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1 Preface

After the emergence of lasers as a coherent light source and the practical
use of optical fibers as a communication channel, optoelectronics has been
playing an important role in the field of telecommunication and informa-
tion processing technology. And nowadays, the discovery and experimental
inspection of optical fiber soliton, and its application to communication
systems show the importance of nonlinear optics, and made a consider-
able contribution toward the foundation of the field called the nonlinear
guided-wave optics. There are increasing interests in unique features of
nonlinear waves guided not only in fibers but in various nonlinear optical
waveguides.

In addition, as a novel technology for the breakthrough of the limitation
of electro-optical and opto-electric conversions in the conventional optical
signal processing, there are considerably increasing interests in “all-optical
signal processing”, unique features of nonlinear guided waves, and the
application to optical bistable devices and optical logic gates. In these
backgrounds, the analysis technique for the nonlinear optical fibers and
waveguides 1s the most important for design of all-optical signal processing
devices.

Most papers concerned with modal analysis of nonlinear optical waveg-
uides have dealt with a planar guiding structure in which optical power
is confined solely along one direction (y axis). For practical applications,
however, there may be advantages in using a channel guiding structure in
which optical power is confined along the lateral direction (z axis) as well
as the y direction.

Recently, an effective index method (EIM) [1], [2] and a vector or scalar
finite element method (FEM) [3]-[8] have been applied to modal analy-
sis of nonlinear optical channel waveguides. Although the calculational
procedure of the EIM is relatively simple, it seems to be difficult to treat
arbitrarily shaped and/or inhomogeneous structures. On the other hand,
the FEM is more effective for precise investigation. In comparison with
the vector finite element analysis with penalty function method [3]-[7] for
the elimination of the nonphysical spurious solutions, the scalar FEM ap-
proach [5], [8] has as its main advantages: the smaller matrix dimensions,

no spurious solutions, and capability of easily computing the propagation
) J o o, @)




constant at a specified frequency. In [5], [8], however, only the TE-like
polarization 1s considered.

In Chapter 2, a self-consistent numerical approach based on the scalar
finite element method is described for the analysis of both TE-like and
TM-like nonlinear guided waves in optical channel waveguides. In order
to improve the convergence and accuracy of solutions, isoparametric ele-
ments and numerical integration formulae derived by Hammer et al. are
introduced. Numerical results are presented for nonlinear elliptical core
optical fibers, and it is confirmed that in this approach, highly accurate
solutions can be obtained with small scale computation. Furthermore,
graded-index nonlinear optical channel waveguides are also analyzed, and
the influence of refractive-index profiles on propagation characteristics of
the nonlinear guided waves is investigated.

Recently, some papers concerned with the modal [9] and/or beam propa-
gation analyses [10] of nonlinear optical waveguides have dealt with a sym-
metric planar guiding structure which is composed of thin film embedded
in intensity-dependent nonlinear media, and have shown the phenomena
peculiar to nonlinear guided waves, such as symmetry-breaking behaviour,
existence of symmetric/asymmetric modes, spatial soliton emission, and
so on. Modal characteristics of a nonlinear optical fiber with nonlinear
cladding have also been analyzed [11], [12], and axially symmetric modes
[11] whose field profiles are similar to surface wave modes and asymmetric
modes [12] whose field profiles have no axial symmetry have been found.
However, the excitation and the stability of these interesting stationary
modes have been quite rarely investigated.

In Chapter 3, a 3-dimensional beam propagation method is described
for the analysis of nonlinear optical fibers, where the finite element and fi-
nite difference methods are, respectively, utilized for discretizing the fiber
cross section and the propagation direction. The application of certain
techiniques for differential operation and numerical integration makes the
improvement of the efficiency and accuracy of solutions. The propaga-
tion characteristics of nonlinear optical fibers with linear core and nonlin-
ear cladding are analyzed, and unique features of nonlinear guided-wave
propagation are investigated. Furthermore, all-optical logic gates with

practical, 3-dimensional geometry consisting of optical fibers and a non-
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linear film are proposed, and their operations of Boolean arithmetric are
demonstrated.

The use of the approximate scalar theory [13], [14] would be possible
under certain restrictions on magnitudes of nonlinearities and optical in-
tensities. Recently the finite element method with nodal elements has been
applied to optical channel waveguides with Kerr and/or Kerr-like nonlin-
earities, based on the rigorous vectorial approach [15]-[20]. The most
serious problem associated with the vectorial finite element approach, on
the other hand, is the appearance of spurious solutions, and the other
serious problem is that 1t is quite difficult for dealing with corner and
interface singularities so long as conventional nodal elements are used to
approximate vector fields.

