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ABSTRACT

We investigate relation between Witten type Topological Field Theory(TFT)
and some singularities to find the nature of TFT and to search new possibility. Singu-
larities that we will study are classified into two types. The first type is represented
as moduli space singularity. In any gauge theories, if gauge transformation is not
effective, singularities exist in moduli space. Especially we study it in Topological
QCD. and we find some new relation between the Abelian Seiberg-Witten invariants
and non-Abelian Seiberg-Witten invariants and Donaldson invariants. The second
type of singularity appear necessitously when we treat topological invariants in field
theory. We use this singularity to break topological symmetry in topological gravity.
As a result we get a gravitational theory whose relevant contribution is given from

Finstein gravity.

sako@particle.sci.hokudai.ac.jp

S N

e i S B e

Saa = ot o s

-

TOERET

TR




Contents

1 Introduction

2 General formalism
Sl ABSEORRCHINN - 1o s pid cirarh Sl n et d ] e
2 Witten Type Topological Field Theory as Euler Class
3 Fermionic Zero modes
4 Topological Gauge Theory

NN DB

.5 Singularities

3 Reducible Connections and Topological QCD
3.1 Seiberg-Witten invariants and 4-manifolds
3.2 Massless Topological QCD
3.3 Separation of reducible connection part .
3.4 The relation of Topological Invariants .
3.5 Summary

4 Topological Symmetry Breaking on Einstein Manifolds
4.1 Introduction .
4.2 General formalism
4.3 Case of the Witten type topological gravity
t.4  Two-BRS formalism
1.5 Regularization . i
1.6 Mathematical interpretation
4.7 Conclusion and discussion

5 Summary

oo O Ut O

—
=

Bilselh e i) s b ~aos




Chapter 1

Introduction

Many problems of Topology and manifolds are solved in this century, but two big sub-

jects are left until now. Theyv are topological calassification of 3 and 4 dimensional

manifolds. Strictly speaking, 4-dimensional topology is conquered by Freedman [46],
but differential topology has not been solved yet. Differential topology have been
studied since 50’s, (since Milnor discovered exotic S7). In the definition of the dif-
ferential topology, identification is not only up to homeomorphism but also up to
diffeomorphism. In this paper we study the relations between field theory and differ-
ential topology. We treat only Rieman manifolds, then “Topological invariant” means
“Rieman metric independent” .

To study differential topology, physical(especially field theoretical) technique
have been used. The toward the understanding of 4-dimensional differential topol-
oev. there is a progress with useing non-Abelian gauge theory by Donaldson in 80's.
Witten reconstruct the Donaldson theory as topological field theory(TEFT). Donaldson
theory has solved many problems of 4-manifolds but it has difficulties for calculations.
Recently new developements have been obtained by Seiberg-\Witten monopole theory
[1] . They conquered a difficulty of Donaldson theory . The Seiberg-Witten theory is
easy for its computation since it is an Abelian gauge theory. And the Seiberg-Witten
topological invariants are expected equivalent to Donaldson invariants by weak-strong
duality relation. This Seiberg-Witten topological theory is reconstructed as topolog-

ical field theory too. Thus TFT give us various knowledge of topology.

We investigate relation between TFT and some singularities to find the nature
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of TFT and to search new possibility. Singularities that we will study are classified
two types. The first type is represented as moduli space singularities. In any gauge
theories. if gauge transformation is not effective. singularities exist in moduli space.
Especially we will study it in Topological QCD. and we will make clear the rela-
tion between the Abelian Seiberg-Witten invariants and non-Abelian Seiberg-Witten
invariants and Donaldson invariants. The second type of singularity appears necessi-
tously when we treat topological invariants in field theory. We use this singularity to
break topological symmetry in topological gravity. As a result we get gravitational
theory whose relevant contribution is given from Einstein gravity.

This paper is organized as follows. In chapter 2, general formalism of Witten
type TFT is given. It is mentioned by Mathai-Quillen formalism. It is possible to
describe Witten type TFT by any other formalism, for example N=2 SUSY twisting
, Atiyah system of axiom, and so on. For physicists twisting procedure is easiest
way to construct TFT. But we adopt Mathai-Quillen formalism to emphases geo-
metrical pictures. In chapter 3, moduli space singularities in Topological QCD is
discussed. Reducible connection cause this singularities. A role of reducible con-
nections in Non-Abelian Seiberg-Witten invariants is analyzed where monopole is
extended to non-Abelian groups version. By giving small external fields, we found
that vacuum expectation value can be separated into a part from Donaldson theory ,
a part from Abelian Monopole theory and a part from non-Abelian monopole theory.
As a by-product. we find identities of U(1) topological invariants. In the derivation.
the weak-strong duality relation and Higes mechanism are not necessary. In chapter
1. we discuss singularities which necessitously appeare in field theoretical description.
Cause of these singularities are understood as Gribov zero modes. field theoretically.
[t is known that if gauge conditions have Gribov zero modes. then topological sym-
metry can be broken. We apply it to the Witten type topological gravitational theory
in dimension n > 3. Our choice of the gauge condition for conformal invariance is
R+ a =0 . where R is the Ricci scalar curvature. We find when a # 0. topological
symmetry is not broken. but when a = 0 and solutions of the Einstein equations exist

then topological symmetry is broken. This conditions connect to the Yamabe conjec-

ture. Namely negative constant scalar curvature exist on manifolds of any topology.




but existence of nonnegative constant scalar curvature is restricted by topology. This
fact is easilv seen in this theory. Topological symmetry breaking means that BRS
svmmetry breaking in cohomological field theory. But it is found that another BRS
svmmetry can be defined and physical states are redefined. The divergence due to the

Gribov zero modes is regularized. and the theory after topological symmetry break-

ing become semiclassical Einstein gravitational theory under a special definition of

observables. In the last chapter we give a summary and some discussions.
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Chapter 2

(GGeneral formalism

2.1 Introduction

We give general formalism of Witten type TFT. Witten type TFT is given by various
ways. Twisting of N=2 Super symmetry is familiar way. Twisting is given by rotating
simultaneously SU(2) of Lorents and N=2 SUSY. The other ways to obtain Witten
type TFT are gauge fixing construction, Atiyah system of axiom, Morse theoretical
approach, and so on. We apply the Mathai-Quillen formalism to construct the Witten
type TFT. The reason to apply it is that this formalism make geometrical picture
clear. Especially if we do not see the singularities from a geometrical view point, we
can not distinguish the singularities which appear in chapter 3 and 4.

This chapter is organized as follows. In section 2. we start discussion from
Gauss-Bonnet theorem and review the Mathai-Quillen formalism as TEFT. Most part
of this section is found in J.NLF.Labastida and C'.Lozano’s lecture note and S.Cordes.
G.Moore and S.Ramgoolam’s lecture note [43] [44]. In section 3. relation of fermionic
zero mode and integral area of topological invariants which is given as form integral
are mentioned. In the section 4. we extend the theory given in section 2 and 3 to
gauge theory. When the local symmetry exist, some modification is demanded. In the

section 5. we study two types of singularity there. We can understand the geometrical

origins of the singularities.
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202 Witten Type Topological Field Theory as
Euler Class

We give the convention of the paper first. M is 2m dimensional orientable compact
manifolds. We denote \ (M) as the Euler number of M . Euler number (M) is
defined with cohomology class H'(M:R) as

(M) =3 dim Hi(M; R). (2.1)

=)
Euler form ¢(V, ) with a fiber bundle € and connection V of 2m-dim structure group
is define as

(=1

e(V.e) = s——faiascomlorar A Qagay A ee Allay,_sar,
AALD el 7ot
m! 1
e det(€2), (2.2)
27717-rm

where ) is a curvature 2-form.

[t is possible to construct Topological Field Theory(TFT) as Euler form. We

chose the Gauss-Bonnet theorem .

xiM) = /\[ el V, &), (2.3)

as the start point of construction of TFT. Where the fiber bundle ¢ is a tangent

bundle of M. TM. Eq.(2.2) is denoted with fermionic integral as
AR e o /(/\C%\“Qab\”. (2.4)

where \, is a Grassmann-odd real number.
We introduce the Mathai-Quillen formalism. With the section of the fiber
bundle.” s7. we define e4(\V'.e) as
1

( 2 )m i

' P N ab . a
65(‘—1.5) — /(/.\C 515" +5xa 2% xpt Vs Xa_

—
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S—

e,(V.2) is first introduced as pull back of Thom class by Mathai and Quillen [45].

<

When s is zero section. i.e. s = 0. e,(V.e) is identified with ¢(¥V.e). In general any

form integral is rewritten with fermionic integral as

JR L o ‘ = ey
/ —jm...ALQ da™t AN dat? = / —_-/Hl a4 I?.'ul v o qpHe d“"xd“ ", (‘2())
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where ¢ is a fermionic vector. With this representation. Eq.(2.3) is

/ (s(v-f) -, / (/.I'(/( ‘(/\—l__(-%|.s']3—{—%\“Q;‘LI,’/(‘-/H,.V\/,+,'T.m(1,')\,l. (ZT)
¥ JA (2m)™

Where s*(v2) is put as s whose da* is replaced with .
Now. we can understand Euler number as TFT. When we regard Eq.(2.7) as

partition function and the action i1s obtained as

RN T S| il : .
S =—|s|° - 3'\a§2'”’ LY xy — tVS* (Y) Xa- (2.8)

5 [T

This action has a symmetry which defined as

A A

oz, =, 6

7 bl

e TR i (2.9)

7
This transformation low is on-shell nilpotent. If we introduce auxiliary fields b, action
1s rewritten as

1 1 :
== 562 — bs — gxa,ﬂilf,'t/“‘ll’uxb, —1Vs*(¥)Xa (2.10)

and symmetry (2.9) is changed as

A

br, =1, b, =0 by,=b éb=0. (2.11)

This is off-shell nilpotent transformation and regard it as a BRST transformation

low. Moreover. the action (2.10) is given by BRS exact form as

S = 60
L 53\42.&+.»\;’m“\,,,quzﬂ-). (219

Where A'Z"" is a connection. Therefore we find that it is possible to regard Euler
number as Witten-type TEFT.
Let us extend this formalism to infinite dimensional case. The fiber bundle 1s

also extended to anv bundles. Naive extension is given by following exchanging.

r— olx), ¥ —Y(z), x— xlz), b—blx). {2l

raihe

o B i

|

A

- T e o

———

o




Where o(x). v(2). y(2) and b(x) is a some tensor(or spinor) fields. That is o(x) =

cxle) = ¥z} and so on. but for the simplicity we omit the space-

(_.)(.I' } LS oy

Pl s o filo
time indices "y and variety of field indices = 7. s(x) is replaced by a functional

s(o(2)) in this extension. The action of the TET is represented with these fields as
9 = oW

= (. (25 (6()) + b))
- /M 5{§\<r> (25 (6(x)) + b(2))} (2.14)

]

= [ b@) (25 (6(2)) + b(a)) ,\<->((,6O)L).

Where (.) is a scalar product i.e. we contract the all indices = 7 and “p”. Under
comparing (2.14) with (2.12) we notice that connection ;\;ﬁ"" do not exist in (2.14). In
this case, the path integral is defined as a functional integral. In general, connections
are not introduced in functional space. So we omit the AZb proportional terms in

(2.14). In other words, we regard that Azbt,b“_xb + b% is redefined as b*(x).

2.3 Fermionic Zero modes

In this section, we study the relation between fermionic zero modes and manifolds
which defined by zero locus of the section “s”. We treat the case which have no local
symmetry in this section 3. The theory with gauge symmetry will be discussed in the
next section.

We investigate the path-integral given as

o
et
R
S

(0) = /.DODL'D\D]) O e 9° (:

where the S is (2.14) action. ¢ is a coupling constant and O is some observable.
We define the observable as BRS invariant object. This path-integral is independent
from the coupling ¢ because variation of (2.15) by ¢ is vacuum expectation value of
BRS exact object. When we chose the BRS invariant measure as the path-integral

measure. we obtain

i<0> = —(6(0%)) = 0. (2.16)
og
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Therefore we can get exact result even in the weak coupling limit. In the weak
coupling limit. (see the Eq.(2.7)). the relevant integral is given from
do € {s70)} = {d.|s(¢.) =0} =A (2.17)
6
1,'0 E { 1,,‘()' = S — 0}. (2.18)
o) e
Ww=1o
Where the Eq.(2.18) is given as a \ equation.

Ghost number anomaly occur when there are zero modes of Eq.(2.18) and we
have to intrduce some observable whose ghost number is equal to the number of the
zero mode in order to get non-zero result of (O). In the following we consider such
case and we suppose the observable O has ghost number that is equal to number of

fermionic zero modes. After integrate out of b and y. Eq.(2.15) is written as

(0) = [ DgoDiO(60, 1) [ DYDY DD . (2.19)

We denote ¢’ and 1)’ as the other fields of ¢ and ty. From SUSY(g symmetry),
the Euler form part integral , [D¢'Dy'e™9° is given as +1. This result is easily
ascertained in a weak coupling limit. The sign of 4 is determined by each zero modes
¢o and vg. We put O(¢,¢) = O(é) - dmAy  bgima. The reason why the rank of

the tensor is “dim A” will be made clear soon. Then Eq.(2.19) is given as

(0) = [ D8uDO B0, o) (1)
= / dpi A oo A dpgima(£1)0()' 44, (2.20)
A
Where we use Eq.(2.6) i.e. v is replaced by form do. Note that “do™ is defined not

on the manifold “M™ but on ~A". We sanction this replacement as follows. From the

A is defined by s(0) = 0. the form d¢ on A satisfies

o
DO
—
~—

| 6 e ;
ds(o) = <(lo$> s(¢) = 0. (

From Eq.(2.18) we find that the fermionic zero modes satisfy the same equation

Eq(2.21). And the number of the fermionic zero mode is equal to the dimension of

A.

