br—l((yi)) 4 BT—2)>

(i)

where (y;) runs over all elements of (Z3/8Z2)* ! and B._1((y:)) is a certain Sym.-
metric matric of degree k.+1 determined by Br_1 and ((y;)) such that v(det B,_; ((y:))) <
3.

l.—1

4) LetVi=H 1 ... LH LY, withl, >1. We set

9=0(2"H L B, A) -2~y (2""1H 1 B,, A).
(4.1) Assume that U,_, = @. Then

gl S PRI SR 3 gombnetipontl L) gy

+2747(2"%a L B,) + 27 f(2"a L B,)},

where a runs over complete set of representatives of (25 ).
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(4.2) Assume that U, = (cr) or ¢, L cpo. Then

9= {27°f(2"a L B,) + (1 — 2~m+n)~1(9~4 _ BRSNS B

a

+27°f(2%¢ L B) 278 f(27434 1 B,)}

)

where a runs over complete set of representatives of Z3 [(Zy)2.

Proof. (1) First remark that V,._; :J_i”:‘l1 H by (C.2) in the definition of canonical
form. "Pul Bl . {'= QT‘I(Ur_l L Woag ) IDEEER, - B,._5. By Theorem 3.2, we
have

az(2"¢r L B, 3, AV = 2—m+"+1(12(2r_2c,~ LB 3 A (2 L o |

Further we have

G,e(n — 1, 2r()r i o B;-_laA(l)> = Z a'e(B;»_l < QT(Cryz’yj)gs.iJSn’ A(l))’
(yi)E(Z2/2°Zy)n 1

and B, _; + 2’"(cry.iyj)25.,;,j5n 1s non-degenerate over Zp|p°Zy, and its determinant
does not depend on e for a sufficiently large e for any (¥25--.,yn) € Z3~'. Thus
we have

az(n—=1;27¢, L Bl_;, A1)

w JonEeEL) 3 @B, + 27 (il o jon; AN
(¥i)E(Z2/2°Zy) 1

In particular, B,_o + 2’"(cryliyj)lr_l+kr_,+kr_,_,+2§.i,j§n 1s equivalent, over Z,, to
1 A N e :
By for any (v:)a<i<i,_\+kr_y+k,_, € L, Pt . Thus the assertion holds.

(2) For the matrix U,, put U, = (C’"lj_ Cr2 20(:2 ) . Then U, is equivalent,
2 72

over Zy to U,, and 2"U,[p~! L 1] = 2=, Thus, by applying Theorem 3.2 to
2"U, 1L B,_1 L B,_5 the assertion can be proved similalry to (1).

(3) The assertion can be proved similalry to (1) noting that 2"Y[p~ L 1] is
equivalent to 27~1(1 L 3).

(4) Similarly to (3) of Theorem 4.1, we have

~

ae(n —1;2"H 1 B,,AY)) = #{<(§é)) € Mm—1n-1(Z2/2°Z,);

21‘—{»—1,( " 221'B—1[t /] 0
(1) —— (75! r g e
AV [X] = ( 0 B. mod 2°},
where *y’ = (y2,...,¥n—1).
(4.1) First let deg(U,.) = 2. By assumption, 271y, —2rB-1 (*y'] € 2+1Z,/2¢7Z,
for any (ys,...,yn—1) € Z8~'. Thus similarly to (3) of Theorem 3.1, we have

ae(n —1;2"H L B,, AV) = 2e(n—2)+r+1 3 (27 1a L B,, AM),
aEZQ/Z”“’—l,Z-_)




thus the assertion holds.

(4.2) By assumption 2°" B l[ty'] = 27 25:1 Cri¥31. 45 + 27T1b with b € Zj for
any (¥1,...,Yn) € Z7. Thus 21y, — 2°"B1[ty'] € 27ZY or € 27+1Z, according
as exactly one of yg; 41 and y9;_ 4o is unit, or not. In the former case. for each such
(Y2141, Y21, +2) € (Z2/2%Z5)?* and a fixed ¢ € (27Z5 + 2°7Z3)/2%Zy the mapping ®,
from (Z3/2°Z,)™° to {c} defined by

