“§') HOKKAIDO UNIVERSITY
Y X7
Title Numerical Study of Nonlinear Energy Transfer From Large Generation Scale Down to Small Dissipation Scale Across
the Oceanic Internal Wave Spectrum
Author(s) Niwa, Yoshihiro
Citation 000O0o0.00@o)Oodas2900
Issue Date 1998-03-25
DOI 10.11501/3137007
Doc URL http://hdl.handle.net/2115/51469
Type theses (doctoral)
File Information 000000322197.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

e
&

ergy Transfe

I ¢

near K

-

=
O
>

&

of




Numerical Study of Nonlinear Energy Transfer
From Large Generation Scale
Down to Small Dissipation Scale

Across the Oceanic Internal Wave Spectrum

Thesis for a Doctorate

Yoshihiro Niwa

Division of Earth and Planetary Sciences, Graduate School of Science,

Hokkaido University

1998




Contents

Chaptér 1 General Introduction .. 00 s 0 b LB Ll s vnin 1

Relereeis’ ARMMETRETIEED S 0 S APl oy ey L Rl R D L v s iod s 5

Chapter 2 Direct Numerical Simulation of the Roll-off Range of

Internal Wave Shear Spectra inthe Ocean .......................... 7
PR o e, o e V% W SR A T TS A e S W S IR R A A 8
2l AR O, L I N e o PR a0 s LS 5 T A ST 5 A ) 9
212, Description o the e el MOl 00 5 e o SRR e T s 10
Deos OIS FULIRAE L 0 0 n i Ve 24 %840 4B 0l Eats e 52 A0 A S B SRS AR A 2 5.8 i
2.4. Discussion ant ‘conclinding tomarks ;oo 5 g st sbvis inbits srand s dad s 19
Rt O s e e A L L S R i 3 T A 24

Chapter 3 Nonlinear Processes of Energy Transfer From Traveling

Hurricanes to the Deep Ocean Internal Wave Field ................ 27
AR 5 TSI S R & ol e S R s Y S AL i A V54 28
OO ION oy 5 5 AR A A vt Vil A e e sl A s il 29
AN T e e TR RGO R LY. PREY Lo S W W RRL o1 10 L 31
3.3. Space-time scales of the generated internal waves ................. 34

BBl TRmPDIal BEAI0R 5w bt eh Nitn v wifn & S BN ¥ 550 W o B A B 34

352, SOl BBT0S o 0% s s sleiise & VAR A s S Y VS e A PR 39
3.4. Generation mechanism of the double-inertial frequency waves ..... e
Frycauminary and GISCHSSION. < i v vt TR Futnd o iR ha e B i s e AR A 47
BOLGIODERR) A achartbns S04 %0 Bt i wohiss v S0 Mk A Sl R G5 S . T A 7o 33

Chapter 4 Numerical Experiments of Nonlinear Energy Transfer

Within the Oceanic Internal Wave Spectrum ....................... 56
7t a6t QESEMUE DT R YO8 TP TS S 0 SN s U S R B s P




BTN CRIRIRLs o P Lrormadens & ails Bttty Bt AN Aes SR I N T e B DS T 63
4.4. Discussion and concluding remarks ..........ceeiiiiiiinneiinnn.. 68
BRI REaE . 3 it v o il s Bota o Blna e ST ol a T dhubit Sl e it ey, S0 12

Chapter S Response of the Deep Ocean Internal Wave Field to
Traveling Midlatitude Storms as Observed in Long Term

e NTCasSUreIEILS - o O b Herwad ks I e sy e baas 5 e 5 75
N s DN S NPRPICRELE -SRI P WICSE SRPRITS NRTEROT SRS JOR. JRRHERG ) 76
A AR T o e it b T o e R iR A At %8 5 B % $7
Bage Diat Boaroes gt Siaby IRl ciwd o e vas a3 wo b+ 50 5 b 4 s daked &0y Bt 78
33 inertigl-ourrent Tield d e Inixel TaVEE . s ol vara ba s S ha s w s 82

5.4. Relation between deep ocean internal wave field and mixed layer

RISl IR o o 5 vt idp st it S b Bl A A B 86
St Bpertral silusis ol B tailig oo wicomiinemimsm e AR 5605 5 L8820 5 86
5:4.2: Spectral-analysis g Oher COITeHE Jala o o0 va vies 305 65 5 aas® 2 5575 o b Fokp 92
D0 a0 CICUSEION v 2 0 2us 5% Rl B ol o R i S B i B 94
ST e TR SR SRR | NI Ty AR SO | I e R T 97
Chapter 6 General Conclusion ....................coiiiiiiiiinnnn. 99
RRCT RO o o o T et . e B o i i P RSt e R 25 106




Chapter 1

General Introduction




It 1s well known that small-scale turbulent mixing in the deep ocean
plays significant roles in the dynamics of the oceanic general circulation.
For example, on the basis of a simplified oceanic general circulation model,
Bryan [1987] has demonstrated that important aspects of calculated thermo-
haline circulation such as the magnitude of the meridional heat transport
are very sensitive to the assumed values of vertical eddy diffusivity. This
clearly indicates that exact parameterization of small-scale turbulent mixing
is essential for accurate modeling of the oceanic general circulation.

Various approaches have been made to investigate turbulent mixing pro-
cesses in the deep ocean including microstructure measurements [Gregg,
1989] and tracer release experiments [Ledwell et al., 1986]. Although
these observations certainly enable the precise estimation of the intensity of
the local turbulent mixing during the limited ship time, it is apparent that
this kind of approaches is not applicable to examine the global distribution
of turbulent mixing intensity including its time variability.

An approach more feasible to clarify the global distribution of turbulent
mixing is to make use of the dynamics of the oceanic internal gravity wave
field. Internal gravity waves are ubiquitous phenomena in the deep ocean
embedded between the planetary scale and the microscale, and are supposed
to provide an important link in energy cascade from large generation scale
down to small dissipation scale [Munk, 1981; Miiller et al., 1986]. The
energy supplied at large scales by atmospheric forcing or tide-topography
interaction is considered to be transferred across the internal wave spectrum
down to small dissipation scale through nonlinear wave-wave interactions
causing turbulent mixing in the deep ocean. Therefore, once the energy
transfer processes within the oceanic internal wave spectrum are clarified,
we can expect that parameterization of small-scale turbulent mixing processes

becomes possible in terms of the distribution of energy sources for large-scale
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internal waves such as atmospheric disturbances which are much more
easy to observe than the turbulent mixing itself.

One of the distinguished properties of the deep ocean internal wave
spectrum is that it is remarkably stable in both space and time [Wunsch and
Webb, 1979] which is empirically modeled as the Garrett-Munk (GM)
spectrum [Garrett and Munk,1972; Munk,1981]. In Chapter 2, we reproduce
the quasi-equilibrium internal wave field having the actually observed GM-
like spectrum by calculating the nonlinear interactions among randomly
phased linear internal waves, each amplitude of which is determined from
the GM model. It should be noted that our numerical experiments differ
from the previous ones [Shen and Holloway, 1982; Lin et al., 1995; Winters
and D'Asaro, 1997] in that the oceanic internal wave field ranging from
large generation scale to small dissipation scale is simultaneously simulated.
In particular, the vertical wavenumber spectrum thus obtained reproduces
the observed feature that it starts to roll off at a vertical wavenumber of
~0.1 cycles per meter (cpm), suggesting the internal wave energy that
comes from larger scales is actually removed through strongly nonlinear
processes. By examining the physical processes causing the roll-off of
internal wave spectrum, we propose a model for the dynamic balance between
a downscale energy flux and energy dissipation within the internal wave
spectrum 1n the deep ocean.

In Chapter 3, we examine the forcing mechanism of large-scale internal
waves. Three-dimensional numerical experiments are carried out to investi-
gate energy transfer from a traveling hurricane which is one of the major
sources for large-scale internal waves. It is demonstrated that a traveling
hurricane generates two distinctive kinds of internal waves, namely, near-

inertial waves and superinertial waves with frequencies of 2f and 3f which

are generated under nonlinear effects. Generation of near-inertial waves is




a primary oceanic response to a traveling hurricane investigated by many
researchers on the basis of linear theory [Geisler, 1970; Greatbatch, 1984;
Price, 1983]. Our special attention is then directed to the superinertial
waves with frequencies of 2f and 3f whose generation mechanism is examined
in detail through bispectral analysis.

In Chapter 4, we investigate energy transfer processes within the oceanic
internal wave spectrum by carrying out "Bump Experiment" in which the
quasi-equilibrium spectrum obtained in Chapter 2 is perturbed with energy
bump introduced indifferent parts of low-wavenumberlow-frequency portion
of the spectrum, and thereafter time evolution of the perturbed spectrum is
examined. It is found that energy of low-vertical mode double-inertial
frequency (w=2f) internal waves is transferred effectively across the internal
wave spectrum down to small dissipation scales, which indicates that these
superinertial waves generated by a traveling hurricane can be efficient
energy sources for turbulent mixing in the deep ocean.

Despite their significant roles in turbulent mixing, no observational ev-
idence has been obtained for the existence of low-vertical-mode double-
inertial frequency internal waves. In Chapter 5, we analyze current meter
data from long term moorings in the Northwest Pacific Basin together with
global sea surface wind data to find that double-inertial frequency internal
waves are indeed excited in the real ocean under strong atmospheric forcings.

In Chapter 6, we summarize results from the previous chapters and
propose one possible scenario for the energy transfer processes from large-
scale atmospheric forcing down to small-scale turbulent mixing in the deep

ocean. Finally, some remaining problems to be investigated in future are

briefly discussed.
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Chapter 2

Direct Numerical Simulation of the Roll-off Range of

Internal Wave Shear Spectra in the Ocean




Abstract

Oceanic internal gravity waves play an important role in the dynamics of

the ocean, providing a link in the overall energy cascade from large forcing
scales to small dissipation scales. Quantifying the cascade of energy available
for mixing processes in the ocean interior, for example, is essential to
accurate modeling of the oceanic general circulation.

In the present study, based on an extensive numerical model that resolves
most of the internal wave spectrum, the dynamics of the process by which
internal waves dissipate their energy in the deep ocean are investigated.
Putting all the calculated results together, we propose here a model for the
dynamic balance of the internal wave spectrum wherein a downscale energy
flux into the high-vertical-wavenumber near-inertial portion of the spectrum

is balanced by energy dissipation at critical layers formed by high-vertical-

wavenumber near-inertial flows.




2.1. Introduction

The sensitivity of the large-scale ocean circulation to subtle changes in
small-scale mixing is demonstrated in oceanic general circulation models.
The meridional circulation in a simple advection diffusive model of the
thermohaline circulation, for example, is reversed when a constant mixing
coefficient is replaced by one increasing with depth [Gargett, 1984]. The
main energy for mixing processes in the deep ocean is considered to be
originally supplied at large scales by atmospheric forcing [Kundu, 1993;
Rubenstein, 1994; Nilsson, 1995] and tide-topography interactions [Bell,
1975; Baines, 1982; Hibiya, 1986; Sjoberg and Stigebrandt, 1992] and
then transferred across the internal wave spectrum down to small dissipation
scales. A full understanding of these transfer and mixing processes is thus
essential to accurate modeling of the oceanic general circulation.