#(hg) = dim A. (2.2

o
o
8]
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Therefore we obtain the form integral (2.20) from vacuum expectation value of (2.15).
Note that Topological invariants represented as form integral like (2.20) is interpreted
as Poincare dual of Euler form of infinite dimensional space from (2.19) and (2.20).
We have considered the case which there are no local symmetry. When we
treat gauge theories we have to modify these formalism a little. In the next section
we study such case. To justify the Eq.(2.20) some problems are left. For example.
what is a condition to regard A as a manifold? We investigate these problems in the

last section in this chapter and following chapters.

2.4 Topological Gauge Theory

In this section we study the TFT with local gauge svmmetry. When the gauge group
and gauge transformation of ¢ are given as GG and G, goal of this section is to get a
form integral like (2.20) on moduli space M = A/G. We have to modify theory we
had seen until above section to arrive the goal.

At first. we reform the é transformation (2.11) as
§o(a) = (x) du(x) =6,(c)p(x) bx =0 ob=&,(c)x. (2.23)

Where we denote é,(c) as gauge transformation with gauge parameter fields “c” which
assign ghost number 2. For example, the Topological Yang-Mills case, this ¢ is defined

as

BA, =ik, bX,=8,(8)A, =—=D,é. 66=0. (2.24)

o

From these definitions. i.e. 62 = 6,. nilpotency of & is lost in general. But if we treat
only eauge invariants object. ¢ is still nilpotent operator. In the following we regard
¥ in (2.14) and observable O as gauge invariant and we treat & as nilpotent operator
without gauge fixing terms.

To obtain the form integral on M = A/G we want rest riction map to horizontal

space. 1.e.

Ol )= /,4 0(6.dg) e~ I 8% (:

o
)
Wk |
N

Jajg
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Where e~ J 2% plav a role which project the A into gauge horizontal space. We have

to find this (‘:k]/,, and add this to the action.
. (8 + 6W,,). (2.26)

With this modified action. we get the form integral on the moduli space.
To obtain the projective gauge fermion W, we introduce two operators named

' and C'T. We define €' with the gauge parameter 0 as
6,0 = C86. Vil

For the economizing of symbols, we use §, as gauge transformation operator, but here
gauge parameter  is not necessary to assign ghost number 2 like (2.23) and (2.24).

For example the case of Yang-Mills gauge connection, (2.27) is given as
a __ L -
6,A% = D0 = C9, Crlendh (2.28)

Ct is defined as conjugate operator of C. In the case of (2.28), with the gauge

invariant scalar production { . ). C'!is given as
s SRR e TR ST (2.29)
Note that the kernel of CT have a horizontal direction of gauge transition because
(CV4h.8) = (3, CO) = (3, 6,4). (2.30)

From this character we construct the projective gauge fermion.
We introduce the projective gauge fermion which restrict the path-integral to
the kernel of C'T. To realize this. anti-ghosts n and Nakanishi-Lautrup(NL) fields ¢ is

introduced here.
¢ =1, on=4,9. (2,31

In Eqs.(2.31). &, is same as (2.23) and (2.24) and is assigned ghost number 2. With
l g O ')

these fields. U, 1s defined as

11
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From this definition. we obtain the additional action as
/\1 80, = (6Ct, 8) + (CTe.n). (2.33)
From the n equation.
Chyp =0, (2.34)

We find that the path-integral is restricted to moduli space integral. The moduli
space dimension is obtained as similar as Eq.(2.22).
dim M = §(vpg) = dimkerC"' — dim Coker—. (2.35)
00
Note that this manner is right when the gauge transformation is effective. We consider
the case that &, do not act effectively in the next section and next chapter.

Then the vacuum expectation value is obtained as form integral on M as

[ /M A1 A N B A O [Py M, (2.36)

Note that this integral is well defined only the case that M is a manifold. The
condition to be a manifolds is discussed in the next section.

Note that this projection is different from Faddeev-Popov gauge fixing. Faddeev-
Popov method introduce some gauge slice but we separate the Harr measure from
path-integral measure. After we add (2.33) to the Lagrangian, there is local gauge

symmetry. So we have to fix the gauge symmetry as usual.

2.5  Singularities

[n this section some singularities are considered. The first type of singularities has
a geometrical origin. The form integral (2.20) (or (2.36)) are well-defined when the
A(or M) become a manifold. We study the condition for them to be manifolds.
The second tvpe of singularities has a field theoretical origin. We treat topological
invariants as TET. As we saw in the above section. we regard the tangent space of
moduli space as space of fermionic zero modes. In the field theory. these zero mode
cause singularities like infrared singularities. We mention about these singularities in

this section and we study some example in the following chapter.

12
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We study the conditions for A and .M to be manifolds. The sufficient condition

for A = 57'(0) to be a manifold is given from the theorem on implicit function.

o The map £ from cotangent space to the vector space on which s is defined 1s

surjection map.
From the definition of M we get the next condition.

e The gauge transformation G of gauge group G act effectively. i.e. there is no

fixed point of G action.

Further more, there is a problem of compactness of A and M. But we do not discuss
about compactness in this paper.
These conditions is demanded when we choose the gauge fermions W and W,,.
To avoid these singularities or problems, the gauge fermion is chosen carefully or we
demand some condition to the base manifold “AM”. But often we choose unavoidably
or intentionally gauge fermions ¥ and W, with singularities. For example in Yang-
Mills theory. the second condition. i.e. there is no fixed point of G action. means that
there is no reducible connection (see the appendix of chapter 3). In the Topological
QCD, as we will see in the next chapter, we obtain more information from the theory
with reducible connection than the theory whose connection is only irreducible. So
we do not avoid these condition. and rather we use the singularities to get the relation
of topological invariants.

There is another tvpe of singularity in TFT. Many theories regardless of topo-
logical theory have singularities like infrared singularities. which is caused by zero
mode. Witten tvpe TFT is defined as merely action is topological invariant action

plus é-exact action.

Bl 6 (2.37)

A

Where ¢ 1s nilpotent (62 = 0) or up to ¢, nilpotent (or 52 = 6,). From only this
definition without (2.23). it is impossible to interpret the TFT as the Mathai-Quillen
formalism. but we can find the theory is topological. When we regard & as BRS

operator, 8W is the term of gauge fixing plus Faddeev-Popov determinant term. Then

13
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it may be interpreted as existence of Gribov zero mode that the moduli space have a

non-zero dimension. because “det ££7 is a Faddeev-Popov determinant. This Gribov
zero mode some times cause singularities. From Eq.(2.21). we found that this zero

mode always exist when dimension of A or M is non-zero. It is known that the Gribov

zero mode have possibility to break the BRS symmetry 1.e. Topological symmetry. E
We may get physical theory which is broken topological symmetry. We will study it

in chapter 4 in the case of Topological Gravity.




Chapter 3

Reducible Connections and
Topological QCD

3.1 Seiberg-Witten invariants and 4-manifolds

In this chapter, we study moduli space singularities and we use these singularities to
find some relations of topological invariants in 4-manifolds [22].

Recently in differential topology of four manifolds there have been new de-
velopements by Seiberg-Witten monopole theory [1] . They conquered a difficulty
of Donaldson theory . Donaldson theory solved many problems of differential topol-
ogy of 4-manifolds about intersection form, polynomial invariants and so on [3][4].
Donaldson theory is described by non-Abelian gauge theory, hence calculations are
difficult. Seiberg-Witten theory is easy for its computation since it is Abelian gauge
theory. Donaldson invariants which is written by Kronheimer-Mrowka structure for-
mula are related with Seiberg-Witten invariants. and the relation has been proved in
several ways [5][6] . Hyun-J.Park-J.S.Park show the relation in path-integral formal-
ism using massive Topological QCD [7]. Both Donaldson and Seiberg-Witten theory
are understood as Topological field theory [8] [9]. Hyun-J.Park-J.S.Park computed
path-integrals of massive Topological QCD and they found the way of separating it
into two brunches that is Donaldson part and Seiberg-Witten part. Symbolically the

result of their computation is

| Gt e L .
(massive Topological QCD) = il {(1)0/211/([5011} - —)<b’ezb€rg - N z,ficn>}(3.1)

mk m!
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Where a and b are some suitable constants and m is mass of hyper- multiplets. & and
| are determined by indices of some elliptic operator. (massive Topological QC'D)
is a vacuum expectation value of an observable with the action of massless Topo-
logical QCD. (Donaldson) stands for vacuum expectation value of an observable
with the action of Donaldson-Witten theory [8]. and is called Donaldson invariants.
(Seiberg — Witten) stands for vacuum expectation value of an observable with the
action of Abelian Seiberg-Witten topological field theory [9]. and is called Seiberg-
Witten invariants. The left hand side of the above equation is regular in the massless
limit, m — 0. so the Donaldson part and Seiberg-Witten part in the right hand side
have to cancel each other. In this theory, mass terms lead a relation between vacuum
expectation value of Higes and matter fields. All computations in this paper are done
in a weak coupling limit (or large scaling limit). If the weak-strong duality relation is
necessary for understanding the relation of Donaldson invariants and Seiberg-Witten
invariants, it is natural to think that massive particles decouple in the weak coupling
limit as Witten mentioned in [1] [2] . But, in the proof of Hyun-J.Park-J.S.Park
mass terms do not decouple . and the duality relation is not used. Mathematicians
did not use the duality relation similarly in their proofs [5] [6]. This fact implies
that mass terms of matter fields do not play essential roles in the relation between
Seiberg-Witten and Donaldson invariants . The only important thing is to separate
the path-integral into the Donaldson’s irreducible part and Seiberg-Witten’s reducible
part in their theory.

In this chapter. we investigate reducibility of the gauge connections in massless
Topological QCD. As we mentioned in the above chapter. reducible connections make
moduli space singularities. We use these singularities for two purposes. The first one
is that we cull the Abelian Seiberg-Witten part from massless Topological QCD with-
out Higgs mechanism and weak-strong duality relation. The Abelian Seiberg-Witten
part appear in massless Topological QCD as reducible connection part. The second
purpose is to obtain the new relations of massless Topological QCD and their topolog-
ical invariants. Especially. we will get a result that insists some topological invariants
which contain the Abelian Seiberg-Witten invariants. This topological invariants is

provided as reducible connection part of this Topological QCD. As a result of these re-

16
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lations. we find that the path-integral from non-Abelian extended monopoles [9][6][10]
is separated into Donaldson parts and non-Abelian Seiberg-\Witten parts. We use reg-
ularization for zero mode of a scalar field. which do not remove zero-modes but shift
them to infinitesimal eigenstates without BRS-like SUSY breaking with giving per-
turbation by external fields. As a result of this perturbation. we obtain new relations
between Seiberg-Witten invariants extended to non-Abelian gauge and Donaldson
Seiberg-Witten invariants. And some identities of U(1) topological invariants from
the relation are given from the relation of SUSY symmetry of the Topological QCD
and external fields.

This chapter is organized as follows. We set up massless topological QCD
whose action do not have IHiggs potential, in section 2. Separation of vacuum expec-
tation value of observables into reducible connection part and irreducible connection
part is done in section 3. We get identities of Abelian Seiberg-Witten invariants and
obtain the relation of massless Topological QCD and reducible connection part in
section 4. We will find new formulas in there. In the last section of this chapter, we

summarize and discuss our conclusions.

3.2 Massless Topological QCD

In this section we set up massless Topological QCD modified slightly to separate
a correlation function into a reducible connection part and a irreducible connection
part and study the relations between non-Abelian and Abelian Seiberg-Witten theory
with no Higes mechanism. Hence Higgs potential like [0. ¢]* do not appear here. We
will find later in this section how the Donaldson invariants are embedded in massless
Topological QCD.

Topological QCD were already constructed by Hyun-J.Park-J.S.Park J.NLE.
Labastida and Marinio by twisting N=2 SUSY QCD [9] . Donaldson theory and
Seiberg-Witten theory are analyzed as topological field theory in references [8][9][1 1][7]

Basically we use the Hyun-J.Park-J.S.Park theory and notation in [7} . In the
following. we only consider SU(2) gauge group and 4-dimensional compact Rieman

manifolds with b5 > 2 as a back ground manifold.
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The action 1s

SQ("I) = —o0V (3_))
where
7 £ l LV {6 A g 1a & 1a ¢ ¢
g /(/ﬂl'g?[\‘ J(HE —i(F + gta,, T%g)) (3.3)

1 LV ] a ro oI 7
— 59"(Dud)aly, + (X7 ea — ¥ Xgo)]

e

and under SUSY(BRS like) transformations, Yang-Mills fields are transformed as

§A, = idy. O = Hu $6 = in.
6)\“;: _‘Du.¢7 6H;w = Z[¢ ,\/Jl/]‘, 6"] = [@ @] (34>
6¢ =0,

and the matter fields are transformed as,

8¢° = =¥, 6YF = —ig*T.q”,
6qu e _'l‘r/‘qd7 6¢’qo'z — iquéa]jaf

A

S = —i0" Dt + Xy

64X7qn o T} C;'qa e liO'“ . [);1. U%) i OJ)( o' A :1 ’11'1 qCY

(040
L AL t —uow rox
0t 3 = [])“,q = o ‘\,} ”
(SA\'%., — /1 .%)O’I. 'Z‘a —— ]l)ﬂ 1 ,{11\:\ ('j.ll(\ O + ([Td O.}lug) /\Z”]‘q ( {—))

These transformation laws are obtained by the usual way of twisting N=2 SUSY
QCD. The matter fields ¢ are sections of Wt @ E where W is spin® bundle and £ is
a vector bundle whose fiber is a vector space of a representation of the gauge group
ST

We make correspondence between the action (3.2) and Mathai-Quillen formal-

ism. From (3.3) we can easily make correspondence of

LV a ’ a a 1 L 7 a
\I/ = \‘ (jz,([ju,u A [(FAL:— + qTOMUT (1)) \I/[J = ;qﬁ (D/-L,O)’l/ {7

—
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But the correspondence of (.\',"}’ You = Y5 X,,) in Vis not clear. As a matter of fact it

qx

correspond to gauge fermion of the section o), q. That is we chose the section s as

— (Fo 2 qle. T, "Dy q)
{ Oy { nq

787

[f vou want more clearer correspondence to Mathi-Quillen formalism vou should refer
[43].
The topological action is given after integrating out the auxiliary fields # . X,

and X; as

& i = a ma 1 ! 2 1 w 7 A (\a
Sqecp 2/611-1'92 (k IFJ Loglan Tl # =lo" Dyglt < §g‘ (Dpd)a(Dyvo)"

2 a : v [ :
L B R VLl o L VPP R W+ LD A

‘._a n.:

— " yqawl q + i/\“’“aqfﬁw] u,; =g b e Gho D A0 *at . D,
+2195" 0 T hya + qu)‘uaTaa'“da@[’qa & 'l/)éaguad)‘uaTaqd ). (3-6)

Where the indices o and & are omitted and we do not change the position of these
indices to keep the sign of each terms in the following. This action is constructed in

order to lead the most important fixed points.

st + qTa-llvVTaq s O'. O'N'DN,C[ == () (37)

The Eqs.(3.7) are monopole equations extended to non-Abelian gauge group and of-

ten thev are called non-Abelian Seiberg-Witten monopoles [9][10].