Lellli s Yot sty oy U =2 gy < 20 B

is a surjection and ®1(¢) = 26(n=9)+r+1 Iy the latter case, for each such (y2;_ 41,9021 42) €

(Z2/2°Z2)* the mapping &' from (Z,/2°Z,)"3 to 27117, /274 defined by
q)/((yls TR RN T SR PR 21”“’91 = QQTBT—IVY']

is a surjection and for each z € 2717, /2°Z, we have ® ~(z) = 2¢(n=9+7+1 Thys
we have

ae(n —1;2"H 1 B,, AD)
r 22e—1+e(n—4)+"‘+1{ Z gete L B, A(l))

CE(27ZS +Z4)/2¢Z,
+ Z a.(2"t'a L B,,AV)}
a€Zs /25T~ 12Z,
— 9¢(n—1)=3 Z aa2baikal,, A(l))
a€Zy /(23 )?

+2e(n—2)+7‘ Z ae(21‘+la i BT,A(I)),
aEZg/2e—r—1Zg

thus the assertion follows similarly to (1.1) in this theorem. Similarly, the assertion

holds for deg(U,) =1. O

Corollary 4.4. Let By, By and B3 be non-degenerate symmetric matrices of level
2l 2t gpd 2ls respectively, with entries in Zy. Put B = 2"B,12""2By 1 Bs. As-
sume that B 1s a canonical form, By is a unimodular matriz of degree < 2,1, < 1
and r Z l3+]_ Put Bl = 2_131,31,1 o 3, or H according as Bl = (bl),bl Wil bz,Y,
or H, where” =7 1s the same as in Theorem 4.3 (2). Then we have

az(B,A) — 270y (2771 By 12772 B, 1 By, A)

= " <(B: B1, B)f(2" B LBy),
B/

where B' runs over a certain finitely many symmetric matrices of degree deg(B1) +
deg(By) — 1, and ¢(B’; B1, By) is a rational number determined by By, By and A
such that

> c(B';By,B;) =1.

BI




5. Proof of the main theorems

For non-degenerate symmetric matrices A, By, By,::., B, of degree m,ng,n1, ..., ng,
respectively, with entries in Z,, define the formal power series

PUBoy By o5 Byly A, i, gy = > ap(Bo Lp™ By L .-+ Lp™ B, Azl ...z

If s =1 and deg(By) = 0, the above series is nothing but the ones defined by
Kitaoka in [9].

Let A, be the complete set of representatives of Z;‘/(Z;‘)Q, and put
Anp = {(bo,b1,...,b,):b; € Ay}

or

g1 g X
Bz—<1 O>’<1 2) or deg(B;) =1 and B; € A,}
according as p # 2 or = 2. Then the set of power series

FPCEBG, BYy o B Ay 0, 363)}(30,31,...,B,,)eA,,.,,

gives complete information on the local densities ap(B, A) for all B of degree n and
A of degree m. Therefore it is important to study these power series.

Definition. Let B be a non-degenerate symmetric matriz with entries in Z,. B

.18 savd to be mazimal of there is no square matriz X such that det(X) € pZ, and
B[X 1] is a symmetric matriz with entries in L.

To determine the denominator of formal power series, we need the followings.

Proposition 5.1(cf.[6]). Let A be a symmetric unimodular matriz of degree m,
By and By be symmetric matrices of degree ny,ny, respectively. Put n = n1 + noy.
Let p*2 be the level of By ifng > 0. Put | = min(ny — 1,7), where v is the Witt
index of A, and n = ny + no. Let e be an integer such that e > by + 21 + bap + 2.

(1) Assume that By is not mazimal. Then there exists a mazimal matriz B, 5
such that deg By = deg By and v(det By) —v(det By) is a positive even integer, and

ap(p°By L By, A) — ptmm ¥t Dby (0B 1 B, A)

= Z ¢(B1, B1,A)f(p° 2B} L B,), 4
B

where by = (v(det By) — v(det B,))/2, B, runs over finitely many symmetric ma-
trices of degree ny — 1, and c(Bi, B1, A) 1s a rational number determined by Bi, B;
and A such that

Ry e e ST

Z C(B;’ B]-,A) A7 1 p—m+n+1

B;