Observations of the internal wave spectrum in the deep ocean indicate
the remarkable fact that it has much the same shape wherever it is observed,
unless the observations are made close to a strong source of internal waves.
Onthe basis of linear theory which brings together the available observational
evidence, Garrett and Munk synthesized an empirical model of the complete
wavenumber-frequency spectrum of the deep ocean internal wave field
[Garrett and Munk, 1972, 1975; Munk, 1981] (hereafter referred to as the
GM model). Except for inertial and tidal waves, this model is believed to
reflect the spectral features of the internal wave climate in the deep ocean
and to possess a certain global validity [ Wunsch, 1976; Miiller et al., 1978;
Wunsch and Webb, 1979].

A fundamental role in shaping the universal deep ocean spectrum could
be attributed to weakly nonlinear wave-wave interactions (resonant interac-
tions) within the internal wave field which smooth out any spectral irregularity

by redistributing energy within the spectrum [McComas, 1977; McComas
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and Bretherton, 1977; McComas and Miiller,1981; Olbers, 1976; Pomphrey
et al., 1980]. At higher wavenumbers, however, the nonlinearity of the
governing equations of motion becomes stronger, violating the condition
for weak interactions. Actually, although the observed vertical wavenumber
spectrum of the vertical shear of horizontal velocity is nearly white at large
scales (which is characteristic of the GM spectral shape), it starts to roll off
at a cutoff vertical wavenumber (0.1 cycles per meter (cpm)) [Gargett et
al.,1981; Gregg et al., 1993] suggesting that the energy that comes from
larger scales 1s removed through strongly nonlinear processes (offresonant
interactions) such as wave breaking. At present, the detailed dynamics of
the process by which internal waves dissipate their energy in the deep
ocean remain unclarified.

In the present study, physical processes causing the roll-off of internal
wave shear spectra are investigated by means of direct numerical simulation
of the hydrodynamic equations of motion. Putting all the calculated results
together, we propose a model for the dynamic balance between a downscale
energy flux and energy dissipation within the internal wave spectrum in the

deep ocean.

2.2. Description of the numerical model

We assume that the internal wave field is restricted to a vertical two-
dimensional plane by requiring the variability to be independent of one
horizontal coordinate. The two-dimensional Navier-Stokes equations under
the Boussinesq approximation are replaced with a finite difference scheme
by applying the centered difference and leapfrog scheme. In particular, the
Arakawa Jacobian is used for an expression of the advective term [Arakawa,

1966]. The finite differenced equations are solved on a 1024 X 1024 grid
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with resolutions of 10 m and 1.25 m in the horizontal and vertical directions
respectively (Fig. 2.1), sufficient to resolve the interactions among widely
disparate scales of motion. The subgrid diffusive-dissipative processes are
parameterized with a Laplacian operator where eddy viscosity and diffusivity
coefficients are assumed to have the same values of 1 cm”®s™ in the horizontal
and 0.1 cm® s' in the vertical, which are the smallest possible values
needed to maintain the stability of calculations. Cyclic boundary conditions
are employed at the lateral sides, whereas flat perfectly reflecting bottom
and surface are assumed. The initial internal wave field is assumed to be
composed of a sum of randomly phased linear internal waves with horizontal
wavenumbers ranging from 0 cpm to 0.025 cpm and vertical wavenumbers
ranging from 3.91 x10* cpm to 0.2 cpm respectively, each amplitude of
which is determined from the GM model. Assuming the inertial frequency
f=7.27%107 s™ (inertial period Ti =24 hours) and the constant background
buoyancy frequency N =5.2x107 s™ (3 cycles per hour), the model is run
during 7 inertial periods from the start of calculation with a time step of 1.5
seconds (Fig. 2.2). Inorder to avoid numerical instability, the Euler-backward

scheme is applied every 20 time steps.

2.3. Results

With the start of nonlinear interactions among internal waves, the structure
of internal wave spectrum begins to be modified. Figure 2.3 shows the
time variation of the vertical wavenumber spectrum of the vertical shear of
horizontal current velocity normalized by the square of buoyancy frequency
(Froude spectrum). It should be noted that the spectrum is calculated from
data obtained from the top down to the bottom which are averaged hor-

izontally. After 5 inertial periods from the start of calculation, the spectrum
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Figure 2.1. Dimensions of the model ocean.
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Figure 2.2. Schematic diagram outlining the present numerical experiment.
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becomes quasi-stationary where the roll-off is seen to be reproduced at
vertical wavenumber 0.04 cpm which is somewhat lower than observed.
At the same time, the shear spectral value is seen to be increased in the
vertical wavenumber band of 0.01-0.04 cpm exceeding the GM level by up
to a factor of 2.5. Figure 2.4 shows the corresponding time variation of the
two-dimensional wavenumber spectrum which is presented in variance pre-
serving form with respect to horizontal wavenumber. We can see that the
excess shear spectral values in the vertical wavenumber band of 0.01-
0.04 cpm results mostly from the enhancement of higher-vertical-
wavenumber near-inertial (f<w<2f) current shear. This is presumably caused
by the resonant interaction termed parametric subharmonicinstability (here-
after referred to as P.S.I) which transfers energy from low-vertical-
wavenumber waves with frequencies over 2f to high-vertical-wavenumber
near-inertial (f<w<2f) waves [McComas, 1977; McComas and Bretherton,
1977; McComas and Miiller, 1981; Pomphrey et al., 1980].

In order to suppress the excess of spectral values above the GM level,
we next perform the numerical experiment by slightly modifying the initial
condition such that the near-inertial energy level in the vertical wavenumber
band of 0.01-0.04 cpm is assumed to be zero (Fig. 2.5). In this case, owing
to the continuous energy supply presumably by the P.S.I mechanism, near-
inertial shear level gradually increases and thus becomes close to the GM
level in the quasi-stationary state (Fig. 2.6). Of particular importance in
this experiment is the fact that the roll-off shifts to higher vertical wave-
numbers (0.06 cpm) in the quasi-stationary state indicating that the strength
of the high-vertical-wavenumber near-inertial current shear strongly controls
the roll-off wavenumber.

We also examine the spatial distributions of the inverse Richardson number

(Ri“1 = [/ ax)z - (av/ax)zl /N 2) in the model domain as a measure of the likeli-
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Variations of spectral density level are represented by different intensities

of shading where the darker shade indicates greater spectral density with

the range of each shading being 0.25 in the logarithm. In the unshaded

area, spectral density values are contoured with intervals of 0.5 in the
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hood of instability leading to internal wave breaking. Note that the inverse
Richardson numbers are evaluated at t=7Ti with the vertical velocity shear
estimated from the horizontal velocity difference at two levels vertically
separated by 25 m, 20 m, 15 m, 10 m, 5 m and 2.5 m, respectively. If all
the shear is resolved, the critical values for convective instability and shear
instability are Ri"' =1 and Ri" =4 respectively. Figures 2.7 and 2.8 show,
however, the inverse Richardson numbers are less than the critical values
(Ri' < 1) in almost the entire model domain up to well over the roll-off
wavenumbers for both the cases corresponding to Fig. 2.3 and Fig. 2.5,
indicating that the roll-off is not caused by shear instability or convective
instability [Munk, 1981]. Although no direct evidence is available, thus
obtained results are more consistent with the mechanism suggested by
Gregg et al. [1991, 1993] that the roll-off of shear spectrum is caused by
Doppler shifting and critical layer interactions associated with the higher-

vertical-modes near-inertial current shear.

2.4. Discussions and concluding remarks

There are some limitations with the numerical approach in the present
study. First, the present numerical experiment is confined to a two-
dimensional vertical plane in order to allow disparate scale wave interaction
which is crucial in the internal wave dynamics. This effectively compromises
the quantitative application of our results to the ocean. For example, the
two-dimensional model might lack interactions found in a three-dimensional
simulation because of the dynamical constrict imposed by the two-
dimensionality. Nevertheless, we believe some qualitative aspects of the
results summarized in the previous section are still relevant to oceanic

internal waves. Second, an equilibrium state cannot be achieved in the
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Figure 2.7. The areas where the inverse Richardson numbers become
more than the critical values (Ri* >1) are shaded in the model domain for
the case corresponding to Fig. 2.3. Note that the inverse Richardson numbers

are evaluated at t=7Ti with the vertical velocity shear estimated from the

horizontal velocity difference at two levels vertically separated by (a) 25

m, (b) 20m, (¢) 15m, (d) 10 m, (e) 5m and (f) 2.5 m, respectively.
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present numerical experiment because forcing is not applied to the internal
wave spectrum. From the fact that the GM spectrum is maintained even in
the regions weak in local energy sources, it is believed that energy is
continuously supplied to the local wave spectrum by internal waves prop-
agating from the source regions where they are generated by wind stress
fluctuations [Kundu, 1993; Nilsson, 1995; Rubenstein, 1994] and tide-
topography interactions [Bell, 1975; Baines, 1982; Hibiya, 1986; Sjoberg
and Stigebrandt, 1992].

Estimates of the mean free path from group velocity and nonlinear inter-
action rates indicate that this is mostly performed by low-vertical-mode
internal waves with frequencies over 2f because they can propagate signi-
ficant distances of the order of 1000 km within their relaxation time while
feeding energy to the local internal wave fields [D'Asaro, 1991]. Actually,
three-dimensionalnumerical experiment of the oceanic response to atraveling
hurricane [Niwa and Hibiya, 1997] clearly demonstrates that low-vertical-
mode internal waves with frequencies just over 2f are efficiently generated
through the nonlinear interactions between high-vertical-mode near-inertial
lee waves and thereafter propagate away from the hurricane track.

Under the P.S.I mechanism, as mentioned previously, the energy thus
supplied by the propagating waves is transferred to the higher-vertical-
wavenumbernear-inertial portion of the local internal wave spectrum. Putting
all these together, we propose here a model for the dynamic balance of the
internal wave spectrum such that with the increase (or decrease) of energy
supply to the local internal wave spectrum, higher-vertical-modes near-
inertial current shear is enhanced (or diminished) so that the roll-off shifts
tolower (or higher) vertical wavenumbers leadingto the increase (or decrease)
in the rate of energy dissipation at critical layers.

The forcing field to the local internal wave spectrum is, therefore, needed
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to clarify the distribution of available energy for mixing processes in the
world ocean. Along these lines, the global internal wave field radiating
from strong source regions is currently under active investigation based on

three-dimensional numerical models, the results of which will be reported

elsewhere.
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Chapter 3

Nonlinear Processes of Energy Transfer From

Traveling Hurricanes to the Deep Ocean

Internal Wave Field




Abstract

Generation of large-scale internal waves by a hurricane traveling over

the ocean with a uniform velocity is investigated by using three-dimensional
multilevel numerical model. It is found that two distinctive kinds of internal
waves are excited in the wake of the hurricane, namely, near-inertial waves
which can be explained based on the linear theory and superinertial waves
with frequencies 2f and 3f (f, is the inertial frequency at the latitude of the
hurricane track) which are generated through nonlinear effects. Our special
attention is directed to the superinertial waves with frequencies 2f and 3f,
because these internal waves are considered to be efficient energy sources
for small-scale mixing in the deep ocean. These superinertial waves pre-
dominantly have low-vertical-mode structures and satisfy the dispersion
relation for lee waves. In areas away from the hurricane track, in particular,
the double-inertial frequency waves become larger than the near-inertial
waves. The nonlinear resonant triads causing the generation of such superi-
nertial waves are examined by calculating the bispectrum, which clearly
shows that the lowest-vertical-mode double-inertial frequency wave is gen-

erated efficiently through the nonlinear interaction between the high-vertical-

mode near-inertial waves.