Usually. Seiberg-Witten theory has a Higes potential [o. 0]%. Spontaneous
svmmetry breakdown occur if the vacuum expectation value of Higgs fields (o) is
non-zero. Then we get /(1) monopole(Seiberg-Witten) equations. But one of our
purposes is to clarify whether relations of topological invariants can be understood
without Higes mechanism and weak-strong duality relations. So the Higgs potential
is not included in our theorv. (But if we add these potential, they do not disturb

following discussion.)
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Later in this section. we find how the Donaldson invariants are embedded in
this theory. We study three kind of fixed points. which eive important contribution
to vacuum expectation value. The path-integral 1s expressed as a sum of three parts.
We call a part of the path-integral from fixed points determined by F't = 0 and ¢ = 0
as Donaldson part. We denote a part whose gauge connections A of fixed points
determined by Eqs.(3.7) are reducible as Abelian Seiberg-Witten part and a part
which has irreducible connections at the fixed point as Non-Abelian Seiberg-Witten

part. The observable is

g N 1 1
exp < 4_2/ TF (iéF 4 3)\ A /\) - ”,_)T'raﬁ2> : (3.8)

where 4 is in a 2-dimensional homology class i.e. 4 € Hy(M;Z). Now let us sepa-
rates vacuum expectation value with Donaldson invariants from non-Abelian Seiberg-
Witten invariants. If fixed points (¢) from Eqs.(3.7) is zero then the contribution to
the expectation value of (3.8) is from only Donaldson theory because now our fixed

point equation is simply as

e (3.9)

037

We know that we can estimate exactly the vacuum expectation values of this observ-
ables by one-loop approximation around the fixed point determined by the Eqs.(3.7)

[11][12]. We can decompose the action of Eq.(3.6) into two parts [7].as
Soop = 5p + 54, (3.10)

where Sp is action of Donaldson-Witten theory [8].

J L I n 4 uy | LV Kol G Ol T
Sp = / (/4:1'g3 I'r [ Ilv;ixﬁ THY - Egﬁ Duoj)u,a &k l',\‘ [O\;w}
Y [ /\ = 1 117 D )\ ) Ly \ 7 \ 311
+\ ((’A ) s ;(1 ( ;1."7) AT _)g [/ s O} Ay ] (-, ] )

and Sy, 1s matter part.

We find that the quadratic part of the matter part action Sy, is given by

"1(2) 41 . l P 7 Ox 7’ * ey yas > (,.) £ T — l[l.(:Y&' Ve
BAF i d'xg? | ~ 33Xz Xgo + 10X 0,5Duq" +1D,q 5077 Xy
; D SR A '
_I'D,u,lf"’(]d(jHaL Wy 5 105 UodDu‘lf{? ] 3 (rgl‘_).)
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Note that the gauge field A, used in D, is an external field. We expand the gauge

field around the solution of Eqs.(3.7) denoted as .. as

A=A+ 4, (3.13)

.where A, 1s a quantum fluctuation around the A.. So the covariant derivative in the

- 2 x . v . . .
b‘.(\l) is written by external fields A. as d4 = d + A.. Note that A, is a irreducible
connection because we set b7 > 1. After the Gaussian integrals of X.q.v¢> and 1, |
from Eq.(3.12) we get

det (—m )yy—det (—4m) iyt - (3.14)

The indices W~ and W't of determinants (3.14) show that the determinants are
defined in the subspaces of W=, W™*, and we use the similar notations also in the
following. Therefore we can understand that the Donaldson invariants appear with
the determinants (3.14) in massless Topological QCD and this fact is used in section
4.

In the next step. we want to evaluate the other part which correspond to the
Seiberg-Witten theory and separate the path-integral into a reducible connection part
and an irreducible part. But, as we will see it soon, it is impossible to separate the
Seiberg-Witten part into the non-Abelian Seiberg-Witten brunch and the Abelian
Seiberg-Witten brunch in the same manner as above. In this case fixed points value
(¢) is non zero. We consider the SU(2) gauge group. Our massless theory has no
spontaneous symmetry break down. so we have to treat separately reducible gauge
connections and irreducible connection by some wayv. Judgments whether the con-
nections are irreducible or not can be done by examination of the existence ot D,
zero-mode. (See appendix A.) Strictly speaking. the following two propositions are

same.
o dy: AdEQR Ny — Ad £ @ A, is injection.
e . is a irreducible connection.

Where we represent a vector bundle with a structure group SU(2) as £. So we use this

condition to divide the contribution to vacuum expectations into one from Abelian
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Seiberg-Witten theory and another from non-abelian Seibere-Witten theoryv. At first.
we pay attention to o equation.

s .
—= DD, 6 — = A V] = 0. (3.15)

A in this equation is determined by 1 and \ equations like appendix B or references
[11] . When there is no zero mode solution of A then this equation is a distinction
formula of reducibility 1.e. — }2 D*D, o = 0. So we can conclude that the connection is
reducible and the contribution to vacuum expectation value is from the U(1) Abelian
Seiberg-Witten theory when (¢) # 0. But unfortunately we can not distinguish
connection by this method when there are A zero mode solutions. In the next section
we find new approach to separate the contribution of Abelian Seiberg-Witten branch

from non-Abelian Seiberg-Witten part.

3.3 Separation of reducible connection part

In this section we construct a new theory in which vacuum expectation value are
separated into three parts i.e. Donaldson . Abelian Seiberg-Witten and non-Abelian
Seiberg-Witten part. We use the determinant obtained by integration of ¢ and ¢ to
find whether connections are reducible or not. Therefore we consider the case when
the determinant vanishes. Usually we avoid this case and remove zero eigenvalue
states with various ways. For example in [20]. zero-modes give a symmetry to whole
action and theyv are removed by BRS method. In our case this method can not be used
because zero-mode dose not give the existence of a local symmetry. But in this section
we take zero-modes into account . and we find that this zero-modes play a essential
role to distinguish between reducible connections and irreducible connections.

In the same way as section 2. we pay attention to Eq.(3.15). From Eq.(3.15).

we get the vacuum expectation value of the scalar fields ¢ in 1-loop order as

!
; = e e e g /\l/./\l/ 3-1(‘
<O> Du l)“ [ ] ( ))

Now we have to recall that if 65 > 0. anti-selfdual connections which sat-

isfy the equation (3.9) do not contain the reducible connections with U(1) isotolopy

23




o

oroup [3][13] . but the connections which satisfy the monopole equations (3.7) contain
such reducible connections in general. \When the connection is reducible then D), has

zero-mode on O-form. (see the appendix A). Then the Green function has sin-

gularities. Normally we avoid this kind of singularity to define a meaningful theory.
However. in the present case. this singularity payvs the important role. Reducibility
of the gauge connection is judged by the zero-mode. The theory should keep holding
characteristic properties of zero-modes while it is regularized. Such problem doesn’t
exist in the Donaldson theory. Or we can say that we set the condition b5 > 2 to avoid
the complication of reducible connections in Donaldson theory. But in the Seiberg-
Witten theory it is the most important merit that the gauge group is U(1) Abelian
group. So. if we take away such reducible connections, then this Topological QCD
has almost no value. Therefore we have to manage the singularities in the Green
function. Usually we dispose of singularities of this kind by removing zero-modes,
inducing mass terms and so on. The following way makes it possible.

Before considering regularization we ascertain that these singularities make
topological symmetry break. To see it concretely, we introduce a BRS exact ob-
servable. 3(@\,,). If there are no singularities. topological symmetry is not broken
and vacuum expectation value of this observable vanishes. But as we saw before,
the propagator <qu5> ~ 5;15: is singular at least in tree level. To avoid these sin-

gularities we add regularization term ie¢¢ to our Lagrangian and the propagator is

. naivelv. Because the oo i1s not invariant under the BRS-like

changed to DD 3

SUSY transformation (3.4)(3.5). the vacuum expectation value is

<5 (o,\“)> 2 ‘/-p‘\'ﬁ (O/\“) o5
e / DX (oX,) 8 (66) e

= c‘<o"/\“‘1]o'>

= 6<<OC)></\NI]> + - > (3.17)
(See references [14] or chapter 4.) The last equality is from the Wick's theorem. It
make clear that the singularities of the propagator <oo> s % cause the right hand
side of Eq.(3.7) non-zero in a limit as ¢ — 0. This fact means the vacuum expectation

value of the BRS exact observable is non-zero. This is topological symmetry breaking.




i

[t is equivalent to a phenomenon observed in chapter 4 and references [14][15][16].
This is seen after integration by ¢. We get a delta function.

563

! ;
O —=D"D,o — = [A A" €0 | = , : (3.18
< e 'm> 3 det (DD, — ie)| R

i

all e

A

where ¢, is the solutions of —3D*D,0 — é[/\“. M+ ied = 0 and A is a zero-mode
which is determined by 1 and y\ equations. (see the Appendix B). We know it from
seeing the delta function of (3.18) that the determinant |det (D*D, — i¢€)| is zero in
a limit as € approaches zero when the connection is reducible, and these singularities
break the topological symmetry. From this consideration, it seems that the regular-
ization term is not suitable. For our purpose we do not hope topological symmetry
breaking. so we have to choose the regularization term to be invariant under BRS-like

SUSY transformations.

Here we define the determinant by adding infinitesimal sift terms to our La-
grangian. Our problem is that we could not separate vacuum expectation value into
a reducible connection part and a irreducible connection part with the way in the
previous section. In this section, the method used in [14] adapt to the separation.
We pay attention to the determinant det (D*D,) which is obtained by integration
of & and ¢. We saw above that vanishing of this determinant cause topological
symmetry breaking or at least cause some singularity. Usually we used to modify

determinants by removing zero eigenvalues. But these zero-modes are necessary to

judge the reducibility of the gauge connection. So we do not remove but shift them

by infinitesimal perturbation. This infinitesimal perturbation is given by adding some
shift terms to our Lagrangian. We denote this shift term as ¢f. where f. is a some
functional and f. = 0 as the limit of ¢ — 0. Similarly we also shift the determinant
which is obtained by 7.y and A integrations.(See the appendix B.) This shift term
is represented to 5¢, in the following where (, is a some fermionic functional and ¢,
vanishes in the limit, ¢ — 0. We mention a little more about this shift. The 5 integral
of g* (D,n) A, in action (3.6) vanishes. if the covariant derivative D, acting to the

has zero-modes.(Note that A, zero-modes define the dimension of the moduli space.
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but 1 zero-modes do not have such a roles in usual case.) Usually we take away this
zero-modes. but now instead of doing so we add infinitesimal shift terms ¢, to the La-
grangian. in order to shift the fermionic zero-eigenstates into infinitesimal eigenvalue

states. Total Lagrangian is now written as
~ & i Sl . o
i he bQ(j) + d Tg= <C)f( + I/Q) (31())
Here let us enumerate conditions for the infinitesimal terms.
(a) Shift terms are invariant under SUSY transformations (3.4) and (3.5).
This condition is necessary to avoid topological symmetry breaking as we saw it above.

(b) It is desirable that non-zero solutions, ¢ and A. of the following ¢ and

n equations do not vanish by adding shift terms:

1 :

e % B I (3.20)
; : |
o (3.21)

From this condition. observable contain non-trivial one. The A in Eq.(3.20) is deter-
mined by Eq.(3.21) and fermionic field equations, (refer [11] and see appendix B).