(2) Assume that By is mazimal. Then we have

ap(p°By L By, A) — P(—m+n+1)map(pe—231 1 B, A)

= Z c(By, B1,A)f(p°'B! L B,),

where B} runs over finitely many symmetric matrices of degreen;—1, and ¢(B}, By, A)
1S a mtzonal number determined by B1, By and A such that

SR e
c 1> 1, == »

— mn—m+4+n+1
B 1 p

Proof. We note that a maximal matrix is equivalent, over Z,, to a matrix of the
following form:

pUs LU, LV,

where Uy, Uz and V; are the ones in section 1, and in particular deg(U;) < 1 if

p = 2. Thus the assertion can be easily proved by using a Corollarry 4.2 or 4. 4,
repeatedly. O

For each non-negative integers t,J and k such that 1 < k < ¢, put (cf. [4])
IO R Y R Z pl—i)+4)  pli=he)(G+e)
OSl1<-~-<lkS‘i—1
Here we understand that Y(2,7,0) = 1. It is easy to see that

1—1

[T - pli-RG+k), ZMJ,

k=0

Theorem 5.2. Let the notations and the assumptions be the same as in Proposition
9.1. Then we have

41 ' gL ; (nl—z)(—m+n+z+1) {
D Y(na,—m 4+ n+1,i)op(p° 2By L By, A qu ),
7=0)
where
( /Bp(_Ol-{-l? A)ap(327A(l+1))a (Case I)
: p“g(lﬂ)ap(Bz,A(Hl))a (case II)

P~ B, (Orp1, A*) {ap(B,, A+D)
i +p—m—l+4(p3(l+1) —1)(p® — 1)“1ﬂp(0,A*(l))_lap(Bg,A*(l))}, (case III)

and
| 1. (case I,III)
We) = By, A% 4 Bp(tr(=U), A*¥), (case II) .

24




Here we make the convention that ap(By, ALY = 1 or 0 fn=mn; orl =r,
respectively.

Proof. We shall prove (case ITI) only since the proof of (case I) is completed in 6]
and (case II) can be proved in the same manner as in (case I).

We prove the assertion by induction on n;. The assertion clearly holds if ny = 1.
Assume that the assertion holds for ny — 1. First assume that B is maximal. Then
by (2) of Proposition 9.1, we have

ap(p°By L By, A) — p(—m+”+1)"‘ap(pe—2B1 L By, A)
=p7'B,(0, A*) > (B, By, A)ay(p°~1 B, 1 By, AM)
B

i SRR T ¢ A)ap(p*1 B} L By, A%),
B/

where B} and the others are ones in (2) of Proposition 5.1. By the inductive
hypothesis, we have

l
27(77,1 -1, -m+n+2, i)ap(pe"%—lB; 1 B, A(l))

=0

=P ™' Bp (01, A* D)y (B,, A+ 4 p~mTHT (Y — 1) (p® — 1)1

o MR NS —m4n+4it2
‘ﬁp(o,A*(l))—lap<B2,A*(l)}H 1 p( )( )
2=0

 AE p—m+n,+'i+2
By applying (case II) and by noting that

Bp(0, A)B,(0s, AV) = B,(0;41, A),

we have
l

Z Y(n1—1,-m4n+2 )ap(p*~*1B! | By, A)
t=()

-1 : :
: : [ (nl—z—l)(—m+n+1+2)
p_ZIﬁp<Ch‘1*)ap(E2?‘1 (l)) l I p

=0
for any such B]. Thus we have
1+1 |
Z Y(n1, —m +n + 1, Dy, (p*~%B; L By, A)
3=10

—
—

Y(n1—1, —m+n+2, i) {ap(p* B} L B,, A)—p_m+”+1(1p(pe"2i—231 1 By, A)}

l
1=0




l
=Y (i —1,-m+n+ 2,9){p™'6,(0, A*) > (B, By, A)oy(p°~% 1B} L By, AM)
1=0 B
+p—m+3 ZC(Bi,Bl,A)Qp(pe_zi_lB{ iy BQ,A*)}
Bj

=P 5p(0.47) 3 e(BY, By, A)p~5,(01, 4°){ay(By, 4D
By

-1 : !
ey s 3 Ty 2 : Y (nl—l—l)(—m+ﬂ,+l+2)
P RM — 1)(p® ~ 1)1, (0, 420 Yop(By, A"V} T pl_p~m+n+,;+2
=0
-1

S 2. . % 1 _p(n;—i—l)(—m+n+«i+2)
g ZC(B{’ B, A)p QIﬂP(Ol* A”)ap(By, A (l)) H 1 — p—mtntit2
By

2=0
Thus the assertion holds.