3.1. Introduction

Internal waves are ubiquitous phenomena in the deep ocean, with the
scales ranging from the planetary scales to the microscales. The most
important characteristic of the deep ocean internal wave field is that its
spectrum is remarkably stable in both space and time [Miiller et al., 1978;
Wunsch and Webb, 1979] which is empirically modeled as the Garrett and
Munk spectrum (hereafter referred to as the GM spectrum) [Garrett and
Munk, 1972, 1975; Munk, 1981]. Although the exact physical processes
establishing the GM spectrum have not been clarified yet, the existence of
universal level of the GM spectrum indicates that energy is continuously
supplied to the internal wave field by atmospheric forcing [Rubenstein,
1994; Nilsson, 1995] and tide-topography interactions [Sjoberg and Stige-
brandt, 1992].

Understanding the energy transfer processes to the internal wave field is
also crucial in larger oceanographic context. The energy supplied at large
generation scales is considered to be transferred across the GM spectrum to
small dissipation scales through nonlinear wave-wave interactions causing
diapycnal mixing in the deep ocean [Hibiya et al., 1996; McComas and
Miiller, 1981]. This small-scale diapycnal mixing is believed to affect the
oceanic general circulation strongly, as is actually demonstrated in oceanic
general circulation model results where strength of the circulation is very
sensitive to the magnitude of vertical eddy diffusivity [ Bryan, 1987]. There-
fore, accurate modeling of the oceanic general circulation requires adequate
parameterization of the diapycnal mixing in the deep ocean, which might
become possible through the investigation of physical processes of energy
transfer from large generation scales down to small dissipation scales.

As a first step toward the adequate parameterization of the diapycnal

mixing, we examine here the energy transfer processes to the deep ocean
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internal wave field from atmospheric disturbances traveling over the ocean

by using three-dimensional multilevel numerical model. As an atmospheric
disturbance, we consider a hurricane with an intense windstress field, which
is believed to be one of the major sources of large-scale internal waves.

Spectral characteristics of the wave fields obtained from this numerical
experiment show that two distinctive kinds of internal waves are generated
in the wake of the hurricane, namely, near-inertial waves with frequencies
close to f, (f,is the inertial frequency at the latitude of the hurricane track)
and superinertial waves with frequencies 2f,and 3f,. The generation of
near-inertial waves is first studied by Geisler [1970] on the basis of linear
theory. Geisler showed that if the speed of the hurricane greatly exceeds
eigenspeeds of the internal waves, near-inertial waves are excited in the
mixed layer after the passage of the hurricane. Gill [1984] discussed the
dispersion of near-inertial energy which is initially confined in the mixed
layer i terms of the low-vertical-mode near-inertial waves propagating
away from the forcing region. Most of the other previous works are mainly
concerned with the generation of near-inertial waves in response to a moving
hurricane [Price, 1983; Price et al., 1994; Greatbatch, 1983, 1984].

In this article, we focus on the generation of superinertial waves with
frequencies 2f and 3f. Price [1983] pointed out that the superinertial
waves were reproduced in his three-dimensional multilayer model, but he
did not discuss the generation mechanism of these waves in detail. The
main reason focusing on the generation of these superinertial waves is that
they are believed to supply energy to the local internal wave field which is
far away from the source region; the energy thus supplied is considered to
be transferred across the local internal wave spectrum down to small dis-
sipation scales inducing the diapycnal mixing in the deep ocean. These

issues are discussed more in detail in section 3.5.
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3.2. Numerical model

We assume a hurricane propagating over the model ocean as is schemat-
ically shown in Fig. 3.1. The model ocean consists of a simple box with
east-west and north-south dimensions of 9000 km and 5000 km, respectively,
and a uniform depth of 4000 m. The hurricane is assumed to have an
intense steady wind stress field and propagate eastward with a uniform
velocity from a center of the western boundary of the model ocean.

The steady wind stress field of the hurricane is the same as that used by
Price [1983] and is an axisymmetric wind stress field with a tangential
component Tqy and a radial component T,. The dependence of T, and T, on

the radial distance r from the center of the hurricane is assumed such that

r
=1 (= R

TO dex( R ) s
" il
= Tpa(1.2-02%) Rsr=6R (3.1)
=0 r> 6R

%= ~0.3r, (3.2)

where we set T . =2.5 N m”and R=40 km.

The governing equations are the three-dimensional Navier-Stokes equa-

tions on the $-plane under the hydrostatic, Boussinesq approximations given

by
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Figure 3.1. Schematic view of the numerical model used in this study.
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Here the coordinates (x,y,z) are defined positive eastward, northward and
upward, respectively, with the origin located at the top surface and the
center of the western boundary; V2, = 82/ a2+ 02/6)/2; ; is a reference density;
N represents a buoyancy frequency defined for the background density
stratification; p is a density perturbation from the background density strat-
ification; P is pressure; f,and P are Coriolis parameter and its derivative at
y=0; g is the acceleration due to gravity; A, and A, are coefficients of the
horizontal and vertical eddy viscosities: K, and K, are coefficients of the
horizontal and vertical eddy diffusivities; F and F, are (x, y) components
ofexternal wind forcing which is defined asa body force distributed uniformly

in a surface layer of thickness H such that;

(Fx,Fy)zilf—(‘[x(X—Ut,}’),TY(X—Ut,}’)) (38)

where T, and T, denote the wind stress defined by (3.1) and (3.2), and U
denotes the propagation speed of the hurricane. The typical speed of the
hurricane is statistically shown to range from approximately 5 m s’ to
10m s™ [Rubenstein, 1994]. Taking account of this, the responses of stratified
ocean for two extreme cases are examined in this study, namely, for the
case when the hurricane propagates with a speed of 5 m s and for the case
when the hurricane propagates with a speed of 10 ms™.

We assume a uniform vertical stratification with a buoyancy frequency
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N=5.0x10"s". Although it seems unrealistic to apply such a large density

stratification over the full ocean depth, the assumption of a uniform strat-
ification significantly simplifies the analysis to clarify the basic mechanism
for internal wave generation by a traveling hurricane, which is the primary
objective of this study. Actually, when a nonuniform density stratification
is employed, the procedure for calculating the bispectrum,which will be
discussed in section 3.4, becomes much more complicated.

The parameters f, and 3 are evaluated at 30°N so that f,= 7.0 X107 s " and
P=1.9%x10"" s m™. The surface layer thickness H is set to be 100 m. The
coefficients A;; and K, are both assumed to be 10°m*s™, and A and K_are
both assumed to be 10° m* s

The governing equations are solved numerically by using a finite difference
method. The model ocean is divided into 900 X500 horizontal grid points
(Ax=Ay=10"m) and 40 vertical grid points (Az=100 m). The sidewalls and
the ocean bottom are assumed to be rigid. At the top boundary a free
surface condition is used, though surface gravity waves are filtered out by
employing the semi-implicit scheme. A time step (At) is assumed to be
1200 s which is small enough to resolve the lowest-vertical-mode of internal
gravity waves. To suppress the computational mode, the Euler backward

scheme is applied every 30 time steps.

3.3. Space-time scales of the generated internal waves

3.3.1. Temporal scales

Figure 3.2 shows the timeseries of the eastward velocity (u) at various
locations for the case when the hurricane moves at U=5Sm s’. It should be
noted that the scale of the vertical axis for the velocity at z=0 m is different

from the others by a factor of 10. In the timeseries at z=0 m, we can see
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Figure 3.2. Timeseries of the eastward velocity u at x=3000 km and
various positions of y ranging from -1500 km to 1500 km for each depth
(z=0 m, -1000 m, -2000 m, -4000 m) when the hurricane travels at U=5ms"

Note that the scale of the vertical axis for u at z=0 m is different from the

others by a factor of 10.




that strong near-inertial currents with a period close to one day (inertial

period at the latitude of the hurricane track) are excited in the forcing
region (in the top layer for |y | <240 km (radius of the hurricane)) with
the maximum amplitude approaching about 1.0 m s after the passage of
the hurricane [Price, 1983; Price et al., 1994; Greatbatch, 1983, 1984].
Below the top layer, internal waves are seen to propagate horizontally and
vertically from the forcing region. Because of the B-effect, the internal
wave field becomes quite different on the north and south sides of the
hurricane track. In the areas away from the hurricane track, the lowest
vertical mode is dominant as is seen from the vertical structure of the
horizontal current velocity which becomes minimum at z=-2000 m, the
nodal point for the lowest vertical mode.

Inorder to examine nonlinear features of the internal wave field, timeseries
obtained from the numerical experiment with the nonlinear terms completely
omitted are shown in Fig. 3.3. Comparison between Fig. 3.2 and Fig. 3.3
clearly shows that the nonlinear terms play essential roles in creating super-
inertial waves (see the timeseries at z=-1000 m and -4000 m). In particular,
these superinertial waves are prominent north of the hurricane track because,
in contrast to the near-inertial waves which encounter critical latitude being
reflected back southward, the superinertial waves can propagate freely north-
ward.

To examine the temporal features of the internal wave field more in
detail, frequency spectra of horizontal kinetic energy are calculated at several
locations for the case of U=5 m s' (Fig. 3.4). Several distinct peaks are
found in these frequency spectra. Near-inertial peaks are found at we=f,
(inertial frequency at the latitude of the hurricane track) in the spectra south
of the hurricane track, and at w=f+py (local inertial frequency) in the

spectra northward of the hurricane track. Other spectral peaks are found at
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w==2f, and 3f and are not reproduced in the frequency spectra from the
linear numerical model (not shown here). In the areas away from the
hurricane track, in particular, the spectral values at w==2f become larger
than those of the near-inertial waves and the GM spectrum values at w=2f,,
which are marked by small circles in Fig. 3.4, suggesting that internal
waves with w=2f  can be an efficient energy sources for the deep ocean
internal wave field.

Figure 3.5 shows frequency spectra for the case when the hurricane
propagates at U=10 m s'. Comparison between the near-inertial spectral
value in the forcing region in Fig. 3.4 and that in Fig. 3.5 shows that the
magnitude of the near-inertial currents is smaller for the case of U=10m s
(the maximum amplitude is limited to at most 0.5 m s™) than for the case of
U=5m s”. This can be explained in terms of the ratio of the inertial period
21/t to the hurricane residence time L/U, where L is the diameter of the
hurricane. Compared to the case of U=10m s where this ratio is 1.8, the
ratio becomes 0.9 for the case of U=5 m s’ suggesting that near resonant
coupling occurs between the moving hurricane and the near-inertial waves.
The spectral peaks at w=2f and 3f, are also found in the case of U=10 ms”
, though the corresponding spectral values are smaller than those for the
case of U=5 m s”, indicating that nonlinear effects are weaker. We will

come back to discuss this point in section 3.4.