When [, contains the field ¢ like
fo=¢€go+ ch (3.22)

where ¢ and h are some functionals which do not contain scalar field ¢. (o) is repre-

sented as

l
= == | /\\1/. /\\l/ 2 / . ‘;2.;
) =~ DaD, e jeEse) Sy
Hence (¢) becomes order € i.e.(¢) = —m (+2¢h) = O (¢) if there is only A =

0 solution of (3.21) and D, has no zero-mode. Then the vacuum expectation of
observable (3.8) is mere 14 O (¢) and this is not suitable. Note that it is not desirable
that f is independent from ¢. This reason is made clear by next condition (c¢). So we
can not put ¢ zero in Eq.(3.22). The right-hand side of Eq.(3.22) has at most linear
in the field ¢. however f. may contain higher power terms on ¢. For simplicity. we

treat only case Eq.(3.22). The 3rd condition for infinitesimal shift terms is
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(c) following two operators have no zero-modes regardless of whether

cauge connections are reducible or not.

of _

| s

S5 ) AR B 0
~D*D, + ez = S D2 (3.21)
; NN )
5[)/, = Y = ‘zDMC' (;ZL))

- P 7

Where the operators (3.24) and (3.25) operate on Ad(F) valued 0-form. This con-
dition is just to shift determinants from zero to infinitesimal finiteness when gauge
connections are reducible and D, has zero-modes. Irom these conditions, we can take
count of n and ¢ zero-modes when calculate det D? obtained by ¢ and ¢ integrations
and detT, (see appendix.B) whose T, has D, in first row and is obtained by fermionic
fields integrations.

Example of the additional terms ¢f. and 1,(* which satisfy the conditions

(a)(b)(c) are

6f+1.Ct = b(dGuAum” + en(q'db; — Pydq))
= o, ([);,,O)a' mt + €d, (an(OT“ +T"0)q — 2572,1;,1 ¢ g z:ﬂv,})

+en, (A ,m") — en, (n b, T q + an""‘gﬁ,;) : (3.26)

where m,, and n are some back ground fields which are chosen to satisfy the conditions
(b) and (c¢) and are gauge singlet. These external fields do not break SU(2) gauge
symmetry and topological symmetry because theyv are gauge singlet fields. Infinites-
imal constant number ¢ and ¢ are independent each other. \We can add shift terms
(3.26) to our action since (3.26) are BRS-like SUSY invariant and have 0 U-number.
Note that sometime the determinant detD,D* obtained by ¢ and o integrations is
ignored in other papers because this determinant can be countervailed by a Fadeev-
Popov determinant of the SU(2) gauge fixing. But in our theory. this determinant
plays a essential role for separating reducible connections.

Next we consider the zero limit of € and ¢/. We take this limit after functional
integrals. When we calculate around fixed points of irreducible connections which
have no zero modes of D,. additional terms like (3.26) play no role and there is no

modification in Donaldson and non-Abelian Seiberg- Witten theory in the limit as
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¢ approaches zero. But if a connection of a fixed point is reducible some different
points appear. At first. we can estimate the order of the delta function obtained by

o Integrations as

o <c> — (3(>

| | ! .
8 <—§I)“Duo =5 [Aw M+ /> =2,

2 5 |det (DD, — 55},
L I (for irreducible connections A,)

(3.27)

det (DD, — &

s > . .
)‘ ¢~ (for reducible connections A,,)

where [ is a dimension of 0-cohomology HY i.e. [ = dim ker(D,). We denoted ¢ that
do not make delta function vanish as .. Especially it is important to notice that this
determinant can be chosen to depend on not ¢ but ¢ like the case (3.26). Since the
0, (D, o) m* term in shift terms (3.26) vanishes under ), zero-modes integral. For
infinitesimal € and ¢, ¢ terms in the determinant in Eqs.(3.27) are negligible. Note
that the shift terms which break the balance of bosonic and fermionic shift terms in
zero-mode integral like Eq.(3.26) have less variations. In general, € or ¢ appear in

the both coefficients of ¢ term and 7 term since ¢ is a super partner of 7.

The equations to obtain vacuum expectation value of ¢ change also as

L s e AR

¢. (for irreducible connections A,,)
é. + €d' (for reducible connections A,,)

1€
/ 1 .
e = hm

e @ D0 L) = ey

(goe + h). (3.28)

Where o, is a solution of the equation (3.15) of each connections A,. Note that o'
may be finite in the 0-limit of ¢ since D, has zero-modes.
In a similar manner. we estimate a delta function which obtained by fermionic

field n integration as

H'/] é( 715'[);1‘/ e Qr)

3 . i o (for irreducible connections A, ) B
IIGL8GDA" =6~ ™ o, ey, 64D, 0 — ¢ e

70 7' ! : .
(for reducible connections A, ).

Where g are ), zero-modes and 5" are other non-zero modes and O(e, ¢V is order

e"e™ where n4+m = [, (n,m =0,1,2,..,1). Or we can say it as follows. The first row

Do
=]




of T, that is D, goes back to D, in the zero limit of ¢ and ¢’ when connections of
fixed points are irreducible. On the other hand when connections of fixed points are

reducible. n and A integral can be written by separation D, zero-modes

/D//’D/\ exp <— / (/".1'_(/%((Du,l/’),\“ — Q}/;')) /.D//U exp (— / (/'1.'1'5/{7//0(,_) . (3.30)

So we can estimate det |1'| as

fod, et ] det |T| (for irreducible connections A,,)

. : : 3.31
€6/ —0 lim..o—o(O(e, €)) (for reducible connections A,,) ( )

Where O(e, ¢')! is a determinant of a matrix in which the 5o row A, column of T is
replaced with 67%‘— In the example (3.26), the ng row A, column element in 7} is
o¢¢
O b

e 6,5(11)7'7'1‘“- (3(32)

From Eqs.(3.27) and (3.29), we conclude an order of vacuum expectation values

is given by,

I (for irreducible connections A, )
O(e.e')\! : ! (3.33)
(——) (for reducible connections A,).

€

We can conclude from (3.33) that if we set € and € as same order, then our path-
integral are sums over reducible and irreducible connection parts with an equal weight.

Let us consider changing the ratio ¢ /¢ and changing the contributions from
reducible connection part in our path-integral. The ratio of ¢ and ¢’ can be changed
without changing of vacuum expectation value. This fact 1s seen as follows. We put

¢" as € = ke and k is some positive real number. When an action 1s given as

T / (14Q*g%c§"" +edF + ¢6G (3.34)

where V. I' and G are any functionals. then the change in a vacuum expectation value

of any observable O which satisfy ¢O = 0 under an infinitesimal deformation of k is

T (0) = / DX O % ((,’(%(]) T

s I

Y T



= il 5 < SHL

s <olode

|
h So we can change b without changing vacuum expectation value. In our case. only {f
| reducible connection part depend on k. We denote (O),,, as a irreducible connection t
| (non-Abelian connection) part of (O) and denote (O), as a reducible connection ‘
(Abelian connection) part. then the only (O),, depend on the ratio k. When the power '
expansion of k of (O), is written as (O), = Ly (O), k". vacuum expectation
value (O) is expressed as :
(0) = (O)ig+(O)p
l g
= (O)ip+2_(O)p, ¥ (3.36) f
n=0 :
Since (O) is k independent. we obtain |
L !
(O T Ao g R Sl A (3.37) ;
0
This fact means that we can remove the contribution to vacuum expectation value
from reducible connection without a k° proportional term (O)p . Note that (O)p, = '
(OYp |.i—y- This is the most important fact to derive the relation of Abelian Seiberg-
Witten invariants in the next section. Note that the vacuum expectation values (O) :,_
is invariant under changing of e. This is easily ascertained by a similar way of (3.35).
In the next section, we explicitely investigate a relation of the non-Abelian 1
Seiberg-Witten, Donaldson and the Abelian Seiberg-Witten invariants with the in-
formation obtained in this section.
3.4 The relation of Topological Invariants
[n the previous sections. we prepared the tools for investigation of relations of the
topological invariants i.e. Donaldson, Abelian Seiberg-Witten and non-Abelian Seiberg-
Witten invariants. Now we actually construct the formulas of these invariants. We
treat three parts of vacuum expectation value of observable (3.8) separately. The first 4

part is Donaldson part which is defined as fixed point ¢ = 0 and gauge connections
of the fixed points are irreducible connections. There is no solution of the instanton
equation when b5 > 1 and connections are reducible. The second part is Abelian part

whose fixed points ¢ # 0 and connections are reducible. The third part is non-Abelian
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part that has irreducible connections and ¢ # 0. In our theory. vacuum expectation
value of O is defined by

() = lim /'Dl\' O expl(—5) (3.38)

e.c'—0
J DX O exp(=5qcp)

(for Donaldson and non — Abelian Seiberg — Witten part)

lim, o [ DX O exp(—Sgcp — [ (l“;z"g%((;j.f.g + ¢, ))

(for Abelian Seiberg — Witten part).

The fact that the € terms do not influence irreducible connection part was seen in
previous section. In noting this point we advance analysis in the following.
Donaldson part
We already saw the transvers path-integral of this part in section2. We rep-
resent common factors from H,, and X integrations as A'. Then we can write Don-

aldson part as,

Ndet(—4r){exp(v + 7u))p (3.39)
where
; . <'¢F Rt /\>
v = — rl —
47T2 ~ 2
» (- 2
gl (4?) (3.40)

and (O) ;, means vacuum expectation value of O with the action (3.11) of Donaldson-
Witten theory. 7 is a parameter.

Abelian Seiberg-Witten part

In this part. A, on fixed points are reducible connections. When we calculate
in the large scaling limit it is possible that we choose back ground fields A. in (3.13)
as U(1) connections. The vector bundle £ reduces to the sum of line bundle i.e.
E = 3 (".(See the Appendix A.) We set the direction of back ground gauge fields
to 15 i.e. Ay = A3, T5. Since we take ¢ as fundamental representation of SU(2). we

can write ¢ as

g™ & (/}% : (3.41)
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We can reduce line bundle 9,¢ to +¢ and ¢; = 0 because there is a symmetry defined

by As — — A5 and ¢, — ¢, 1in this part. So we can estumate the vacuum expectation

value of (3.38) around fixed points A. and ¢. by considering quadratic action of

C

quantum fields A.q and others. We expand A and ¢ as
A=A+ A, g=4q.+¢ (3.42)

where the each second term of right hand side 1s a quantum field and A.and ¢. is

chosen as
Ay = ApTs, ¢& = ( zf ). (3.43)
Next we decompose the action Sgep into two parts as we did in section 2 as
Sgep = Se + St (3.44)

where S, is the action which consists of the Caltan part of adjoint fields and the first

component of fundamental representation fields. The S, is written as

- e i o S il ory i dine, sg e 3.4 amd o
Oe = /([4"'92 { 1 A 77_(1{0—#1/% A ‘@ql & Sd;‘o-i%du'@-? + x57(0"A\s)™

s Sl w5 B Lo R gy
+§(d”"73)/\§ 5 *Z‘X'SL Vq10,q1 + §X§ 0T — 1(Pbg1)tba

E bl i 1
b o Bl H 3.
—itps Pog + Sql)\uga Yg1 + 54 710.75q1 } . (3.45)

where f)u = " — i+ A3 and spinor indices a and a are omitted. This action 5. is
surely the action of topological Abelian Seiberg-Witten theory [7][9]. This Caltan
part action is Witten tyvpe topological action as follows
Sl /1% 3 1 Y F+ I T H
De = a Tg ¢ [5\3 (( - 3uv i < _)—q] Uql) Ed 3l“/)
A , - e
—“—)(dﬂC)g)/\/; + (\ Gg1¥q1 — 'I:L‘(}l)\q] )] (31())

where we define the BRS-like SUSY as

A(S';:"x-'}ﬂ Hr l/\3u (§(;/\'3ul/ e [-[.311,1/- 5‘(: ? &= “73
Oohay, = — 0,08, b, s, =0, 0.0 =4,

6.6 = 0.
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| X X \ (e REE .

ooy = —Ug b0y = 4]
gt = —U,14 S = L(T . O
e e = #qlo Warte = 59 1a4¥3:

) - T o' r
é(‘ ¢ q la B i (f” (')'/DIL ([1 + ‘\ q ligks

2 2 ; | .
> o) s kL e (it 2 84
¢ ‘\ gle T a O 3 l’ gloe ~ Z‘O-(v o D,U L q1 —I— 9 O'“_ & /\311 ([1

D>

¢ & — /JO() e
gty = qu .

(S8 r}]
A 2 AT : 1 )
i R = I 17 Te = o Q A
60‘\,?11 == EL’ 1()3 L,D“l_,v,.qla(f =t {)q A )\3“. (311 )

Another terms in Sgcp have to be expanded around fixed points As. and ¢.. The

quadratic action of S; is obtained as

=8 3 1 l 5
SO /(/‘*.z'gﬂ—(p,,_,\w—Du,;xwmp;,\y_ DA, )t

4
1 S | SR . "
S _(DMAV+ £ DU14“'+)+(1;O'“ q1c s g(D“/‘L,_ T DU‘A ) qlcg‘ q2
e M et , 1 -
+ ‘fhc uu(h} o 5 ‘ZD fh\ e Z(Zp fI'z)TU‘ Ay Gie — Z(U”Awfhc)f(@ q‘Z)
1

—(D;6-)(D*64) + XK (DAY

[v|>—“

1 . L%
I g |(7“r'1,,z.+(11c R ;(Du¢+)(pﬁ é—)

LV 2 L [ * s ] Wl =
i3 \‘ (D;l \+) g ;(Du’]—k))‘ﬁ— 3 §(DN,U—)/\5;— -y —)\l— Yq20uvqie

ya

?

+ gXiVCIIc@w‘lﬁcﬁ - ‘i(zb*'l/;q2)¢’q2 a i'¢q2(7;p*l/§q2)
1
o+ qMM g2 + —?'520 g oe g (3.48)

Where D, = 9, — 143, and we put TE as T* = %(/ +175). \f'fg) is transformed with

matrices in the same way of the appendix B as

~(2) ; t A\IA A | l\ .q A 7t
Oy " Eln sl (12)( NEE £ i

i |
464 (5 D D*)_ + 6_ (5D, D" )64

Ao
/\ji \
Ao

+{n= N+ Xoi- Xoix ¥ L‘q-z) (T) b (3.49)
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Where we chose space elements of self-dual field \. 1.e. \q,. as substantial elements.