Next assume that By is not maximal. Then by (1

) of Proposition 5.1 there exists
a maximal matrix B such that we have

ap(p°By L By, A) = plomintlibng (pe—2p | B;, A)

=P70p(0,4%) 3" c(BY, By, Ao, (p°~2B} 1 B,, 4
5,

TP ) (B, By, A)ay (p°2 B, L By, 4",
B/

‘where B{ runs over finitely many even matrices of degree ny — 1, and c(B1, B1, A)
is a rational number determined by B] and A such that

158 p(—m+n+1)bl

ZC(BLBMA) =

1 = p—m+n+1

Bj

Thus we have
141 ,
> ¥, —m+n + 1,9)ap(p°~"' By L By, A)
1=0

I+1 oy
o= AR O P e e 1)op(p®™** By L By, A)

=0

I4+1 :

+p_1ﬁp<0; A*) Z C(B{,BI,A) Z”y(’nl, -m-+n + 1, i)()ﬁp(])e—z""QB{ kS Bz) A(l))

B; =0

I+1

BRI 2 BBy Y Ainy, —mdn L1, ep(p*™" "B} 1 By, A*).
B{ g=()
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By the inductive hypothesis the second term on the right-hand side

! ny—t)(—m-4nitq
i __p(—m+n+1)b1)H 1 — pf J(—m+n+it1)

3 —p—m+n+i+1 p_(H_l)ﬁp(Ol—H,A*){CYP(BQ.A(Z'*“l))

of the above is

2={)

TP~ 1)(p® - 1)716,(0, 4*0) 10, (B, 4*OY},
and the third term on the right-hand side of the above is

l 3 :
! _p(nl—z)(—m—{—n—f—hl-l)
(1 _p(——m+n+l)bl) I I

1 pmtnria T P " Bp(01, A% (By, AD).

2==()
Thus the assertion holds. [J

Using Theorem 5.2, we obtain the following proposition.

Proposition 5.3. Let A be as above. Let By, By,
metric matices of degree ny, Nty
the level of B; and a1 < --

..., Bs be non-degenerate sSym-
-y Mg, TESPectively, with entries in Zy,. Let p% be

+ < as. Putl = min(ny,r) and lo =1+ 625. Then we

have
l . N
H(l i p(nl—,L)(—m+n+'L+1)x$)Q<(BO» Blr (AR B.s)7 A7 Llyeoey ‘T;s)
1=0
I i
= me’zy(nl, —-m+n+17—j)
i=0 7=0
; Q((B())pszl 5] BZ) B37 BN 7B8)7A; L1Z2,Z3,. .. )$8)
A i
+ > Y g(ny, —mtn+ 1,0 - §)
=0 =0
’ Q((BO7p2j+lBl i BZ) B37 <y B8)7A5x1$2>x37 <o >$8)
o f p—-m+n+i+l Pee T ?
where
( Bp(O141, A)Q((By, B, . .. ;B ), AL, T1T3,T3,...,T,), (case I)
et {ﬂp(O, A*(i)) + ﬁp(”(“‘U)v A*(z))}
5 Q((BO,BQ,...,Bs),A(lo);mle,mg,,...,:cs), (case II)
p-loﬂp(ol(w A*){Q((BO7 BZ) FEALA BS)a A(lo); T1T2,Z3,... ,373)
AP D _ 1)1 1)-1g, (0, 4oty
\ -R((BO.BQ,...,Bs),A*“);xl:cg,mg,...,acs)}, (case III) .
Here we make the convention that Q((Bo,p’ By L Bs, B3y yBs), A; xi24, s sailis) 20
%(Bo L p'B1, A) if s = 1 and Q((Ba, ., B,), AUy 2 5) = ol . AD)
or0ifs=1orr=1, respectwely, and j! = j '