3.3.2. Spatial scales

The spatial features of internal waves generated by the hurricane are
examined by calculating two-dimensional horizontal wavenumber spectra
of horizontal kinetic energy. The spectra for the lowest six vertical modes
are shown in Fig. 3.6 for the case of U=5 m s and in Fig. 3.7 for the case

of U=10m s™. The spectra for much higher vertical modes are not shown

39




Horizontal Kinetic Energy(g cm?s-2)

Y=-1000km Y=-500km

Y=0km

Y=500km

Y=1000km

199
197
108
108
104
1He
102
104
154

I f f 1]

:

[

108
10°
108
105
10%
103
102
101
1Q°

.................

...........

........

108
107
108
105
104
103
102
(MR
100

.................

3

1

Frequency/fg

Figure 3.5. Asin Fig. 3.4 but for the case of U=10m s™.

Q=7

HOD0g~=2

H000P~=1




20 " 20 -
o ]
glo 7 glo =
(4] o
7 g
0 iy E

|
—
O

1

|
—
O

1
|
D
(@]

|
N
(@]

e

1

I
0
=

o
—
o
o
o

(&}
o
—
o

5 B 5)
k(x10-%cpm) k(x10-%cpm) k(x10-%cpm
lLAlLlLIllllkll‘ltlllllAL] | Bl e ] S e AL O] (T el R SRR S | SN I T "o ST W (8 I

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2. .3 4 5
Frequency/fo Frequency/fgq Frequency/fq
" Mode= 4 Mode= 5 Mode= 8
20 1 20 i 20 ' i
g10 {1 E10 { E10 3
?o °o oo
] I
=0 45 g ey ]
X O X O : o
-10 o 1 =10 | 1 =10 e
-20 i -20 4 =20
0 5 10 0 5 10 0 5 :
k(x10-%cpm) k(x10-%cpm k(x10-%cpm b
ST N Tl o) oy S ol i PO O e ) I ] S i S U ) ] iy L i Y e o e o STy e N B e S S U e
0 1 2 3 5 0 1 2 3 4 o 0 1 2 5! 4 5]
Frequency/f, Frequency/f, Frequency/fo

Figure 3.6. Two-dimensional horizontal wavenumber spectra of horizontal
kinetic energy for the lowest six vertical modes in the case of U=5 m s.
Spectral values are contoured with a interval of 1.0 in the logarithm. Areas
where spectral values are greater than 4% of the maximum are shaded.
Superposed on each spectrum is the dispersion curve of the lee waves with

the frequency given by w=Uk .
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Figure 3.7. As in Fig. 3.6 but for the case of U=10m s™.




here because they are essentially the same as the spectrum for the sixth

vertical mode. Superimposed on these spectra are dispersion curves for the
lee waves defined by (Uk)" = f +C*(k*+ ) where k and 1 are along-track
and cross-track components of horizontal wavenumber, respectively; and
C, is the eigenspeed of the n-th vertical mode, which is given by C =
(3.4/n) m s, It should be noted that the above dispersion curve is exactly
defined only on the f-plane. Nevertheless, we use the dispersion curve to
interpret the results from the numerical experiment on the B-plane because
the model hurricane is well confined in space and it travels eastward.
Furthermore, areas where the spectral values are greater than 4% of the
maximum are shaded in these spectra in order to emphasize the wavenumbers
of energetic internal waves. Shaded areas can be found approximately on
the dispersion curves, though small displacement occurs toward negative
direction of 1 because of the f-effect [D'Asaro, 1989]. Shaded areas are
also found around k=0 cpm, I=+3X10° cpm in the first-vertical-mode
spectrum corresponding to the geostrophic currents [Nilsson, 1995], which
are beyond the scope in this study.

The shaded area corresponding to the near-inertial waves is found near
the apex of each dispersion curve, where the spectral value of the wind
forcing becomes maximum on each dispersion curve. The along-track
wavenumbers of these shaded areas are given by k. = f(')(U2 —Cf)ﬁl, which
can be reduced to k, = f /U when U>>C,. It follows that the along-track
wavenumber of near-inertial waves for the case of U=5 m s becomes
about 3.0 X 10° cpm for the first vertical mode and about 2.2 X 10 cpm for
the higher vertical modes, whereas the along-track wavenumber of near-
inertial waves for the case of U=10 m s becomes about 1.1 X 10°cpm for

all the vertical modes.

The shaded areas corresponding to the double-inertial frequency waves
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can be found in the first- and second-vertical-mode spectra for the case of

U=5 m s (Fig. 3.6) and in the first-vertical-mode spectrum for the case of
U=10 m s™ (Fig. 3.7). It should be noted that these shaded areas exist on
the dispersion curves of lee waves, indicating that the double-inertial fre-
quency waves are not transient waves but stationary waves relative to the
traveling hurricane. The along-track wavenumbers of these shaded areas
are given by k,. =2 f, / U, and the cross-track wavenumbers of these shaded
areas are givenby [,, = *k, i[i e 1} VZ’ though the spectral value at positive
l,; becomes smaller than that at negative /, because of the f-effect. Figures
3.6 and 3.7 show that the most energetic double-inertial frequency wave
has the first-vertical-mode structure with k,,=4.6X10°cpm and ,,=-4.0x
10° cpm for the case of U=5m s” and with k,,=2.3 X 10 cpm and l,.=-5.6-
X10° cpm for U=10m s™.

Significant superinertial energies are also found to be generated off the
dispersion curve for each spectrum. However, these energies correspond to
the evanescent-type motions trapped near the traveling hurricane, so that
they cannot participate in the energy cascade in the deep ocean internal

wave field.

3.4. Generation mechanism of the double-inertial frequency
wave

Inthis section we examine nonlinear resonant triads causing the generation
of low-vertical-mode double-inertial frequency waves through bispectral
analysis [Lin et al., 1995]. The internal wave with horizontal wavenumber
vector K, and vertical mode n, is generated through the nonlinear interaction

between an internal wave with k, and n, and one with Kk, and n, satisfying

the conditions,




k=Kk,+Kk;, n=[n,xn, | (n,n,n,20)

The bispectral value at (k,, n,)indicates the nonlinear kinetic energy transfer
rate to the internal wave with k, and n, caused by the interaction between
an internal wave with k,and n, and one with k; and n,. It should be noted
that the present bispectral analysis is carried out with the assumption that
internal wave fields are stationary because, as was mentioned in section
3.3, all energetic internal waves can be considered as lee waves.

To examine the generation mechanism of the southward propagating
first-vertical-mode (n,=1) double-inertial frequency wave for U=5 m s
with horizontal wavenumbers k,=4.6 X 10° cpm and l,=-4.0x10° cpm (see
the first-vertical-mode spectrum in Fig. 3.6), two-dimensional horizontal
wavenumber bispectra are calculated for typical pairs of interaction between
the internal waves of vertical mode n, and n, (Fig. 3.8). The bispectral
values in the areas from which energy is transferred to the first-vertical-mode
double-inertial frequency wave (marked by small cross in each bispectrum)
are contoured by solid lines, whereas those in the areas to which energy is
transferred from the first-vertical-mode double-inertial frequency wave are
contoured by dashed lines. We can see that near-inertial waves strongly
interact with the first-vertical-mode double-inertial frequency wave. The
interaction between the near-inertial waves with n,=9 and n =10 transfers
energy to the first-vertical-mode double-inertial frequency wave, whereas
the interaction between the near-inertial waves with n,=3 and n,= 4 subtracts
energy from the first-vertical-mode double-inertial frequency wave. In
contrast, the interactions are weak between the near-inertial waves with
n,=1 and n,=2 and between the near-inertial waves with n,=19 and n,=20.

To examine the dependence of the kinetic energy transfer rate to the
first-vertical-mode double-inertial frequency wave on the vertical-mode pair

n,and n,, the bispectral amplitude is calculated for each vertical-mode pair
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| Figure 3.8. Two-dimensional wavenumber bispectrum for the case of
U=5 m s' which indicates the rate of kinetic energy transfer to the first
vertical mode double-inertial frequency wave with k =4.6X 10°cpm an | =
-4.0X 10°cpm (marked by small cross in each bispectrum; see also the first
vertical mode spectrum in Fig. 3.6) caused by the nonlinear interaction
between the internal waves of vertical mode n, and n,. For more details,

see text. Bispectral values in the areas from which energy is transferred to

the first vertical mode double-inertial frequency wave are contoured by
solid lines, whereas those in the areas to which energy is transferred from
| the first vertical mode double-inertial frequency wave are contoured by

dashed lines. The contour interval is 3X10°J m” s* cpm?.
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by integrating the two-dimensional bispectrum from 0.5f /U to 1.5f /U with

respect to k and from -2.0X10” cpm to 2.0 X 10”° cpm with respect to | (see
Fig.3.8). Figure 3.9 shows that energy is transferred to the first-vertical-mode
double-inertial frequency wave resulting from the interaction between the
near-inertial waves of high vertical modes (6 =n,=15), whereas energy is
subtracted from the first-vertical-mode double-inertial frequency wave re-
sulting from the interaction between the near-inertial waves of intermediate
vertical modes (n,=4, 5) and from the interaction between the near-inertial
waves of much higher vertical modes (n,221).

We next calculate the bispectrum for the first-vertical-mode double-
inertial frequency wave for the case of U=10 m s’ which has horizontal
wavenumbers k =2.3X10° cpm and I,=-5.6X10°cpm (see the first-vertical-
mode spectrum in Fig. 3.7). Also in this case, near-inertial waves predom-
inantly interact with the first-vertical-mode double-inertial frequency wave,
and as is shown in Fig. 3.10, the interaction between the near-inertial
waves of high vertical modes (6 <n,<18) causes the generation of the
first-vertical-mode double-inertial frequency wave.

As 1s evident from the comparison between the nonlinear kinetic energy
transfer rates shown in Fig. 3.9 and Fig. 3.10, the first-vertical-mode double-
inertial frequency wave is generated more efficiently for the case of U=
5 ms" compared to the case of U=10 m s". This is considered to be caused
by the different features of the high-vertical-mode near-inertial waves in
that, compared to the case of U=10 m s”, along-track wavenumbers and
amplitudes are both larger for U= S m s (section 3.3), so that nonlinear

effects become much stronger.

3.5. Summary and discussion

In the present study, generation processes of large-scale internal waves
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by a hurricane which propagates eastward with a uniform speed on the

p-plane have been investigated by using a three-dimensional multilevel
numerical model. The major conclusions can be summarized as follows.

(1) Two distinctive kinds of internal waves are excited in the wake of
the hurricane (see Figs. 3.2-3.5), namely, near-inertial waves with frequencies
close to f(inertial frequency at the latitude of the hurricane track) and
superinertial waves with frequencies 2f, and 3f , which are generated through
nonlinear effects.

(2) The spectral value at w==2f, , in particular, becomes larger than that

0>
of the near-inertial waves and the GM spectrum value at w=2f, in the areas
away from the hurricane track (see Fig. 3.4).

(3) The superinertial waves with frequencies 2f, and 3f, predominantly
have first- and second-vertical-mode structures and satisfy the dispersion
relation for the lee waves (see Figs. 3.6 and 3.7).