Matrix M elements are given as follows.

(A, row Ay column)

| : _ ; 1 s
“/_»l._»\ = __:I(D;L(Sl/p = DL/(S/I/) )+(/D“((’l,,— ‘- Du(g;x,') it E(IIT(A(TNb;u)U:/r(/l(‘

O
(A,_ row ¢y column)
1

My, = _‘é(Duéw 5 Dv(gwﬁ(lrc(f}u/ L :_1‘(([1[(“0-#61//)) D

oo —+

A

qy row A,y column)

5-;Luq1c(Du6u¢ e Du(guf)+ +

qg row ¢, column)

Pame w2 n ) S ” o
My, = -—)_@ZD +ng(/1«(l];c(7“' (3.50)

(@)Uuéur({lc

oo | —
| =

q.4

/

s

Where the index + means anti-selfdual about indices g and v. The elements of the

matrix 7} is obtained in the same process in appendix B. We write it as

(~De 0 =D 0 0 0 )

0 4D 0 4D 0 0

0 —3D; 0 HPD): —5q1.00i 0 vy

~iqlow 0 ¢l 0 0 P
K 0 %UOQIC 0 %UjQIc =7 @* 0 )
where D, is defined as d, — 1Az, and we defined (PD)f as
: 1 ]
(PD)f = (Dobi; — Scoitk Didji)- (3.52)

Only in this Abelian part. we must not forget the € terms. As we saw in section 3.
é’Du of n rows A columns should be replaced by D,.. and the components of n rows
i columns are replaced by order ¢ operators O(¢) as we find the example (3.26). We
introduce D, as D, shifted by € term like (3.25). Then we write down T}, which

defined as the 7, added shift terms from of. + ¢, in (3.19) as

~3D0s 0 —3Dje 0 O(c) O(e)
y ~2 Db y =alr.  Ole) O(e)

-ip, 0 ¥PD)E 0 0  —igi.on .
0 —3Dr 0 3(PD)f —jade O (3.53)

—%(1I<“50 0 _%(IIJ%’ 0 0 i
0 %O'U([L 0 %gquc —3 P~ 0
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Let us path-integrate out the transversal part. To carry out this Gaussian integration.

we decide the determinant of 75, as
Hell ) = dei T e PO, (3.51)

(See the reference [17].) When we denote the Ty T}, as

Gl e R SRl

pv nz Kq ©q
Rt PR St S ,
- O AT R ST S ) (3.55)

Pp o PRl
s A i il i PO

elements of 17T}, 1s obtained as follows.

(A “+ row A,y column)
T*T:f = ( F3_;w) T iQIcJHUUQIc 1 O(él)
()\ L row A,_ column)
e =
(A= row A,y column)
PHE i B
(A, _ row A,_ column)

*x —— 1 * — 1
i3 T;l.l/ s (_ID 26!“’ o FB/.W) + Zq;rcglto-vqlc -+ 0(6,)
(z;,p row A,y column)
x4+ = _
I"T1;;7 = Ofe)

(Wse ror A, - ('0/(1177:11,)

Ty I
"1, = <3;Uw> el Zpauqu + Ofe, €)
(g2 Tow A, 4 col umn)
zi ‘s |
I'T) = (=706 D" + 5 Paiow + Ofe. )
(¢4 TOw A, column)

L = G(e)

(A4 row vz column)

T"TE = O(e)

g

panier

R T L T

SRS

T T

o AU 2 37

2,50 s V2

s hin 4

S




(A, row vz column)

iy ek & o S t . -
T = _IDI((II:-”;JzI)+-E(IIT«”;LZZ) e €]

(1259 TOW Vg column)

| —

P e g b Sk 2 3
Ty = ~(Guwae) (@ld™)t + P + 0(")

0

(g2 TOW V5 column)
71*]“ — O(fz)

99

(A TOW Yyy column)

sk e l o {4 K
I ]/ZI = —:ipp(qlca_pﬁt)+ i 3U;LCI1C @ =+ 0(6 6/)

(A, TOW 9 column)
o = O

(thge row e column)
P = W)

(hga row tgs column)

1

~*2
T*qu T 1(5u-VQIc>+((llc5uu)++@ +O(€2)- (3.56)

When we integrate ¢ and ¢ we have to pay attention to the shift from ¢ terms. We
introduce D, which include D, and shifts from ¢ terms , like (3.24). After these
transverse fields path-integration of (3.48) we can write this part with matrices M
and T}, as.

: 5 . 1 1 . . R
Z N (/(—‘f(A\[)“1/“(]61(]’,6)(/(‘f(;D:(ij’*)(1(3.#(;D;,fpﬁ")(c‘xp( 04 Ti)) . (3.57)

reductble A,

Where (O), means vacuum expectation value of O with Abelian Seiberg-Witten

theory whose action is composed by S. and Caltan part from of. 4+ nC, ie.
5ok / P h B hte)s (3.58)
Where we denote the Caltan part of 6 f. + n(. as (¢fc + née)e.

If we put ¢f. + n(. as an example (3.26). this Caltan part 1s

g N b e |
(Of () = 6'@5933;,,@3771“’ + €'na Az, m — ?z-eanngz,ﬁ,ﬂ
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1 l

Y T 3 N C ; 7? V V\
_;(m 21131 - 3(11(/]();;(4);;(“ — NP 03Ws
I, /6; \ yes ,/(;' T X s i ) -;:—(
= € 0.(03A3,m") + €5 (NG O35 — NP1 939 ). (3.59)

This is the same case of Eqs.(3.35)(3.36). We find ZA‘/{(‘X])({' + 7u)) , 1s independent
2

from k. - Ia {3.57), ok is sum with weight .V(/(ﬁl‘(;\/)"1/2(1(3/(Ttﬁ) {(l@f(%p;l.e/]:)fl)‘“

i Let us consider the case that there is only one solution of A, and ¢. there
is not sum 3", and we find (exp(? + 7)), is independent from k. Therefore only
de{(T,f)(let(%D;CDf*)(let(%DMDQ“) term in (3.57) depend on k. As we saw in section

3. the coefficients of k have to be zero. Then we get the non-trivial result,
(exp(d + 1)), = 0. (3.60)

But if there are several solutions of A, and ¢, it is unclear whether Eq.(3.60) is
correct or not.
non-Abelian Seiberg-Witten part

Finally we denote non-Abelian part as
N{exp(? + 7)), 4 (3.61)

Where the connections of fixed point are restricted within irreducible connections.

(3.61) is a pure non-Abelian Seiberg-Witten invariants.

Now the vacuum expectation value is separately written as

(exp(? + Tu)) = Ndet(—dr){exp(t+ 1)), + Nexp(v + 7)), 4 (3.62)
: s | I ol
+f.lﬁiflil( Z Ndet(M)™V2det( [}6)(,/cf(3DZED§"*)(/(:f(;DwDé”Mexp( 04 T))

7’g~a’,u.c[bleA,,4
As we saw in section 3 that this vacuum expectation value is invariant under changing
the ratio of ¢ and ¢. so we found that the Abelian part vanishes without (O)p, =

(O) |y in Eq.(3.60). From this fact, we find following formulas.

(exp(v + 7)) =  Ndet(—4r){exp(t + 7)) + N{exp(v + 7)), 4 (3.63)
N 1 f L ot
o li%iu;,,le,‘ W(l(ﬁf(ﬂﬁ) det(EDm’Df‘) (exp(v + Tl/))A} -
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From Eq.(3.37). identities are obtained as

(\ n » | l ’ 1 n \ )
T 111111 Z, po ” TR ENTE —————det(1}) (/(i‘I(EPu,Df )| {exp(d + 7U)), =0 (3:84}
reducible s u k=0
where n = 1.....dim(kerdy). These formulas are non-trivial. These identities of U(1)

topological invariants are obtained from SU(2) Topological QCD. Note that vacuum
expectation value of ¢ was changed as (3.28), but detail character of the shift terms
did not need to get above formulas. We comment on the £q.(3.60) little more. This
formula may imply that Abelian Seiberg-Witten invariants vanish in general. Indeed
it is possible to apply our methods for massive topological QCD with no obstacle.
But there are some problems to identify the Abelian part and usual Seiberg-Witten
invariants, for example Eq.(3.28) and there are problems to extend to the case which

has plural monopole solutions. This subjects are discussed in [21].

3.5 Summary

We have studied massless topological QCD in detail and found new relations (3.63)
and (3.64). One of the results of excluding mass terms is that our theory does not
have spontaneous gauge symmetry breaking phase in usual meaning. Hence, we could
not distinguish between reducible and irreducible connections without no modifica-
tion. We gazed det(D*D,) = 0 when connections are reducible. In other words gauge
generator act not effectively and this fact cause moduli space singularities. [nfinites-
imal shift terms are introduced to the Lagrangian to account zero-eigenvalue states
of D*D,. For this terms we could contain the Abelian part and treat separately
reducible and irreducible connections. That determinant are obtained from ¢ and o
integral. Fermionic integral of 5. which is super partner of 6. \. Y etc. cause the
determinant of 7. This determinant offset det(D*D,) = 0 . Infinitesimal shift terms
is added to the Lagrangian to shift the both zero-determinants. We could change
the ratio of infinitesimal shift terms without changing vacuum expectation value. As
a result of this. we got formulas (3.63) and (3.64) (and especially case Eq.(3.60)).
These are non-trivial relations between topological invariants. The identities of U(1)

topological invariants are obtained from BRS symmetry of Topological QCD like
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Ward-Takahashi identity.

When we interpret Topological Field Theory as a gange fixing theory like [19].
the zero-modes of D, is interpreted as Gribov zero-modes. As we saw in section 4 and
we will see in the next chapter. Gribov zero-modes break BRS symmetry often and
topological symmetry breaking occur. So the external fields in the section 4 avoid
topological symmetry breaking from Gribov zero-modes.

The next subjects we have to investigate are to calculate actually in some
models and to ascertain these formulas. We studied only SU(2) gauge theories in
the present paper, so we want to extend it more general case. To carry it out in our
formalism, we have to construct the tool that embed the equations to classify the
reducible connections in equations of motion from some topological action. This is
one of our future problems.

The relation between the (exp(v + 7)), and usual Seiberg-Witten invariants have
to be studied more carefully. (exp(® + 7)), is topological invariants but have some
difference from usual Seiberg-Witten invariants. It is important problem to make the

difference clear.

Appendix.A  Reducible connection

[n this appendix. we summarize some basic of reducible connections for physicists who
is unfamiliar with this words. For the convenience. we treat the only case of SU(2)
cauge eroup. We consider a connection on a point p on a back ground manifold A/.
A holonomy group is defined as subgroup of SU(2) which transform the connection as
parallel trnsformations around any loop with the start point p. Therefore. holonomy
groups are understood as groups which is needed actually to introduce each connec-
tion. We put H as the holonomy group. We can define the reducible connection with
the holonomy group which is classified in following two cases.

(LR L)

(2) H is conjugate to U(1) .

In the first case connections are flat and this case is realized when the Chern
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number is zero. In our theorv. case (1) is ignored. When connections do not satisfv
above each conditions then we call them irreducible connections. and centralizer of
H is {£1}.

We can understand the relation. which is used many times in this chapter.
between reducibility and zero-modes of d 4 : Adn @ Ay — adn @ A, as follows. If d4
has a zero-mode &,. we obtain an one parameter group {exp(tég) |t € R d4¢0q = 0}

whose elements transform the connection identically because

g 'dg+ g " Ag = tdade = 0. (3.65)

This means that centralizer of H is not {41} and this connection is reducible. Op-
positely if a connection is reducible, then there is an one parameter group whose

elements satisfy

gt dg+ g7 4g =0 (3.66)
and g # +1. We obtain
PP e (3.67)
Al = | = 3.6

after differentiate (3.60) by the parameter t. Therefore we understand % Is a zero

mode of d 4.
Next we will see the process of reducible connection defined as

Ay

3.68
0 A2 ot

A=

where A; is a connection on a complex line bundle L and Aj is a its complex conju-

sate. We can put the orthogonal basis of 2-dimensional complex vector bundle,

1 o
— . 3.69)
q . (
as
€1 = 0 " €9 = ¢ . (370)
0 42
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We introduce complex line bundle L and L" with a parallel trnsformation operator P,
where [ is represented as some loop as
L ={cP(e))|c € C} (3.71)
/ ~ o e
L' = {cPiey)|c € C}. (3.72)
In our theory. reducible connections means U(1) connections and we can take P, as
diagonal matrices. So we find that the definitions of L and L’ are unrelated of loop L.

We could established L and L' in this way. Therefore connection A can be represented

as
A= AL & Ay (3.73)

where A; and Ay are connections of L and L’ respectively. Since A have to be valued

in u(l) now, A is pure imaginary i.e. Ay = A7} = —Ap. We obtain (3.61) and
dAp 0 :
Fy= RS (3.74)

In this chapter, we used these results in section 4.

Appendix.B  Gaussian Integral

In the section 4, we integrate fermionic fields in the Abelian Seiberg-Witten part. The
methods of integration used there are studied in reference [11][17]. It is possible to
do this integration in not only Abelian case but also other case. For the non-Abelian
parts. we can do it more general. i.e. we put classical back ground fields as A2 T,
and ¢. in generally and expand Sgep to second order of quantum fields. We write

down the result of fermionic part as follows.