respectively.
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Theorem 5.4. Let A be o symmetric unimodular matriz of degree m and B be q
non-degenerate symmetric matriz of degree n. We assume that B has the following
decomposition: B = Bg . By il ave ik B, deg(B;)= n;. Let t be the Witt index of
A. Then Q((By, b iy Byl dids. . ,Ts) 1S a rational function of zq, . .. , Tg with

a denominator

S Ui S
Y R S N .
k=1l i=0 k=1

where wy, = min(ngy +--. 4+ ne—1,t) and vy, = 1 or 0 according ast > nqy +-- . + Nk
or not.

Proof. 1t is directly proved by Proposition 5.3. []

To prove the main Theorems, we need the following proposition due to Kat-
surada[5];

Proposition 5.5. et k,t andl be non-negatwe integers such that 2k o e
“ k>1land T = T L Ty Ty and T are non-degenerate even integral symmetric
| matrices of degree | and t — I, respectively. Assume that Ty =O; mod p. Then we
have

Bp(T1, Hy)ap(Ty, Hy_; 1L (=T1))

l
- Z(_l)zpz('L—1)+‘l(t+l—2k) Z ap(Tl [gl—lJ By TZ, Hk-)q
=0 gi

Sheare Hi & H 4 5001 H(k copies) and gi runs over the representatives of
GLl(Zp)\GLl(Zp)/\(z')GLl(Zp) with A(¢) = pE; 1L E,_,.

Proof of Therem 1. Put —p?A =T and p*B =T,. Then by applying Proposition
9.4 with & = [, we have

Oo(=*A, Hm)ap (0" B,p? A) = 3 (—1)ipii-Dil=meni1) D ep(~p*4lg7"] L p’B, H,,)

1=0 gi
|
| Noting that Bp(—p?A, H,n ) %0 and ap(sz,pzA) — p"("“)ap(B,A), we have I
Q((Bo, By, ..., B,), A;z1, ..., z,)
- ﬁp(-pzA, Hm)—l Z(_l)ip'i(—m+n+-i)—n(n+l)
1=0 35:
i Z Q((—pzA[g—l] L 3 p2B03p2B17 e 7p238)> Hm, Lly-.. 3378)-

gq

Then by applying Theorem 5.4 to Q((—-pzA[g“l] L p*By, p?*B,, . .. ,0*B,), H,,: L oo n i) 8,
We complete the proof. [




To prove Theorem 2. define

7{5) = {(ril, CHRE I § - (Z>0)3;ria 2 Ve on e, Bovg

according as i, < ¢ or not for 1 Serse.}.

Let A be the non-degenerate matrix of degree m with the Witt index b Be, Bt B,
be as above. Define
Q'il ----- is(<B()7Bla'--’Bs)aA;l'],...,ZL'S)
= Z Al By L pTe By & -+ _Lp’”"SBS,A):I:;Pi1 . T,

(Tiy5--Ti, JET(S)

Theorem 5.6. Let the notation be as above. Then e s By B
A;x1,...,2,) 15 a rational function of z1,...,zs with a denominator

S

S Uk
H H(l - p(nl+...+nk-—1)(——m+n+1+1)(xl o mk)Q) H(l i IEs)vk,

k=1 1=0 k=1

where ug = min(ny +--- 4+ nyg — 1,t) and v, = 1 or 0 according as t > ny + -+ ng
or not.

Proof. This can be easily proved by induction on s as that in Theorem 1 by noting
that Proposition 5.3 is effective for Q;, £ (B, By, e, By, Aign o ,Zs) instead
of Q{(BoBiyvvy B, Arirys i 2.y, O

Now, we can prove Theorem 2.

proof of Theorem 2. Identifying (i1,...,4,) and (2.1 ;) € G, (symmetric
T ah -
group of degree s), we can write
P((BO7B17'-'7B.9)>A;x17"'>$8): Z Qzl ..... zs((BOaBla "7B8))A;:B17' 7338)’

that is, P((By, By,...,B,),A; zq,. .. ,Ts) is a finite linear combination of
s dlBo, By, .oy B Aoy, ,Ts), which proves the assertion. [
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