(4) The bispectral analysis shows that the generation of the first-vertical-
mode double-inertial frequency wave is caused by the nonlinear interactions
between the high-vertical-mode (n=6~18) near-inertial internal waves (see
Figs. 3.8-3.10).

The reason why we focus on these superinertial waves is that the low-
vertical-mode waves with frequencies over 2f  are believed to play significant
roles in supplying energy to the universal internal wave field in the deep
ocean. We discuss this point more in detail below.

D'Asaro [1991] estimated the mean free path of oceanic internal waves
based on the magnitude of group velocity and nonlinear interaction rate.
The results indicate that low-vertical-mode waves with frequencies over 2f
(fis local inertial frequency) can propagate basin-wide distances (21000km)

from their sources while supplying energy to the internal wave field where

local energy sources are too weak to maintain the universal level of the
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internal wave spectrum. In contrast, the propagation of near-inertial waves

is considered to be limited because of their small group velocities and the
p-effect [D'Asaro, 1991] as well as the scattering by ocean bottom topogra-
phies [Miiller and Xu, 1992] and the interactions with mesoscale eddies
[Kunze, 1985].

Furthermore, the energy thus supplied by these low-vertical-mode waves
with 2 2f; is considered to be transferred across the local internal wave
spectrum down to small dissipation scales inducing diapycnal mixing in the
deep ocean. McComas and Miiller [1981] discussed the energy balance
within the GM spectrum in terms of weak resonant interaction theory.
According to their study, dominant energy flux from large generation scales
downto small dissipation scales is caused by the mechanism called parametric
subharmonic instability (P.S.I) which transfers energy from low-vertical-
mode waves with 2f<w<4f to high-vertical-mode near-inertial (f<w<2f)
waves. Under the P.S.Imechanism, energy supplied by the low-vertical-mode
waves with w2 2f is expected to be transferred efficiently to small mixing
scales.

This feature is also demonstrated in direct numerical experiment [Hibiya
et al.,1997]. When a spectral bump is given to the low-vertical-wavenumber
region within a frequency band 2f<w<4f in a quasi-equilibrium GM-like
spectrum [Hibiya et al., 1996], the excess energy is eventually transferred
to the high-vertical-wavenumber near-inertial region. In contrast, when a
spectral bump is given to the low-vertical-wavenumber near-inertial region,
no significant energy cascade to the high-wavenumber region occurs.

In summary, low-vertical-mode waves with frequencies 2f,and 3f, prop-
agate basinwide distances from their sources while supplying energy to the
local internal wave spectrum; energy thus supplied is transferred across the

local internal wave spectrum down to small mixing scales under the P.S.I
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mechanisms. Accordingly, the global distribution of these superinertial
waves Is crucial for the adequate parameterization of the diapycnal mixing
in the deep ocean.

The double-inertial frequency waves are actually observed in the realistic
ocean during the Ocean Storm Experiment (OSE) observational program
[see D'Asaro et al., 1995, Fig. 3]. One of the important results from the
OSE is that near-inertial energy in the mixed layer decayed much more
rapidly than was predicted on the basis of linear theory [D'Asaro et al.,
1995], though successful physical explanations for it have not been given
yet [D'Asaro, 1995]. The present study might provide one possible explana-
tion that the nonlinear energy transfer from the high-vertical-mode near-
inertial waves to the low-vertical-mode double-inertial frequency waves
might promote the energy dispersion from the mixed layer because the
group velocities of the low-vertical-mode double-inertial frequency waves
are much larger than those of the high-vertical-mode near-inertial waves.
We can actually find out in this study that the kinetic energy decay in the
forcing region is more rapid in the nonlinear model compared with the
linear model. The difference between the decay rates from the nonlinear
and linear models for the case of U=5 m s is about 23% and about 14%
for the case of U=10 m s™, though quantitative comparison with the results
from the OSE is limited because of the unrealistic density stratification
employed in this study. Such a rapid decay of near-inertial energy in the
mixed layer has not been reproduced in D'Asaro's two-dimensional numerical
model [D'Asaro, 1995]. A major reason for this might be in his assumption
that the internal wave fields are independent of along-storm track coordinate
since the nonlinear resonant triads causing the generation of the low-

vertical-mode double-inertial frequency waves cannot be reproduced under

this assumption.
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Chapter 4

Numerical Experiments of Nonlinear Energy Transfer

Within the Oceanic Internal Wave Spectrum




Abstract

From the fact that the Garrett-Munk (GM) internal wave spectrum is
maintained even in regions of weak local energy sources, it is believed that
energy is continuously supplied to the local wave spectrum by internal
waves propagating from the source regions where they are generated by
wind stress fluctuations and tide-topography interactions. In orderto examine
how the energy thus supplied by propagating waves cascades through the
local wave spectrum down to small dissipation scales, we carry out three
sets of numerical experiments where the quasi-equilibrium internal wave
spectrum obtained by Hibiya et al. (1996) is perturbed as an initial condition
with forcing applied to different parts of the low-frequency low-wavenumber
portion of the spectrum. The evolution of the internal wave spectrum is
examined over 8inertial periods after the forcing is given. First, in Experiment
I, the forcing is applied to the low-vertical-wavenumber inertial-frequency
(w=f) portion of the spectrum. In this case, however, no significant increase
or decrease of spectral intensity can be seen within the corresponding two-
dimensional wavenumber shear spectrum. Next, in Experiment II, the
forcingis applied to the spectrum at low vertical wavenumbers and frequency
range of 2f<w<3f. In contrast to the result of Experiment I, high-vertical-
wavenumber near-inertial spectral values are seen to increase exceeding
the GM level as time progresses. Finally, in Experiment III, the forcing is
applied to the spectrum at low vertical wavenumbers and frequency range
of 1.6f<w<2f. Although the spectral location of the forcing is very close to
that assumed in Experiment II, no appreciable energy transfer to high vertical
wavenumbers occurs in this case. From the results of these numerical
experiments, it is shown that the energy transfers to small dissipation scales

are dominated by the resonant interaction mechanism termed parametric
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subharmonic instability (P.S.I) which transfers energy from low-vertical-
wavenumber waves with frequencies over 2f to high-vertical-wavenumber,
near-inertial (f<w<2f) waves. This supports the model for the dynamic
balance of the internal wave spectrum proposed by Hibiya et al. (1996)
that, with the increase (or decrease) of energy supply to the local internal
wave spectrum, higher-vertical-modes near-inertial current shear is enhanced

(or diminished) leading to an increase (or decrease) in the rate of energy

dissipation at critical layers.




4.1. Introduction

The pattern and magnitude of the numerically reproduced general ocean
circulation strongly depend on the value of eddy viscosity and diffusivity
coefficients, which indicates that the evaluation of the intensity of turbulent
vertical mixing at depth is crucial to accurate modeling of the large-scale
general circulation [Bryan, 1987]. Mixing in the stratified ocean interior is
generally considered to be associated with sporadic overturning and breaking
of internal waves.

The energy available for mixing processes is originally supplied at large
scales (a few tens of kilometers) and then transferred across the internal
wave spectrum down to small dissipation scales (a few meters) by nonlinear
interactions among internal waves. Intermediate scale internal waves,
therefore, provide an important link in the overall energy cascade from
large generation scale down to small dissipation scale, which are empirically
described as the universal Garrett and Munk model spectrum [Garrett and
Munk, 1972, 1975; Munk, 1981] (hereafter referred to as the GM model).
Recently Hibiya etal. (1996) succeeded in reproducing the quasi-equilibrium
internal wave field having the actually observed GM-like spectrum with
the roll-off at about 0.06 cycles per meter (cpm) by calculating the nonlinear
interactions among randomly phased linear internal waves over 7 inertial
periods, each amplitude of which is determined from the GM model.

The above numerical experiment is, however, unforced so that thus
reproduced internal wave spectrum must erode ultimately. From the fact
that the universal GM spectrum is actually maintained even in regions of
weak local energy sources, it is believed that energy is continuously supplied
to the local wave spectrum by internal waves propagating from the source
regions where they are generated by wind stress fluctuations [Kundu, 1993;

Rubenstein, 1994; Nilsson, 1995] and tide-topography interactions [Sjoberg
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and Stigebrandt, 1992]. Although it remains unknown which of the possible
sources of internal wave energy is most important, Niwa and Hibiya (1997)
have examined the stratified ocean responses to a traveling storm on the
basis of three-dimensional numerical experiments. One of the important
findings is that, in addition to low-vertical-mode near-inertial internal waves,
low-vertical-mode internal waves with frequencies just over 2f (f 1s the
inertial frequency) are left behind the traveling storm, which are generated
through the nonlinear interactions between high-vertical-mode near-inertial
waves. Estimates of the mean free path from the horizontal group velocity
and nonlinear interaction time indicate that thus generated low-vertical-mode
internal waves can propagate significant distances of the order of 1000 km
from their source regions within their relaxation time while feeding energy
to the local internal wave fields [Olbers, 1983; D'Asaro, 1991]. Although
a number of theoretical studies have been made on energy transfers by
nonlinear wave-wave interactions withinthe GM spectrum, they are restricted
to weak or scale-separated interactions (resonant or eikonal wave-wave
interactions) [Olbers, 1976; McComas, 1977; McComas and Bretherton,
1977; Pomphrey et al., 1980; McComas and Miiller, 1981; Flatté et al.,
1985; Heyney et al., 1986]. While forcing at large scales must be balanced
by dissipation at small scales, it remains unknown how the energy thus
supplied by low-vertical-mode low-frequency waves cascades through the
local internal wave spectrum down to small dissipation scales.

In the present study, we carry out three sets of numerical experiments
where the quasi-equilibrium internal wave spectrum obtained by Hibiya et
al. (1996) is perturbed as an initial condition with energy applied to different
parts of the low-frequency low-vertical-wavenumber portion of the
background spectrum. It should be noted that the physics of weak wave-wave

and strong wave-wave interactions and of wavenumber local and nonlocal
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interactions are all retained in this numerical experiment. The evolution of
the internal wave spectrum is monitored to clarify how the energy thus
supplied at large scales is transferred across the local wave spectrum down

to small dissipation scales.

4.2. Numerical model

We assume that the internal wave field is restricted to a vertical two-
dimensional plane by requiring the variability to be independent of one
horizontal coordinate. The two-dimensional Navier-Stokes equations under
the Boussinesq approximation are integrated with a finite difference scheme
by applying the centered difference and leapfrog scheme. In particular, the
Arakawa Jacobian is used for an expression of the advective term [Arakawa,
1966]. The finite differenced equations are solved on a 1024 X 1024 grid
with resolutions of 10 m and 1.25 m in the horizontal and vertical directions,
respectively, sufficient to resolve the disparate-scale wave interactions.

The subgrid diffusive-dissipative processes are parameterized with a
Laplacian operator where eddy viscosity and diffusivity coefficients are
assumed to have the same value of 1 cm?s™ in the horizontal and 0.1 cm?®s’
in the vertical, which are the smallest possible values needed to maintain
the stability of calculations. Cyclic boundary conditions are employed at
the lateral sides, whereas flat perfectly reflecting bottom and surface are
employed. We assume the inertial frequency f=7.27x10°s" (inertial period
Ti=24 hours) and the constant background buoyancy frequency N=5.2 X
10”s™ (3 cycles per hour (cph)) (linear stratification).