/\Ob
o RS Ajb
(Maxoia®its) (T} | 2
s
and 1" is concretely
— 11Ty DoTy) - —tTv(T,D;T}) 0 0
_er(]jaDzTh) ]WI(IL(PD)Z:T/)) [([I(_TOITQ —qu{a-()I]z
~T;o0(q!)’ ~Ty5,(q!)" 0 Y
oolhqe o;15q. —1 J) 0
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Where we denote (Dyé;; — %((M. Dié;1) as (1)[))::-. We chose space elements of self
dual field \ as substantial elements. When we take account of ¢ shift terms. then
the first row of T' change in order ¢. We call this shifted 7" as T.. For example. we

obtained T, of the case concretely as

—iTr(T,(Dg — €mo)Ty) —iTr(Ty(D; — €m;)Ty) —eng!T, —eng' T!

et o5 T""(]L.(PD)?;H) iqtoo T, —iqlooT!
—To0(ql)’ ~Tios(ql)* 0 P
o01bqe 0;1bqe <L) 0

T is not a map from a space into itself. So we have to pay attention to define

its determinant. We put adjoint operator of T" as 7™, and define det(7") as
det(T) = det(T*T)M2. (3.75)

(See the references [11] [17].) Now we can treat (1™7") with not space indices ¢ but

space-time indices . We name the elements of (7*7") by

/\b
( AZ &6 T'tz) (T*T) ’;’6
Lq
*ech  xc Tk C
) TTHZ i ]111“‘? B
] T = T*T(ju T*Téq ]*Téq (316)
T T

The elements of (T*7T') is obtained as follows.

(A, row AP column)

- ~ l'w /1 Ve = e alle bl n T
R e R \Ty) + ¢ Ty Teo,0,q. + 1 T-Ty0,0,q.

1
22 v

ey e T |
(v; row A, column)

" bt e b A : Ls

& Téf = 5(fa,(f,,pqc)+(2fr T,DTy) + 1 Po,Tvq.
( _,3 row A\’ column)

mx b ]k 8l A 0 ? r —

PLp = (oDl DY i PTa Ll

(AS, row g column)

T*TC. = i(Tr T.DPE N5, 00" ~igTo,

wq

(¢ row 1z column)
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'/1*’[‘/( = (71.'1.0-;/1/(/:‘)—}—((/jo—“//’]‘u)*— + M‘Z
(¥, row vy column) 4
V]‘*’]” q = (er)t(j'/ll/(qLT),)+(([(f0-/”/]7(1[)+ ‘

G e SR b
(A}, row v, column)

T*Tliq = —i(Ir '121)”7}.)((125/);LTJ)+ “~ ”j<(/<¢)17?é‘/lv P r

(¢7 row v, column)

S RO S

/il S e L. S g (e

qq

sow i, W - 1
(¢, row ¥, column) -

P 8 (o i Y 0y e, (3.77) 1

When we compares this to the matrices of the section 4, we understand that differences .

are in only covariant derivative D, and D,. Note that matrix obtained from bosonic &

part is almost same as 17T




Chapter 4

Topological Symmetry Breaking
on Einstein Manifolds

4.1 Introduction

In this chapter we use the relation between stretch of moduli space and singularities
which are caused by Gribov zero mode. As it was mensioned in chapter 1, when
dimension of moduli space is non-zero Fadeev-Popov determinant is zero. We use
this singularities for Topological symmetry breaking.

There are few reports in which topological symmetry realize in our world [47].
Hence, the symmetry should be broken in order to have some connection with our
world [25] [26] . In ref.[26], Zhao and Lee add a infinitesimal breaking term to a
Lagrangian. They found. that if gauge conditions are well defined and there is no
Gribov zero mode then topological symmetry is hold in the limit of zero breaking

term. but when there is a zero mode. BRS svimmetry. i.e. topological symmetry. is

broken. (Fujikawa conjectured "BRS-symmetry could be broken as a consequence of

.

the Gribov ambiguity™[27].) But the theory has such problems that physical meaning
1s lost after BRS symmetry breaking and divergence appear from Gribov zero modes.
We construct a Witten type topological gravitational theory of dimension n > 3 that
has breaking phase with the method of Zhao and Lee. Topological gravitational the-
ory we treat 1s fixed by R+ a = 0 for the conformal symmetry. In the Mathai-Quillen
formalism. this fixing condition correspond to the case of the section s = R + a.

[f we change the gauge condition as a — 0. then the theory become ill-defined by
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Gribov zero modes on some manifolds. Gribov zero modes appear when Fadeev-
Popov matrix has zero eigen values. In our theory. this zero eigenvalue equations are
Einstein equations. Hence. topological svmmetry 1s broken on only Einstein man-
ifolds. Strictly speaking. solutions of the Einstein equations exist. then topological
symmetry is broken and smaller symmetry. diffeomorphism-invariance. are left in this
theory. Further. we solve above problems. We recover the physical meaning to define
2nd BRS operator that is constructed by the remaining symmetry. diffeomorphism-
invariance. And one method of regularization to avoid divergence from zero modes
is introduced in a general case. By using this regularization for gravitational theory,
we get semiclassical Einstein gravitational theory in some case.

On the physical point of view. our purposes are to treat Einstein manifolds and to
construct quantum gravity of which classical limit become Einstein gravity. When
cosmological constant is zero, then scalar curvature R is zero on Einstein manifolds.
If a gauge condition is R = 0, Gribov zero modes might appear on some manifolds
and theory would be ill-defined in former theory [28] [29]. In our theory, we are able
to make the theory well-defined and having broken phase of topological symmetry at
R = 0. And this broken phase is interpreted as semi-classical gravity in a sense.
The symmetry breaking conditions are connected to the Yamabe conjecture. We can

easily find topological restriction to scalar curvature changing by conformal mode.

This chapter is organized as follows. We review Zhao-Lee symmetry breaking
theory[26] in a general case. in section 2. The core of this theory is to use singularity
of Gribov zero modes. As we mention in chapter 2. this Gribov zero relate to Moduli
space dimension. Usually we introduce observable with ghost number which is equal
to the number of zero modes. but they do not do so. To avoid the zero modes. they
added an infinitesimal breaking term to a Lagrangian. Even though the breaking
term is infinitesimal. it influence physical amplitude. In section 3. we realize it in
topological gravity. As same as some other Witten type topological field theories[31]
. topological gravity [23][28][29] is constructed by BRS formalism . We fix the con-
formal symmetry by R 4+ a = 0 . where R is scalar curvature and a is cosmological

constant. Then if the Einstein equations and R = a = 0 are simultaneously satisfied.
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topological symmetry is broken. These conditions connect to the Yamabe conjecture
[32]. Topological symmetry breaking means BRS svmmetry breaking i.e. physical
structure lose its meaning. then. In section 1 . we define 2nd BRS transformation.
So we redefine physical states. then physical states recover with 2nd BRS operator
after topological symmetry breaking. In section 5. one method of reguralization for
the zero modes is given in the general case including our gravitational case. In sec-
tion 6. we discuss about mathematical meaning. The topological symmetry breaking
conditions give some topological information to scalar curvature, which connect with
the Yamabe conjecture here. This information is due to the fact that absence of
Gribov zero modes become a sufficient condition for functional subspace be a infinite

dimensional manifold. In last section. we mention some conclusions. difficulties and

prospects.

4.2 General formalism

Zhao, Lee showed that topological symmetry can be broken by singularity of Gribov
zero mode [26]. We review it and extend further to a general case in this section.
Let ¢;(x) represent all fields which include unphysical fields like ghost fields. A total
lagrangian L is represented by a classical Lagrangian £ , BRS operator &, and gauge

fermions W, as
BEE 6, ; (1.1)

W is constructed with antighosts ¢ . N-L fields b;. and gauge fixing functions s;.
Namely our gauge conditions are s; = 0. In the words of chapter 2. s; is a section. In
general, it is possible to write U = i¢'(ab; + s;). where a is a gauge parameter. BRS
transformation for ¢ and b; is defined by 361- — 5’/)1‘ == for sz- = 6,¢; where 4, 1s a

generator of gauge transformation which is used in chapter 2. Then we have

: e &
L =Ly+ b (ab; +s;) +1¢(60;,—)si. (4.2)
' (gOJ'
We chose Landau gauge. a = 0. for simplicity. We demand the total La-

grangian £ has some BRS symmetry . And we assume functional integral major
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Doy and a physical observable O is invariant under BRS transformation. If there are
Gribov zero modes. naive gauge fixing is not correct. so we need some regularization
to avoid it. All gauge conditions s; do not have to include Gribov zero modes for
symmetry breaking. but for simple notation we put regularization terms ieb' f; for

each s; into the Lagrangian .

Lo=LAuebfi =L+ b (s;i+¢ef;)+ I.EI(((’OJ'E—)S,'. (4.3)
&

and demand that ¢¢b' f; is not invariant under BRS transformation. The vacuum

| expectation value of any observable O is defined by

(O), = nn/Do;\ Oe~ [ d=°£ (4.4)

e—0

If there is no singularity, then z¢b' f; never influence,
(O e /Dqsk Oe~J "¢ (4.5)

In the following. I omit the index ¢ of (O), and lim._, for convention. Now we

estimate the vacuum expectation value of BRS exact functional SO as.
(60) = /Dqﬁk §0e~ Jds7Le — /Dqﬁk Ob(iebi fi)e~J =Pk, (4.6)

Since 60 1s BRS exact, we usually expect it vanishing in the limit as ¢ approaches
zero. But if there are Gribov zero modes. (60) # 0 is realized as follows. After b

mtegration in(4.5). we get

g . o \ ;7 (;C —b—‘-z
(60) = ~6//17@' Oe J £aticee, 55, 1)

(Mjéojfk)(é'sk Hen 1;15(-51\- + efi))
~ —c [ Do 055 T (b6, 1) (4.7)
" . (SO/'

6

6 ig 771 ”(SO
591+6f1I7;[ Sm =+ &fm ) J(1)" 5

Where we assume that the observable O does not contain b; fields. The second equality

in Eq.(1.7) was gotten by ¢ integration, and ¢; represent all fields which were not

46

Ay

vk




still integrated. Here. it turn out that when £+ = 0 and s; = 0 are simultaneously

satisfied then <h()> # 0 from -

oDy

Mi,/,, [1,, 6(s, + ¢/ ). It 1s easily understood by that

S(a* + ¢€) has strong divergence as the limit ¢ — 0 and derivative

Farpy; 80 up the
power of divergence. This is an essence of symmetry breaking. To see this apparently.
next we change some of ¢, to gauge functions s; + ¢ f;. and carry out their integral by

using 6(s, + €fr). We find

: $ |
00) =" /
(60) . 1:‘[5fk ffA{chf SJ;Cfl |
TT6i )35 )OS 425} |,y po (18)
o i @J J5¢] St t—
If b f; did not break BRS syvmmetry i.e. 50J > f =0 or DZ defined by Dl o ——S—f—(—f—)

had no zero mode, then <50> = 0 in the hmlt ¢ — 0 . But now b;f' breaks the BRS
symmetry , and we assume that there are some D'; zero modes at s; = 0 . Then
¢ and D';, cancel each other. We get some non-zero value (50) # 0 . This means
that BRS symmetry is broken. Note that the condition that D', have zero modes at
s; = 0 is equal to the A or M have non-zero dimension (see (2.21) in chapter 2).

For example.

S; < 6f1' |d>]:¢5+;&d>§: 0 S |¢]'=¢j: 0 ] =1 »'n (4.9)
i 6<Sl) :
D' |oe= 5g. 16— 0 j=1~n (1.10)

for only one ¢°. Where n is a number of conditions s; and index =7 is fixed. In this

1
> when

~ A ~ (%. and D"J'E—l ~ AQ° ~ €
D(fD’]6 1) is order e~ ! . After

case. as we will see in section 3. []; OJ~9

fi(¢?) # 0. Then the most divergent term of z=— + ALl

all we get the order of the ($0) as

A €
$0) ~ — = ] 4.11)
< > A@Cz (

We have seen some BRS symmetry is broken by Gribov zero modes in a general case

(see for example ref.[27]). If we use this way for Witten type topological field theories
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[23][31]. then topological symmetry breaking mayv be realized.

There are some problems of this method. First. after BRS svinmetry was
broken. physical states lost their meaning. To solve this. we prepare 2nd-BRS operator
for topological gravity in section 4. Second problem is whether partition function Z

is finite or not. At first sight it will be divergent. But we will see that it isn’t true.

AL /D@-e“fd‘t%f

mleals e g nl Be TR 5
= /D¢k6 fd‘ ‘Cd( j'Dpf{\Z)i- | - H S(ﬁjé—qs-Fl) (412)
: JE [ 7]

~ . ; 0T P 9 _1_ ~ 20 e » .
Since D';. ~ [[;00;s—F; ~ €z , they cancel each other. So, the partition function

0Py

keep finite. Third, as we see in (4.9), amplitude of some observable is divergent. This
fact demand the theory to be regularized. We will give one method of regularization

In section 5.

4.3 Case of the Witten type topological gravity

We show here the theory of the previous section will be realized in the Witten type
topological gravity [33][23]. We use Myers theory [29] that treat spin connection and
vierbein as independent fields. Without this property. this theory is almost same
as Myers-Periwal theory [28]. The quantum fields are considered on D-dim compact
manifolds. In our theorv. dimension of the manifold is not essential as far as dimension
D > 3. but 4-dim case is quoted often for a simple example.