A background quasi-equilibrium internal wave field having the actually
observed shear spectrum with the roll-off at about 0.06 cpm (see Fig. 4.1)

is reproduced by calculating the nonlinear interactions among randomly
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Figure 4.1. Time variations of the vertical wavenumber Froude spectrum
during 8 inertial periods after the energy bump is put into the low-vertical-
wavenumber inertial-frequency portion of the quasi-equilibrium spectrum
obtained by Hibiya et al. (1996). The arrow in the figure at t=0 indicates
the inertial energy bump which is put into the vertical wavenumber band of

3.91x10™ - 1.95%x10” cpm.




phased linear internal waves over 7 inertial periods, each amplitude of
which is determined from the GM model [Hibiya et al., 1996].

In the present study, we carry out three sets of "Bump Experiments"
where forcing is applied to the quasi-equilibrium spectrum mentioned above
in the form of a narrow energy bump which is put into the different parts of
the low-frequency low-vertical-wavenumber portion of the background
spectrum as an initial condition. For each case, the model is run during 8
inertial periods after the forcing is given using discrete time-step of 1.5 s.
In order to avoid numerical instability, the Euler backward scheme is applied

every 20 time-steps.

4.3. Results

First, in Experiment I, we apply the forcing to the low-vertical-
wavenumber inertial-frequency portion of the quasi-equilibrium spectrum
by increasing the initial inertial energy level in the vertical wavenumber
bandof 3.91 x10*- 1.95 X 10” cpm (corresponding to the lowest five vertical
modes) by up to a factor of 1.2 (see Fig. 4.1). Figure 4.1 shows the time
variations of the vertical wavenumber spectrum of the vertical shear of
horizontal current velocity normalized by the square of buoyancy frequency
(Froude spectrum) over 8 inertial periods after the energy bump is given. It
should be noted that the spectrum is calculated from data obtained from the
top down to the bottom which are averaged horizontally. The spectrum
remains quite close to the initial spectrum over this period; the energy
bump stays at the wavenumbers where it is given. This is more directly
confirmed in the corresponding two-dimensional wavenumber Froude
spectrum which is presented in variance-preserving form with respect to

horizontal wavenumber (Fig. 4.2). We can find no significant increase or
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Figure 4.2. Time variations of the two-dimensional wavenumber Froude
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decrease of spectral intensity within the two-dimensional wavenumber
Froude spectrum, which indicates that forcing at low-vertical-mode inertial-
frequency is not efficient to feed energy to high wavenumbers.

Next, in Experiment II, we apply the forcing to the quasi-equilibrium
spectrum at low vertical wavenumbers and frequency range of 2f<w<3f by
increasing the initial energy level in the vertical wavenumber band of 2.73-
x107-3.91 X107 cpm (corresponding to vertical mode numbers 7-10) at a
horizontal wavenumber of 9.77 xX10” cpm (corresponding to the lowest
horizontal mode) by up to a factor of 2.1 (see Fig. 4.3). In contrast to the
result of Experiment I, the energy bump introduced at low vertical
wavenumbers is diffused into the background spectrum, whereas the shear
spectral value in the vertical wavenumber band of 0.025-0.05 cpm gradually
increases exceeding the GM level by up to a factor of about 2 and, at the
same time, the roll-off of the shear spectrum shifts to lower vertical
wavenumbers (Fig. 4.3). Figure 4.4 shows the corresponding time variation
of the two-dimensional wavenumber Froude spectrum. We can see that the
excess shear spectral value in the vertical wavenumber band of 0.025-
0.05cpm results mostly from the enhancement of higher-vertical-
wavenumber near-inertial (f<w<2f) current shear. This implies that, with
the increase of energy supply to the local internal wave spectrum, higher-
vertical-modes near-inertial current shear is enhanced so that the roll-off
shifts to lower vertical wavenumbers leading to an increase in the rate of
energy dissipation.

Finally, in Experiment III, we apply the forcing to the quasi-equilibrium
spectrum at low vertical wavenumbers and frequency range of 1.6f<w<2f
by increasing the initial energy level in the vertical wavenumber band of
4.3x107-5.47x10" cpm (corresponding to vertical mode numbers 11-14)

at a horizontal wavenumber of 9.77 X 10” cpm (corresponding to the lowest
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horizontal mode) by up to a factor of 3.3 (see Fig. 4.5). Although the
spectral location of the energy bump is very close to that assumed in
Experiment II, no appreciable time-variation of spectral shape occurs over
8 mertial periods (Fig. 4.5). We can confirm this feature in the corresponding
two-dimensional wavenumber Froude spectrum shown in Fig. 4.6 where

no significant increase or decrease of spectral intensity can be recognized.

4.4. Discussion and concluding remarks

The physical processes for the transfer of energy supplied at large scales
across the internal wave spectrum down to small dissipation scales have
been examined by carrying out numerical experiments where a narrow
energy bump is introduced as an initial condition in the different parts of
the low-frequency low-wavenumber portion of the quasi-equilibrium
spectrum obtained by Hibiya et al. (1996). Although the physics of weak
wave-wave and strong wave-wave interactions and of wavenumber local
and nonlocal interactions are all retained in this numerical experiment, the
calculated results have shown that the energy cascades to small dissipation
scales are dominated by the resonant interaction mechanism termed
parametric subharmonic instability (P.S.I) which transfers energy from low-
vertical-wavenumber waves with frequencies over 2f to high-vertical-
wavenumber near-inertial waves [McComas, 1977; McComas and
Bretherton, 1977; McComas and Miiller, 1981; Pomphrey et al., 1980].
This supports the model for the dynamic balance of the internal wave
spectrum proposed by Hibiya et al. (1996) that, with the increase (ordecrease)

of energy supply to the local internal wave spectrum, higher-vertical-modes

near-inertial current shear is enhanced (or diminished) leading to an increase
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(or decrease) in the rate of energy dissipation at critical layers.

In contrast to near-inertial waves whose propagation might be limited
because of the B-effect [D'Asaro, 1991] as well as scattering by ocean
bottom topographies [Miiller and Xu, 1992] and interactions with mesoscale
eddies [Kunze, 1985], these superinertial waves with frequencies over 2f
are considered to propagate significant distances of the order of 1000 km
from their source regions while feeding energy to the internal wave field
where local energy sources are too weak to maintain the universal spectral
level [Olbers, 1983; D'Asaro, 1991]. An understanding of the sources and
variability of low-vertical-mode internal waves with frequencies over 2f is
therefore a key factor in constructing a predictive model of the rates of
diapycnal mixing associated with internal wave breaking in the stratified
interior of the world oceans.

Along these lines, we are currently quantifying internal wave sources
such as wind stress fluctuations and tide-topography interactions as well as
the propagation of low-vertical-mode low-frequency internal waves (in
particular, low-vertical-mode double-inertial frequency internal waves) from
strong source regions in three-dimensional multilevel numerical models to

clarify the global forcing field to the internal wave spectrum, the results of

which will be reported elsewhere.
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Chapter 5

Response of the Deep Ocean Internal Wave Field
to Traveling Midlatitude Storms as Observed

in Long Term Current Measurements




Abstract

It has been demonstrated in a recent numerical experiment that double-
inertial frequency waves play a crucial role in diapycnal mixing processes
in the deep ocean, with the energy effectively transferred across the internal
wave spectrum down to small dissipation scales by nonlinear wave-wave
interactions (Hibiya et al., 1997). To examine whether or not such double-
inertial frequency waves are actually generated in the real ocean, we analyze
current meter data from long term moorings in the Northwest Pacific Basin
together with global sea surface wind data. By incorporating the wind data
into a simple damped slab model, it is found that predominant inertial
currents are excited in the mixed layer by traveling midlatitude storms in
the Northwest Pacific Basin during fall and winter. Composite frequency
spectra for the time period during which the predominant inertial currents
are excited exhibit a significant increase in the double-inertial frequency
band as well as in the near-inertial frequency band. This clearly indicates
that, in addition to near-inertial frequency waves, double-inertial frequency
waves are excited by strong atmospheric disturbances through nonlinear
effects as demonstrated in the numerical experiment by Niwa and Hibiya
(1997). Double-inertial frequency waves thus excited are found to propagate
over horizontal distances of the order of 1000 km from their source region,
while feeding their energy to the local internal wave field, consistent with

the theoretical prediction based on the magnitudes of group velocity and

nonlinear interaction time (D'Asaro, 1991).




S.1. Introduction

It is well known that wind stress fluctuation is one of the major sources
for internal waves in the ocean. In particular, traveling atmospheric distur-
bances such as hurricanes or midlatitude storms can generate energetic
internal waves because of the large amplitude wind stress which changes
its direction significantly over timescales less than the local inertial period.

Primary oceanic responses to atmospheric disturbances include generation
of near-inertial waves in the mixed layer which has been studied by many
researchers on the basis of the linear theory. Representative work is the
one by Pollard and Millard [1970] who proposed a simple damped slab
model which could reproduce many observed features of generation of
near-inertial waves in the mixed layer. In general, however, the amplitude
of the near-inertial waves excited by traveling hurricanes or storms becomes
so large that nonlinear effects cannot be neglected. Actually, the present
authors carried out numerical experiment using three-dimensional multilevel
numerical model [Niwa and Hibiya, 1997] which demonstrated that low-
vertical-mode superinertial waves with frequencies 2f, and 3f (f, is the
inertial frequency at the latitude of the hurricane track) were excited by a
traveling hurricane through nonlinear interactions between high-vertical-
mode near-inertial waves which were originally excited in the mixed layer.
In areas away from the hurricane track, in particular, the amplitude of the
double-inertial frequency waves becomes comparable to that of the near-
inertial waves.

The distinguished properties of the low-vertical-mode superinertial waves
with frequencies over 2f are that they are believed to propagate significant
horizontal distances from their source region while feeding their energy to
the local internal wave field [D'Asaro, 1991]; the energy thus supplied is

considered to be transferred effectively across the local internal wave spec-
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trum down tosmall dissipation scales through resonant interaction mechanism
called parametric subharmonic instability (P.S.I) [McComas and Miiller,
1981; Hibiya etal., 1996, 1997]. The low-vertical-mode superinertial waves
are therefore considered to play significant roles in diapycnal mixing in the
deep ocean whose parameterization is essential for accurate modeling of
the oceanic general circulation [ Bryan, 1987].

The above mentioned numerical experiment, however, assumes idealized
situations such as a uniform stratification, a constant translation speed of
the hurricane, no background eddy field, so that the applicability of the
calculated results to the real ocean remains unknown. Actually, previous
observations of the double-inertial frequency waves generated by strong
atmospheric disturbances have been carried out mostly in the upper ocean
[D'Asaro et al., 1995; Krauss, 1981], and there is no observational evidence
for the existence of the double-inertial frequency waves in the deep ocean.

In the present study, we analyze current meter data from long term
moorings in the deep ocean and atmospheric wind data to examine whether
significant double-inertial frequency waves are actually generated in the
real ocean by strong atmospheric disturbances. We first predict near-inertial
wave field in the mixed layer by incorporating wind data into a simple
damped slab model. Next, we examine the relation between estimated
near-inertial wave field in the mixed layer and deep ocean internal wave

field deduced from current meter data.