In these theories. there are BRS operator S and non nilpotent BRS-like op-
erator & which is reduced local orthogonal-transformations and diffeomorphism from

S. The S is defined as

et - ST ;
bei = —(w" 4P b)ell + LCC;L.
Swly = L% —w w — P w® — w® P — (Léeg')ezr — Q%

&) a ikl a a N a
ol gl g e N PR e i G
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~ a s Aoa ~a N E e s A O T i
AbA\ L — L»-;\“ Al V/ch 3 = ;\“ \[ ([, = [ (—u‘\“ i @) /]1//1. 5o

H / C
Se¢ = gd ot ¥,
Sor = L.o",
U 32 a s a H a l MV a
‘51 I) P ——P (TP b + Q b — e ;’y\/J' ’) + ;(. [ [{/Ll’/ b.
SQ% = L%+ Q% P%— P00+ gﬁ“z\“ab.
Sr = y+ L.a— dpx.
Sy = Ly —épy — Lsz + dgx. (4.13)

Where L., L; denotes the Lie derivative for a fermionic vector field ¢* and for a
bosonic vector field ¢*. Also, dp,dg denote local orthogonal transformations by P
and Q). ¢" and Q% are second stage ghosts for ghosts ¢ and P% in the Batalin.
Fradkin and Vilkovisky formalism [34]. And 2 and y stand for all antighosts and N-L
fields.

Myers and Periwal induce =S —L.+6p and then é cohomology represent physical
states. After straight forward calculation, we get §? = Ly + é6g. Then, for any scalar

functional h up to a total derivative,
Sh='oh, (4.14)

We will show that this S symmetry is broken by the way of section 2. We fix
the GL transformation up to diffeomorphism and local orthogonal transtormations at

the same conditions as Myvers and Periwal [28][29]. in 4-dim case.

E+ea = 0 (4.15)
Wty = 0 (4.16)
Ve = Nyeia= 1 (4.17)

While we choose the constraints to fix the redundant diffeomorphism and orthogonal

transformations
a l a
V%, — ;Vl,t =4 { [ T2 1 (418)

where t,5 = 2(Wap + Wea )y t = tr{tss), Tap = %(Wab — Wy, ). These conditions are all

covariant. So diffeomorphism and local orthogonal transformations are still unfixed.
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[n ref.[29]. to fix these symmetries. thev imposed harmonic condition pteeel b= g

(1

vV /
and algebraic constraint (’f!u,,]“ = 0 where €% 1s some fixed back ground tetrad.
But now. we do not adopt these conditions and the reason will appear in the next

section. So. we assume these symmetries were fixed by some appropriate conditions.

Let us adapt this topological gravity to the way of section 2. On the Landau
gauge. we get delta functions after N-L fields integration. According to the previous
section, some symmetry breaking term should be added. We take it icer f(ef, 1, %%}
where [ is some functional of ef, and w, that satisfy Sf # 0 , and 7 is an N-L field
used to fix on condition (4.15). We are able to regard eq.(4.15) as a fixing condition
for conformal mode. Additional gauge fixing Lagrangian for eq.(4.15) can be written

with antighost p and its N-L fields 7 = 5/) as,

L, = Sep(R+ )
— bep(R + o)
= em(R+ ) —pg(e(R—{—a')) (4.19)

The formula (4.14) was used for second equality of (4.19). and total divergence
was 1gnored. Due to the additional symmetry breaking term, the delta function
changes from é(e(R + «)) to é(e(R + o+ €f)) . So, in this case, symmetry breaking
1s only connected to the condition B +a = 0 . We abbreviate another conditions
for redundant diffeomorphism and local orthogonal symmetry. like eq.(4.18). and GL
symmetry without conformal mode . like eq.(4.16) and (4.17) to “( G'L )". The total
Lagrangian is written as below by using appropriate gauge fermions ay(dif feo.) +

ro(ortho.) for fixing the diffeomorphism and local orthogonal transformations.
L. = La+Ly+eerf+ (g‘.’l'o(‘ GL )+ Sxi(dif feo.) + Say(ortho.)
= Lgut+er(R+a+ef)+ pg(c(R + a))
+dao( GL )+ Saq(dif feo.) + Sxa(ortho.) (4.20)

where 2g.2y and x5 are antighost fields and their tensor property is determined by

gauge functions ( G'L ),(dif feo.) and (ortho.). We get delta functions after N-L
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fields y integration
e(R+a+¢f) H M GL)YOduf feo)o(orth.) (4213

For simplicity. all delta functions from dao(GL) + Sxy(dif feo.) + Sag(ortho.) are
denoted by [To( GL )é(dif feo.)o(orth.). here. The number of these delta functions
1s the same number of components of ¢ and “"Z.b- because topological symmetry
permit to transform each components arbitrary. So. if ( G'L ).(dif feo.) and (orth.)

contain only ¢} and wzb , we can rewrite (4.21) as

S(e(R+a+ef) [[8( GL )&(dif feo.)d(orth.) (4.22)
=T I (e — eild — AetlN)§(wle — wle® — Awbe),
a,bic, v

Where 7 is Jacobian.

Se(R+a+ef) 8(GL,dif feo.,orth.)

j 0 O"ez 5BZ
— | be(R+a+tef) 6(GL,dif feo.,orth.)
Swab Swab

ez(c) , and wgc(c) are solution 1.e.

e(R+ (.\)’ 4 0] b bel) =2 0

C“— n W m=wy,
(GLvdefFeolorthoil L. e e ey =104 (4.23)
efi=eu W= w,

and Aei(c) Aw’©) are variation from inducing ¢f. Note that they are depend on ¢ .

As we saw 1n section 2. if the Jacobian J has zero modes. then BRS symmetry. i.e.

topological symmetry. is broken.

Let us analvze these broken conditions further. We analvze the situation that
each component of the first column of the Jacobian matrix vanishes.

de(R + a)

| afey = € 62"(1{ - (’\') 5 eRua i 0. (4_24})
662 Cu f €n
de(R + o 7 15
(6 :’b ) = —be C{ll(;’pl}](Dyfl\) ==} (;1,.2_{))
wi

Fq.(4.24) 1s Einstein equation with cosmological constant a. From eq.(4.23).

eq.(4.24) become

[{&}Llea(c) - O. (*1.26)
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So we conclude that only if R = a = 0 and eq.(4.25) are satisfied. the topo-
logical symmetry i1s broken. In Calabi-Yau manifolds in 6-dim the conditions are
satisfied. for example. But in many manifolds. they are not satisfied. This condition
connects to Yamabe conjecture. and 1t will be discussed in section 6.

The equations (4.25) mean torsion free conditions and these are not contra-
dictory to gauge conditions if we adopt (4.17).

When these conditions are satisfied, Jacobian is of order ¢z. Indeed e(R+¢f) can be

expanded around ei}(‘“) as follows.

= €(R P 6f)|€(‘3)+.ﬁe(c) , wle) 4+ Awle) (-127)
de oe 0“e(R
= cef+ C—PfA(:’a;(C) + € ,Pf, Aw%b(d + P( flef)Ae“‘(c)Aei(C)
) (f’fl‘ a 5103) . ((v({;’;‘ég 1)/ B

8%e(R + 6./',)A€a(c)Au7bc(c) el 6%e(R + ¢f )

a.Sapsbe e v apyab cd
det dw) oW Hws

szb(c)dwid(c) -+ O(f_\.eB).

To leading order in € we have |

8% eR . 52 R
= s —1 A ja(c) A b(e) ;& TV o en—1 A a(e) A, ,be(c)
€ = 56;11661;(6]() '_lfiu Aeu +5(’1;5z1}£‘7(€f) _le.“ _Auu
6% eR . g e
g ool T AW Awi) (4.28)
i e

" 1
)
i ' Iz I

We can estimate (4.24) as.

de(R+¢f)

(g o ’(;lz:i_+_A(l(i. “,1KI+A”,1(:) (12())
g
def 6% (R + €f) §%e(R + €f)
. : it Lz , bel(e » 2
= c—— + — Aedlel 4 bl oy T O(Ae™)
be? Sderdeh 4 det §whe 3
T gTe Mty o T 7
be( R+« 1 rial Se(R+¢ L - . . .
Now. we get Lb:l;f) ~ €2 .and similarly —i(;;igﬂ ~ ¢2. From the estimation described
“p I

above. it 1s concluded that Jacobian J is order ¢ when o is 0 and a solution of the
eq.(4.26). R = 0. exist without contradiction to gauge conditions. then topological
symmetry is broken. Note that the singularity from the Gribov zero modes. Jacobian
maftrix zero eigen values. 1s contribution from only é(e( R 4 ¢f)). Even if we did not

use Jacobian J to estimate the singularity, we could find that the symmetry breaking

at
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occur by only this delta function.

[n this section. we have studied only about vacuum condensation in topological
gravity by the method of section 2. We found that the topological symmetry breaking
was appeared in the process of conformal changing R — 0 if Ricei flat (4.26) is realized
on the background manifold. Of course. for this theory being well defined as physical
theory. some other BRS symmetry should be present. This is a subject of the next

section.

4.4 Two-BRS formalism

[n section 2. we saw topological symmetry was broken at £ = 0. However this means
that BRS quantization is ill-defined. To clear this problem, we introduce another BRS
transformation. L. operates as diffeomorphism to all fields except anti ghosts. Anti
ghost fields were transformed as scalar fields, regardless of those tensor property. As
a result of this, in our Lagrangian £ = £ + S + Sxq(dif feo.) + Say(ortho.) where
oW = L, + (%;1'0(GL). L. and 5 exact gauge fixing term S\I/gf are L. invariant up to
total divergence, because these terms are scalar, ref.[35][28][30]. So. if we can chose
Szq(dif feo.) + Sxy(ortho.) to be invariant under L. and redefine L, to be nilpotent,
then we adopt L. as new BRS operator and physical states can be redefined with it.

Now one defines appropriate anti ghosts » and Lagrange multipliers y . where
S TR T T R o [ (1.30)

The tensor properties of these x; and y; are determined by (dif feo.) and (ortho.).
One can require (dif feo.) 1s scalar under local orthogonal transformations but it
has no general covariant property, and (ortho.) is scalar under general coordinate
transformations. Under this choice. Sai(dif feo.) + Say(ortho.) is
Sa(dif feo.) + Say(ortho.)
= (L. + c%_);z*l(dif./"e().) + (0p + 8):,’172(()1‘#/2‘0.)
= yy(dif feo.) + (=)"a (L, + (%,)(dszfe().)
+ y2(ortho.) + (_)|.z:2|:1,2(6‘1) -+ 3)(07'1'/1.0.) (4.31)
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[f we want to regard L. ( or ép) as a new BRS operator. it is seen in (4.31)
that gauge fermions (dif feo.) ( or (ortho.)) should be ¢ cohomologyv. and L.a; = y;
(or épa; = y;). But ¢ cohomological gauge conditions are not known at least to us.

Only we know d¢, = 0 where ¢, was induced as ghost for ghost ¢, in (4.13). ref.[28].

So we adopt some functional of only ¢, for gauge conditions G~ (¢,) = 0. where

uy

tileder means G ~ is not general covariant. Note that §G~ = =G ~6é, = 0. and
v @] Ve

v el g 08

6pG 5, = 0 since GG has no local coordinate index. To fix the diffeomorphism. we

add to Lagrangian with anti ghost ¢ and Lagrange multiplier 6 = S¢t
O O I —UV Y —{V Y V05 3 —[LV L 4 ¢
Bed™ e el o WDl Gk elh ™ G o eiet (4.32)

Next step. we fix the local orthogonal symmetry. Myers-Periwal fixed it at (f’l il
where e is some back ground tetrad. This condition is not suitable for our purpose.
Because, under L., ¥ do not transform , so éf‘ ep), 18 not invariant. 1.e. L.eP® éf;eb]M 25

a

0, where P®is anti ghost. For this reason, another condition that include no back
ground field, should be induced, here. For example, we fix it at V ,w#,, = 0 [36]. The

cauge fixing terms.
Sab , Hal , b Bab/f | ¢ : o
SERY Nk = et PN 0 e g N gt g = e PG 0, Y e, (4.33)

where ¢* is a Lagrange multiplier, ¢*® = SP% is added to Lagrangian.
Everything is ready. for introducing new BRS symmetry. Let us define a new fermionic

Lie derivative L' for some BRS operator.
definition 1 (new BRS operator L") The new BRS operator is defined as follows.

e (4.34)

c

for all fields €y W, u:ﬁ’". L EERePE T,

Lie,, = te,+bu (4.35)
1B = 4by, —(LaYe, (4.36)

‘/07} Cpv- b/w-

hEi ¥
X

R

o i e

e g i A




1
Here L’ is nilpotent. From (4.34). £, . W and SeP™N wh,, are transformed
\ I /
as scalar by L. that 1s
/ dPa L (L + 8 + SePWY wh ) = 0. (4.37)
And by using (4.36).
SedGr o= Lied" Gz, (4.38) -
we get .
IR g E SRR Y R L R (4.39)

from nilpotency of L.. Our total action is rewritten with L, as

i

/ dPx (Lo + 60 + SeP™N ) + Lie e G (4.40)

and it is invariant under nilpotent operator L’ as we saw in (4.37) and (4.39). Now

it is possible to regard L/ as a new BRS operator, and £, + S + SePe* ity ista

new classical Lagrangian. In this form, t%, ¢, and others except ¢*¥ and 0" become

hvsical fields in addition to e* and w?®. as a result of chaneing the physical states
p o/ M yoi &) O p J

conditions from S|phys >= 0 to L.|phys >= 0.

Note that using ¢, to fix diffeomorphism disturbs rewriting ¢ functions with

Jacobian like the previous section. Because the number of é functions of e’;,wzb 1S

less than one of independent components of fields. But singularity of the é(eR) is not

changed. It is apparent that topological symmetry is broken.

The symmetry breaking condition is in fact the Einstein equation R,, = 0.

The solution of a classical Einstein equation exists and it contributes to the path

integral . hence the theory of broken topological symmetry is realized in the above.

In other words. non-topological phase is defined around classical gravity.

4.5 Regularization

In the previous section. we got the new BRS operator to define physical states again.