5.2. Data sources and analysis

Oceanic current data are obtained from four moorings located at 2°
intervals between 27°N and 33°N along 165°F in the Northwest Pacific
Basin (Fig. 5.1) deployed from September 1991 to May 1993 by the Ocean
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Research Institute, the University of Tokyo. The comparison between
internal wave field and atmospheric forcing is limited from September
1991 to October 1992 because the current meter data obtained after this
period are not of high quality. Figure 5.1 shows the geographical location
and depth of each current meter as well as bathymetric configuration. The
depths of the current meters range from 480 m to 6040 m, where A2, C2,
D2 are, in particular, deployed within 15 m above the ocean bottom. Sampling
rate of each current meter is 1 hour and is sufficient to detect double-inertial
frequency waves which are of special interest here.

The structural defect of the current meters on these moorings is incapability
to measure weak currents accurately, so that current meter data with the
magnitude less than 1.5 cm s are regarded as missing data. If the interval
of consecutive missing data is less than 3 hours, a linear interpolation is
employed. To extract internal wave component from the current meter
data, low-frequency background currents are removed by applying high
pass filter with a cutoff frequency of 0.2f (fis the local inertial frequency).
Furthermore, these high passed current meter data are divided into successive
data pieces which have length of 15 days and are overlapped by 5 days.
For each data piece of good quality in which missing data are no more than
20%, we calculate frequency spectrum of horizontal kinetic energy using
Blackman-Tukey method with maximum correlation lag of 5 days and
examine the time variation of the internal wave field. For the comparison
among the data from varied stratification, each frequency spectrum is divided
by the annual mean buoyancy frequency at the location of each current
meter calculated from the dataset of National Oceanographic Data Center's
World Ocean Atlas [Levitus and Boyer, 1994; Levitus et al., 1994].

Sea surface wind data are obtained from the Global Objectively Analyzed

Data provided by the Japan Meteorological Agency. These data include
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wind vectors at 10 m height above sea surface with longitudinal and latitudinal
grid spacings of 1.875° x 1.875 °at time intervals of 6 hours.
The surface wind stress is calculated from the 10 m height wind vector

U, using the usual bulk transfer formula,

T=p,C,U,U, (5.1)
where T is wind stress vector, p_is air density and U .o 15 10 m height wind
speed. Following Large and Pond [1981], the drag coefficient C , 1s deter-

mined such that;
L= st for U,y< 10ms ™! ik
= (0.49+0.065U ,,)x 10> for U, =10ms"’ |

Near-inertial wave field in the mixed layer is predicted by incorporating

the wind stress data into a damped slab model [ Pollard and Millard, 1970],

%H‘]‘V:T—rv (5.3)
where V=u+iv with u and v the eastward and northward components of
horizontal current velocity, respectively, i the imaginary unit (v-1); f the
local inertial frequency; 7 = (%, + it)/pH with *_and T, the eastward and
northward components of wind stress, respectively, H the mixed layer depth

and p water density; r an empirical damping constant which parameterizes

energy transfer from the mixed layer to the deeper ocean. The solution of

(3) consists of Ekman transport V, = (ifZ; 3 and inertial current V, given by
dv, L. dr
+if V, =— 2 5.4
dt Vi (if +r) dt s i

We assume constant mixed layer depth of H=50 m. On the basis of
mixed layer current measurements, damping time r' is considered to range
from 2 to 10 days [D'Asaro, 1985]. Although we assume r'= 4 days

somewhat arbitrarily in this study, qualitative results of this paper are not
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altered even if we change the values of r within the above range. Equation
(5.4) 1s integrated by assuming linear time variation of wind stress between
successive data points and solving the equation (5.4) analytically for this

time interval [D'Asaro, 1985].

5.3. Inertial current field in the mixed layer

Figure 5.2 shows time series of wind stress and amplitude of inertial
currents in the mixed layer calculated by applying the local damped slab
model to various locations from 20°N to 50°N along longitude 165°E. In
particular, strong inertial currents with their amplitude exceeding 50 cm s
can be found mainly in midlatitude (35°N-45°N) during November to Feb-
ruary, which are excited in response to the intermittent passages of the
midlatitude storms.

As a typical example, time evolution of wind stress rotation field during
November 29-30, 1991 is illustrated in Fig. 5.3 together with the region of
strong inertial currents with the amplitude exceeding 50 cm s'. We can see
that, corresponding to the traveling midlatitude storm, the wind stress rotation
field shifts eastward with a speed of about 20 m s*, and after the passage of
the midlatitude storm, strong inertial currents are excited in the area of
160°E-170°E and 35°N-40°N.

To examine spatial distribution of atmospheric disturbances which excite
inertial currents in the mixed layer, annual mean field of the inertial current
amplitude in the mixed layer is shown in Fig. 5.4 where the contour of the
horizontal distance from the center of the four mooring locations, namely,
165°E and 30°N is superimposed. The large amplitude of inertial currents
is found in the midlatitude band (30°N-50°N) corresponding to the passages

of midlatitude storms such as shown in Fig. 5.3. In particular, the la rgest
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Figure 5.2. The time series of wind stress vector and calculated amplitude
of inertial currents in the mixed layer at various latitudes from 20°N to
50°N along 165°E. The wind stress is plotted as a vector with northern
direction being vertical upward and the base of the vector giving its time.
The amplitudes of inertial currents are calculated by incorporating wind

stress data into a simple damped slab model (Pollard and Millard, 1970).
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inertial currents are found to occur 500-1000 km to the north of the
moorings sites. Ifthe generation mechanism of the double-inertial frequency
waves proposed by Niwa and Hibiya [1997] is actually working in the real
ocean, the double-inertial frequency waves propagating southward are ex-
pected to be detected at these mooring sites.

Another area where strong near-inertial currents are excited can be found
in the western Pacific (125°E-145°E and 10°N-20°N). These strong inertial
currents are associated with hurricanes traveling over this area during Sep-

tember to October when the midlatitude storms are not yet active.

5.4. Relation between deep ocean internal wave field and
mixed layer inertial current field
5.4.1. Spectral analysis of Al data

We first examine the current meter data from A1 which is closest to the
region where predominant inertial currents are excited by midlatitude storms
(see Fig. 5.4). Figure 5.5 shows the frequency spectrum of horizontal kinetic
energy obtained by taking an average of all the frequency spectra for the
divided data pieces. This average frequency spectrum shows familiar features
of the deep ocean internal wave spectrum with prominent peaks at the
inertial and semidiurnal tidal frequencies and spectral decay over frequencies
higher than semidiurnal tidal frequency. It can be seen that, except for the
inertial and tidal peaks, the level and form of the average spectrum are well
approximated by those of the canonical Garrett and Munk internal wave
spectrum [Munk, 1981].

Figure 5.6 shows all the frequency spectra of horizontal kinetic energy
for the data pieces during fall, winter, spring and summer, respectively.

We can notice large diversity among the frequency spectra, which is pre-
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sumably caused by two factors, namely, time variation of the deep ocean
internal wave field (physical factor) and estimating errors of spectral values
(artificial factor). The spectral diversity in each season seems to occur
randomly and is considered as being caused by the errors of spectral estimate:
the seasonal variation of the spectral level, in contrast, is presumably caused
by the variation of the internal wave field. Actually, we can see that the
energy level during fall and winter tends to be larger than that during
spring and summer as in the case of inertial current energy level in the
mixed layer (see Fig. 5.2), suggesting that the deep ocean internal wave
field links to the inertial current field in the mixed layer.

To see this relation more definitely, we examine the characteristic features
of the internal waves generated in response to the excitation of strong
inertial currents in the mixed layer. Since each frequency spectrum randomly
contains predominant estimating errors as shown in Fig. 5.6, it is difficult
to obtain directly the relation between time variation of spectral value at
specified frequency and that of inertial current energy in the mixed layer.
To remedy this, we calculate the composite frequency spectrum of horizontal
kinetic energy which is obtained by taking an average of the frequency
spectra for the data pieces during the time period when inertial current
energy in the mixed layer is amplified to a certain degree. Since this
averaging procedure filters out the random errors of spectral estimate, the
composite frequency spectrum might exhibit the characteristic features of
the internal waves generated in response to the amplification of inertial
currents in the mixed layer.

Figure 5.7 shows time variation of inertial energy in the mixed layer
within the horizontal distance of 2000 km from the mooring location of
Al. Figure 5.8 shows the composite frequency spectra for the time period

during which the ratio of the inertial energy in the mixed layer to its annual
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Figure 5.7. The time variation of inertial current energy in the mixed layer

within the horizontal distance of 2000 km from the mooring location of
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Figure 5.8. The composite frequency spectra of horizontal kinetic energy
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mean value becomes more than 1.0, 1.5 and 2.0, respectively (see Fig.

5.7). We can see that the composite spectral value in the near-inertial
frequency band (0.045-0.055 cph) becomes larger than the annual mean
where the maximum of the composite frequency spectra occurs at 0.05 cph,
slightly higher than the local inertial frequency at the latitude of Al
(0.045cph). This frequency corresponds to the local inertial frequency at
the latitude of 37°N where the largest inertial currents are excited by midlat-
itude storms (see Fig. 5.4), which indicates that the most prominent near-
inertial frequency energy observed at Al is mainly originated from the
mixed layer at the latitude of 37°N.

The most interesting feature in the composite frequency spectra in Fig.
5.8 1s that the composite spectral value becomes larger than the annual
mean also in the double-inertial frequency band, namely, 0.095-0.105 cph.
When the inertial current energy becomes twice as large as its annual
mean, in particular, significant increase in the composite spectral value
occurs in the double-inertial frequency band. These results clearly show
that generation of the double-inertial frequency waves actually links to the
excitation of the strong near-inertial waves in the mixed layer by atmospheric

disturbances as demonstrated in the numerical simulation by Niwa and

Hibiya [1997].

5.4.2. Spectral analysis of other current data

Figure 5.9 exhibits the composite frequency spectra of horizontal kinetic
energy for all the current meter data during the time period when the
inertial current energy in the mixed layer within the horizontal distance of
2000 km from each mooring site becomes more than twice the annual
mean value.

We can see that each composite spectral value becomes larger than the
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annual mean in the near-inertial frequency band, although the spectral peak

at 0.05 cph can be no more recognized in the composite frequency spectra
except for Al and A2. This might suggest that energy of the predominant
near-inertial wave excited around 37°N (see Fig. 5.4) is mostly lost during
the course of its propagation down to the mooring site at 31°N.

For A1, A2, B1, C1 and C2, each composite spectral value in the double-
inertial frequency band is found to be larger than the annual mean in the
double-inertial frequency band, although the spectral enhancement becomes
somewhat smaller at B1 and C2. In contrast, no significant spectral increase
in the double-inertial frequency band can be found in the composite frequency
spectra for D1 and D2 at 27°N. This might indicate that the double-inertial
frequency waves generated around 37°N give up most of their energies to
the deep ocean internal wave field during the course of their propagation
down to the location of D1 and D2 which is about 1100 km to the south of
the source area [D'Asaro, 1991].