[t means that the vacuum expectation value of some BRS exact operator 1s zero.




vacuum expectation value, we redefine b; fields as
1
b,{ = €2 sz

m fi(¢°) # 0 case when

: 6Sk
o DUt e 28

581'

00;

oo 70 k#1,7=1~n

WoNn

always satisfv eq.(4.42). then we put ¢* and ¢° as

¢* € {¢°| D';(¢°) = 0} ¢7 € {¢° | D';(¢°) # 0}

term in the Lagrangian (4.3) as
,)i(.'w‘,' = ('f,‘) == 6'_%’/)”‘(.5‘,' + (_/‘,:).

Then the delta function i1s changed as

(ST
(]

8(s; + efi) — (€72 (s; + ¢efi)) = €26(si + €fi)

Due to eq.(4.45), delta functions are order 1 for ¢*. but for ¢

1

€2. In the count of the term []

m

have to be redefined as

~
(o
S

But our theory is still singular due to é(e(R 4+ ¢f)) in (1.21). So we have to remove

this divergence. In this section. we make the prescription to regularize this divergence,

First. we discuss reguralization in general formalism. Here. we use same sym-
bols as ones of section 2. There is strong divergence in &(s; + ¢f;) in eq.(4.7) as
¢ — 0 when D;(¢°) = 0. This delta function appeared as a result of b; integra-
tion. where b; is a Lagrange multiplier of the gauge function s;. So it is evident that

more stronger divergence will appear if an observable contains b; fields. To get finite

(4.41)

(4.42)

are satisfied for some ¢°. A fixed index “2” means that functional derivative of s; on

some ¢° vanish like eq.(4.42) in the following. ¢°. i.e. solutions of s; = 0, do not

(4.43)

In other words, ¢” is a kernel of D*;. By using this #';. we rewrite the gauge fixing

(4.44)

(4.45)

= ¢% they are order
A § 17 IS T R a = il 3 : i
5QJFE[,,,? as similar in eq.(4.7) all amplitude of

. t o] o
observables 1s order €2 whether there are zero modes or not. as it 1s. So. also ¢! fields

(4.46)




and the Fadeev Popov terms in the Lagrangian change as

Y e >
B o e o 8l (4.47)

As a result of these redefinition. order of ¢ O(s; + ¢f;) and [, (SO-/ﬁz_'%"” are found as

y Ji e o i
€26(s; +efi) ~ 1 By, " (4.48)
€2 for ¢
ix O 1 for ¢°
K 6 "'_:1 £t o 4.4’9
¢ @J 6¢J 3 6—% . fOI' sz. ( )
Before these redefinitions, if an observable contains b; fields, then singularity

stronger. Indeed from the same reason, in section 2, <50> was non zero. and yet

partition function was finite. It is easy to understand by a following formulation of a

delta function

> 1 8 (6lz— S(x
lim [ db b= =€) = |lim — b b,

e—0 e—0 21 Ox |22

(4.50)

Where existence of b induced a derivative and power of divergence went up. But now,
because of redefinition (4.41) and (4.46). when an observable contains b'; fields. i.e.

O = b;0" | then the vacuum expectation value of O is

/Oi>:/D¢k OiG% 9 6(5 +€f

dzP Lcl
e Al;[& H6¢] T el (4.51)

Where the power of divergence is unchanged for ¢¢ = ¢7 and the power of ¢ go up for
non zero mode o # ¢°. So that. contribution for amplitude is from only Gribov zero
modes o°. and other contribution from ¢° vanish. After all. the amplitude (4.51) is
sum over o° and it is order one because
(51 + ef)
0 (5 + ef?)

Hence. we have done the regularization for all observable in general case. Especially

~ ¢ 14+ less divergence. 4.52
9

there is remarkable property that if an observable contains Lagrange multipliers of s,

then contribution from ¢; path integration to the amplitude of this observable is only

from ¢*. Next we try this regularization in topological gravity case.

oo 3




We carry out this regularization in the gravitational theory in the same way

as the general case. The only things we have to do is to redefine p and 7 as follows.

~

1|
~

W=

r (4.53)

Then all amplitude is regularized. Note that. if an observable contains 7', its vacuum
expectation value is the sum of solution of R}, = 0. This fact is very interesting. In
the theory of section 4. we define observables as L' closed. If we change this definition

to L' closed and containing 7' fields,

i /DqﬁkT'efd‘”Dﬁf : partitionfunction (4.54)

L'O = 0 and O =7'0" : definition of observable. (4.55)

Then the theory is semiclassical, i.e.path integral contribution for vacuum expectation
value is from only solution of the Einstein equation. Note that our theory have
many constraints for fixing topological symmetry like eq.(4.16) and (4.17). So, after
symmetry breaking, these constraints are left as equations of motion. In this meaning,

sence of semiclassical gravity is different from usual case.

4.6 Mathematical interpretation

As we saw in section 3. our theory has broken phase on the condition R,, = 0. Let
us clarifv mathematical meanings of this.
For simplicity. we omit the symmetry breaking term eer f in this section. As is
mentioned in section 3. the Yamabe conjecture is concerned with our theory. We
are going to see this fact. as follows. In topological gravity. it is trivial that any
physical amplitude is invariant under changing o because gauge condition does not
affect physical amplitude. Indeed. a derivative of the partition function with respect
a is given by.
@ = : o [{i.l?DC ; e
—7Z = | Doy (b1ep)e) ©© = =0 (4.56)
da
To get the second equality, we use that ¢ exact vacuum expectation value vanishes as

same as S exact one. ref. ['28] [?0] This means that variation of scalar curvature 1s
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not restricted by topologv. Strictly speaking. our topological gravity may not classify
the topologv of manifolds perfectly. so we can only say that scalar curvature can be
varied without changing class which is classified by our topological theory. as far as
the theory is well defined. But our theory is broken at R,, = B = 0 as we saw In
section 3. From a mathematical viewpoint. gauge conditions restrict back ground
manifolds to submanifolds. We identify this manifolds as moduli space .M 1n chapter
2. This fact is mentioned several times in chapter 2 and section 2

Yamabe conjectured constant scalar curvature R exist on any compact Rieman
manifolds with arbitrary topology of dimension n > 3 [32]. But it has been corrected
by Aubin [39] , Schoen [40] and so on. Especially, Kazdan and Warner [41] gave the

following theorem that

Theorem 1 (Kazdan Warner theorem) Compact manifolds M of dimensionn >
3 can be divided into three classes,

(A) Any (C*)function on M is the scalar curvature of some (C)metric.

(B) A function on M is the scalar curvature of some metric if and only if it is either
identically zero or strictly negative somewhere. further more, any metric with vanish-
ing scalar curvature is Ricci-flat.

(C) A function on M is a scalar curvature if and only if it is strictly negative some-

where.

This theorem sayvs that existence of negative scalar curvature do not demand
anv topological condition. And there is a barrier at R = 0. This is consistent with
our theory. We are able to classify the type (C') manifolds from the type (A) and (B)
manifolds. in our theorv. Let us take R = —a < 0 first. and makes a to zero. On the
type (A)(B) manifolds. topological symmetry is broken . on the other hand. on the
type (C) it’s not broken. In other words. our theory may classify manifolds to type
(C') and other type. by calculating some vacuum expectation value of & exact terms
on R = 0. If it vanish. the back ground manifold is type(C). and if it’s not zero. then

the manifold is type (A)or(B).

Note that in Myers and Periwal [28] observables are topological on a # 0. On
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the other hand. theyv are topological-like but are non topological in a strict sense in
our theorv. On type (C'). they are independent of metric. but on type(A) or (B) they

are non topological.

4.7 Conclusion and discussion

We have constructed a topological-like gravitational theory. Its feature is that the
topological symmetry is broken when gauge condition chose R = 0 and the Einstein
equation Ry, = 0 has a solution on the back ground manifolds.

Now, the question flowing up naturally is how matter couples. For example,
one cl'la.ﬁge gauge condition to R + gmmer(\i’. efl‘) = 0. where gma“er 1s matter action
of background fields (LU = SU = 0). Then the condition of topological symmetry
breaking is the Einstein equation with matter,

66(R + SYmatter)

a
6eu

= e (R + Spatter) + e(R* — T2) =0 (4.57)

and the torsion equation .

66(}? + ‘5'772!1,1‘1‘67')

2 e & ,M 1% )/\\ 4[ Nv/,l. e ; =
Swwab = ~—be c[a.el eb](Dl/C,\) C ‘ba}_) =0 (4)8)
g
,where T = —%”i“é—‘ﬂ is a energy momentum tensor and S, = -——;,——556"1‘0“;‘" 1S a spin
i

density. To satisfy these (4.57) and (4.58), we have to change the gauge conditions

-

of the torsion free condition. eq.(4.15). and instead of eq.(4.11) R,, = 0 . we need

el AT 5
A jﬂ. = (4.59)
Since we have fixed R + AS',,M,,(,,,('\I/.e":) = (. then the following equation is
necessary for symmetry breaking.
& o R »
bma’”c«,- f— .F“ ea f— ’r( “). (160)

For example. Dirac field S, 4410, = W4#V W satisfy this condition. Then the

topological symmetry breaking occurs depending upon matter fields. We may con-

struct the theory that break topological symmetry by dynamics of matter fields.




This study has constructed topological-like field theory that has broken phase
when the solution of the Einstein equations exist. This svmmetry breaking is caused
by Gribov zero modes. in other words by zero eigen values of Jacobian matrix. that
appear as solutions of the Einstein equations. And we found that if one can take
cauge fermion cohomological of reduced BRS operator o, then we can induce new
BRS operator by the reduced symmetry. In our case. we got the L." as a new BRS
operator and only symmetry of diffeomorphism is left. To take away the divergence
from zero modes, we gave one method of regularization. Hence we could extend the
topological gravity which was fixed on R4+« = 0 (a > 0) for conformal symmetry to
the topological-like gravity on R = 0. It has nontrivial broken phase on some mani-
folds. and especially when we chose the theory as eq.(1.51) and (4.55) then the theory
describe semiclassical Einstein gravity. Of course, this theory dose not described the
real gravity perfectly, as it is. But the property that breaking topological symmetry
depend on back ground manifolds encourages us to apply our theory to other theo-
ries. For example, we will have to examine the same methods to Weyl gravity. In
our theory, only the conformal symmetry was needed to break the BRS symmetry.
So. we might carry out the same methods easily in the Weyl gravity without the
problem of the regularization for UV-divergence. We might construct quantum gravi-
tational theory that have phase of more real semiclassical Einstein gravity. While the
same phenomena will be realized in other theory as well. for example in topological
Yang-Mills theory. (Baulieu and Schaden have studied this problem with a different
method from ours [12].)

[n this formalism. the gauge condition directly reflect broken phase physics. There
could be some criticisms. First. the way of breaking has many ambiguities of selecting
breaking terms. Second. it is unnatural that we have to adopt 6 cohomological gauge
fermion for inducing the 2nd BRS operator. But it may be interpreted as follows.
If many BRS theory is found in real world, as we had seen in section 3. it's gauge
condition will be restricted as cohomology of reduced BRS. It implies that internal
space. i.e.gauge space. have some mechanism or kinematics. It may be that as a
result of it. gauge condition is non free from physics. Further. ghost fields become

physical fields after symmetry breaking. We have to adjust and interpretate these
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new phvsical fields to real world.




Chapter 5

Summary

Summary

We have studied singularities in Witten type TFT. In the field theoretical view point,
these singularities are understood by Gribov zero mode. But in the geometrical view
point, they are separated into two types. The first type is caused by fixed point
of gauge transformation. If gauge transformation is effective then the moduli space
are smooth. but if there are fixed points then singularities appear. The second type
singularities when the solution space (or moduli space) have non-zero dimension.
The origin of this singularities are not in geometry but in the manner of field theory.
The dimmension of fixed point locus (or moduli space) is equal to the number of
Gribov zero mode. Gribov zero modes may cause singularities. This singularities are
avoidable in general but we used them to break the topological symmetry. We could
clarifv the difference of two types of singularity by Mathai-Quillen formalism. It 1s
possible to adapt this knowledge to understand the singularities of any Witten type
TFT.

First type of singularities were used to investigate the topological invariants on
4-manifolds with Topological QCD. By giving perturbation we studied the behavior
of Topological QCD around the moduli space singularities. This moduli space singu-
larities occur when there are reducible connections. This made us possible to sepa-
rate Abelian Seiberg-Witten part from Topological QCD. Then the relation between
vacuum expectationvalue of Topological QCD , Donaldson invariants. non-Abelian

Seiberg-Witten invariants and Seiberg-Witten invariants were obtained. Furthermore

63




we got some identities of Abelian Seiberg-Witten invariants. These identities were ob-
tained from the behavior avound the singularities with the method of Ward-Takahashi
identities.

Next tvpe of singularities were used to break the topological symmetry. ks-
pecially we did it in Witten type topological gravity. Topological symetry breaking
is equivarent to BRS symmetry breaking in Witten type TEFT. Therefore we had to
introduce 2nd BRS operator to redefine physical states. These procedures were car-
ried out with the section R, which is understood as gauge fixing condition R = 0 for
conformal mode. Then we found that the necessary condition for topological sym-
metry breaking to occur is the existence of Einstein metric. Especially we got the
semiclassical gravitational theory after symmetry breaking.

As we found in this paper. nature of singularities in TFT is very useful. The
applications of the TFT have been left for future works. They are not only to study
the mathematical subject. Physical theory may be given by low energy limit of TF'T
after topological symmetry breaking. For example, there is a report that IF-theory
action is written as topological Matrix theory [47]. We expect that study of singular-

ities in TFT play more essential role in the future.
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