Although hurricanes generate strong inertial currents in the mixed layer
in the low latitude western Pacific region during September to October (see
Fig. 5.4), the spectral analysis of the current meter data shows no signal for
the amplification of double-inertial frequency waves (not shown here).
This might be explained in terms of the long horizontal distance between
the source region and the mooring locations which exceeds 2000 km as in

the cases of D1 and D2.

S.5. Summary and Discussion

In the present study, we have analyzed current meter data from the long
term moorings deployed at depth in the Northwest Pacific Basin (see Fig.
5.1)together with sea surface wind data catalogued in the Global Objectively
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Analyzed Data to clarify the response of the deep ocean internal wave field
to traveling atmospheric disturbances. The major conclusions are sum-
marized as follows.

(1) Inertial currents in the mixed layer are mainly excited by the midlatitude
(30°N-50°N) storms traveling eastward during fall and winter (see Figs.
5.2-5.4 and 5.7). In particular, predominant inertial currents are excited
around 37°N in the Northwest Pacific Basin (see Fig. 5.4).

(2) In response to the excitation of strong inertial currents in the mixed
layer, near-inertial frequency waves in the deep ocean internal wave field
are significantly amplified (see Figs. 5.8 and 5.9).

(3) In addition to the near-inertial frequency waves, the double-inertial
frequency waves are significantly amplified in the deep ocean internal
wave field in response to the excitation of strong inertial currents in the
mixed layer (see Figs. 5.8 and 5.9).

The above result (3) validates that the double-inertial frequency waves
are actually generated by atmospheric disturbances in the real ocean as
demonstrated in the numerical experiment by Niwa and Hibiya [1997].

However, the composite spectral level of the double-inertial frequency
band relative to that of the near-inertial band (see Figs. 5.8 and 5.9) is
much smaller than that predicted in the numerical experiment where the
amplitude of the double-inertial frequency waves becomes comparable to
that of the near-inertial waves in areas away from the forcing region [see
Niwa and Hibiya, 1997, Fig. 4]. Several explanations are possible for this
difference. Compared to the hurricane model assumed in the numerical
experiment, midlatitude storms generally have smaller wind stress amplitude
(less than 2.0 N m”, see Fig. 5.2) and larger traveling speed (about 20 m s™,
see Fig. 5.3) so that nonlinear effects causing the generation of the double-

inertial frequency waves [Niwa and Hibiya, 1997] become much smaller.
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Furthermore, nonlinear interactions of the double-inertial frequency waves
with the background internal wave field are not considered in the numerical
experiment, which might cause the decay of energy in the double-inertial
frequency band by transferring it to small dissipation scales.

The double-inertial frequency waves are believed to provide energy for
diapycnal mixing in the deep ocean [ McComas and Miiller, 1981; Hibiya et
al., 1997]. The exact parameterization of diapycnal mixing in the world
ocean therefore requires the knowledge on the global field of the double-
inertial frequency waves which depends on their propagation distance as
well as their source distribution. Assuming source region of double-inertial
frequency waves 1s around 165°E and 37°N (see Fig. 5.4), we can estimate
that propagation distance of the observed double-inertial frequency waves
is of the order of 1000 km because these waves almost vanish at the
mooring location of D, namely, 165°E and 27°N (see Fig. 5.9). This
propagation distance is consistent with the mean free path of the low-
vertical-mode double-inertial frequency waves which is theoretically pre-
dicted from the magnitudes of group velocity and nonlinear interaction
time [D'Asaro, 1991].

We can see that the spectral peak at 0.05 cph (inertial frequency at the
latitude of 37°N) vanishes to the south of 33°N (see Fig. 5.9), indicating
that propagation distance of the predominant near-inertial waves is much
less than that of the double-inertial frequency waves. This might reflect

the limitation of the propagation of near-inertial waves through the interac-

tions with mesoscale eddies [Kunze, 1985] and bottom topographies [ Miiller

and Xu, 1992].
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Chapter 6

General Conclusion




The pattern and magnitude of the numerically reproduced general ocean
circulation strongly depend on the value of eddy diffusivity coefficients,
which indicates that the evaluation of the intensity of turbulent mixing at
depth is crucial to accurate modeling of the large-scale general circulation
[Bryan, 1987].

In the present study, we have proposed an approach feasible to clarify
the global distribution of turbulent mixing intensity which makes use of the
dynamics of the oceanic internal gravity waves. Actually, the main energy
for mixing processes in the deep ocean is considered to be originally supplied
at large scales by atmospheric forcing and tide-topography interactions,
and then transferred across the internal wave spectrum down to small dis-
sipation scales through nonlinear wave-wave interactions. Therefore, once
the energy transfer processes within the internal wave spectrum are clarified,
we can expect that parameterization of turbulent mixing becomes possible
interms of the distribution of energy sources such as atmospheric disturbances

and internal tides.

From this point of view, in Chapter 2, we have reproduced the quasi-
equilibrium internal wave field having the actually observed GM-like spec-
trum with the roll-off at a vertical wavenumber of ~0.1 cpm by calculating
the nonlinear interactions among randomly phased linear internal waves,
each amplitude of which is determined from the GM model. It has been
shown that, when the energy level of high-vertical-wavenumber (0.01-
0.04cpm) near-inertial (f<w<2f) portion of the spectrum is increased (or
decreased), the roll-off shifts to lower (or higher) wavenumbers, indicating
that the strength of high-vertical-wavenumber near-inertial current shear
strongly controls the intensity of turbulent mixing in the deep ocean. At

the same time, it has been found that the inverse Richardson numbers
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remain subcritical at the roll-off wavenumbers implying that the roll-off is
not caused by shear instability or convective instability [Munk, 1981]. This
result is more consistent with the mechanism suggested by Gregg et al.
[1993] that the roll-off is caused by Doppler shifting and critical layer
interactions associated with high-vertical-wavenumber near-inertial current
shear.

In Chapter 3, forcing mechanism of large-scale internal waves has been
examined. Three-dimensional multilevel numerical model has been used
to investigate the energy supply from a traveling hurricane which is one of
major sources for large-scale internal waves. It has been found that a
traveling hurricane generates two distinctive kinds of internal waves, namely,
near-inertial waves and superinertial waves with frequencies of 2f and 3f
which are generated through nonlinear effects. In areas away from the
hurricane track, in particular, the amplitude of the double-inertial frequency
waves becomes comparable to that of the near-inertial waves. In order to
examine generation mechanism of such superinertial waves, bispectral anal-
ysis has been carried out to show that the most predominant superinertial
wave, namely, first-vertical-mode double-inertial frequency wave is gener-
ated efficiently through nonlinear interactions between high-vertical-mode
near-inertial waves which are originally excited in the mixed layer.

In Chapter 4, we have examined how the energy thus supplied by external
forcing at large scales cascades through the internal wave spectrum down
to small dissipation scales. For this purpose, the quasi-equilibrium spectrum
obtained in Chapter 2 has been perturbed initially by adding energy bump
to different parts of low- wavenumber low-frequency portion of the spectrum,
and thereafter time evolution of the perturbed spectrum has been examined.
We have found that when the spectral bump is added to low-vertical-

wavenumber region within superinertial band (2f<w<3f), the energy is trans-
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ferred efficiently to high vertical wavenumber near-inertial region. In con-
trast, when the spectral bump is added to low-vertical-wavenumber near-
inertial region (f<w<2f), no significant energy cascade to high wavenumber
regionoccurs. These results indicate that energy transfers to small dissipation
scales within the internal wave spectrum are dominated by the resonant
interaction mechanism called parametric subharmonic instability (P.S.I) [ Mc-
Comas and Miiller, 1981].

The above result clearly shows that the superinertial waves reproduced
in the numerical experiment in Chapter 3 can be efficient energy sources
for the turbulent mixing in the deep ocean. In Chapter 5, therefore, we
have analyzed current meter data from long term moorings in the Northwest
Pacific Basin together with global sea surface wind data to see whether
such superinertial waves are actually excited in the deep ocean under strong
atmospheric forcing. By incorporating the wind data into a simple damped
slab model, it has been found that predominant inertial currents are excited
in the mixed layer by midlatitude storms in the Northwest Pacific Basin
during fall and winter. We have calculated the frequency spectra of the
horizontal kinetic energy for the deep ocean internal wave field during the
time period when the predominant inertial currents are excited in the mixed
layer. It has been shown that the spectral level significantly increases in
the double-inertial frequency band as well as in the near-inertial frequency
band, thus validating that double-inertial frequency waves are indeed excited
in the real ocean under strong atmospheric forcing. The superinertial waves
thus excited have been found to propagate over horizontal distances of the
order of 1000km from their source region. This propagation distance is
consistent with the mean free path of the low-vertical mode double-inertial
frequency waves theoretically predicted from the magnitudes of group ve-

locity and nonlinear interaction time [D'Asaro, 1991].
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Putting all the results together, we can propose here one possible scenario
for the energy transfer processes from large-scale atmospheric forcing down

to small-scale turbulent mixing as follows.

(1) Stong atmospheric disturbances traveling over the ocean excite high-
vertical mode near-inertial waves in the mixed layer.

(2) The high-vertical-mode near-inertial waves interact to generate low-
vertical-mode superinertial waves with frequencies just over 2f.

(3) The low-vertical-mode superinertial waves propagate over horizontal
distances of O(1000km) from their sources, while supplying their energy
to the local internal wave spectrum in the deep ocean.

(4) The energy thus supplied by the low-vertical-mode superinertial waves
are transferred efficiently across the local internal wave spectrum down
to high-vertical-mode near-inertial frequency region under the P.S.I
mechanism. As a result, small-vertical-scale near-inertial current shear
1s enhanced.

(5) As small-vertical-scale near-inertial current shear is enhanced, the roll-off
shifts to lower vertical wavenumbers leading to the increase in the rate

of energy dissipation and associated turbulent mixing at critical layers.

Schematic diagram illustrating the above scenario is shown in Fig. 6.1.
This scenario implies that the exact parameterization of turbulent mixing in
the deep ocean requires the knowledge of the global field of low-vertical-
mode superinertial internal waves which depends on the distribution of
atmospheric forcing and propagation distances of superinertial internal
waves. The information of atmospheric forcing field is available from the

Global Objectively Analyzed Data provided by the Japan Meteorological
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Agency whose spatial and temporal resolutions (Ax=~200 km, At=6 hrs) are

sufficiently high so that predominant atmospheric disturbances such as
midlatitude storms and hurricanes can be tracked. The propagation distance
of each superinertial wave is determined by multiplying the group velocity
by nonlinear interaction time which can be estimated from the extended
version of "Bump Experiment". The global field of low-vertical-mode
superinertial waves is then obtained in the three-dimensional numerical
model where the atmospheric forcing field is incorporated and the limited
propagation distance of each superinertial wave is reproduced by introducing
appropriate artificial friction. Thus quantifying the superinertial frequency
forcing and then applying it to the quasi-equilibrium internal wave spectrum
reproduced in Chapter 2, we can calculate the rate of nonlinear energy
transfer to small dissipation scales at each location. We propose here this

numerical approach as a feasible strategy to clarify the spatial and tem-

poral distributions of turbulent mixing intensity in the global ocean.
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