In Chapter 4, a self-consistent full-vectorial approach based on the finite
element method with edge/nodal hybrid element [21], [22] which is intro-
duced to cure the problems mentioned above is described for the modal
analysis of nonlinear optical channel waveguides, and an application of
conventional scalar field theory to the prediction of modal properties of
both TE-like and TM-like nonlinear guided modes is examined. Numeri-
cal results are presented for nonlinear optical fibers, strip-loaded nonlinear
optical channel waveguides, and multiple-quantum-well-embedded nonlin-
ear optical channel waveguides. Serious limitations on the validity of the
scalar field approximation are found in the high power regime, where non-
linearities are expected to play an essential role in forming the stationary
mode.

The 3-dimensional beam propagation analysis with approximated-scalar
finite-element and finite-difference methods, described in Chapter 3 of this
paper, 1s avallable under the assumption of the nonlinear guided wave as a
scalar field. When the guided wave in strong-nonlinearity and high-power
regime, however, exceeds the limit of the approximation, the full-vectorial
beam propagation analysis is absolutely essential. Recent papers [23]-[25]
propose the analysis based on the vector finite element beam propaga-
tion method. The proposed approach is based on the hybrid element
which is also utilized in Chapter 4 for waveguides’ transverse direction
and the wide-angle finite difference method with backward scheme for the
propagation direction. These papers demonstrate the beam propagation

in nonlinear bulk media, nonlinear slab waveguides, and the emergence of




optical vortex soliton in the cylindrical waveguides filled by self-defocusing
nonlinear media. The proposed approach reveals the fascinating feature
of nonlinear optical effects, however, there is room for progress of compu-
tational efliciency, taking the practical use for computer aided design of
nonlinear optical devices into account.

In Chapter 5, in order to improve the efficiency and accuracy, the cal-
culational technique for numerical integration is newly applied to the 3-
dimensional full-vectorial finite-element beam propagation method. For
the efficient wide-angle beam propagation analysis, Padé approximation is
introduced to the differential operation along propagation direction. The
formulation of this proposed approach is described in detail.

The conclusions of this paper are described in Chapter 6.




2 Approximated Scalar Finite Element Analysis of
3-Dimensional Nonlinear Optical Wavegudes

2.1 Introduction

Nonlinear optical waveguides have attracted considerable attention be-
cause of their fascinating features and their use in all-optical signal pro-
cessing. Most papers concerned with modal analysis of nonlinear optical
waveguides have dealt with a planar guiding structure in which optical
power is confined solely along one direction (y axis). For practical ap-
plications, however, there may be advantages in using a channel guiding
structure in which optical power is confined along the lateral direction (x
axis) as well as the y direction.

Recently, an effective index method (EIM) [1], [2] and a vector or scalar
finite element method (FEM) [3]-[8] have been applied to modal analy-
sis of nonlinear optical channel waveguides. Although the calculational
procedure of the EIM is relatively simple, it seems to be difficult to treat
arbitrarily shaped and/or inhomogeneous structures. On the other hand,
the FEM is more effective for precise investigation. However, the vector
finite element solutions [3]-[7] have been known to include nonphysical,
spurious solutions. The penalty function method has been used to cure
this problem [3]-[7], but in this technique, an arbitrary positive constant,
called the penalty coefficient, is involved, and the accuracy of solutions
depends on its magnitude. Furthermore, it is difficult to yield the matrix
eigenvalue equation to solve for the propagation constant, so iterations
are usually needed to find the propagation constant at a specified fre-
quency. Although the scalar FEM [5], [8] is approximate in a strict sense,
this approach has as its main advantages: the smaller matrix dimensions,
no spurious solutions, and capability of easily computing the propagation
constant at a specified frequency. In [5], [8], however, only the TE-like
polarization is considered.

By the way, in the earlier finite element analyses of nonlinear optical
channel waveguides [3]-[8], the intensity-dependent refractive index is as-
sumed to be constant within each element. Hence, if the accuracy of
solutions needs to be improved, the scale of computation becomes signifi-

cantly large. For instance, in [4], [8] about 1000 linear triangular elements




are used to obtain sufficiently converging solutions.

In this chapter, with a view to improving the efficiency of the scalar
FEM which is considered effective for the analysis and design of nonlin-
ear optical channel waveguides, isoparametric elements are introduced,
and the use of numerical integration formulae derived by Hammer et al.
26], [27] is attempted for the calculation of integrals necessary for con-
structing element matrices. Both TE-like and TM-like guided waves are
treated. By means of this approach, the refractive index change within
each element can be faithfully evaluated according to the electric field
distribution without fixing the index constant in each element, and the
graded-index nonlinear optical waveguides with curved boundaries can
also be easily treated. Nonlinear elliptical core optical fibers are, for the
first time, analyzed. It is found that, in comparison to the conventional
method without isoparametric elements, the highly accurate solutions can
be obtained with substantially smaller computational effort. Furthermore,
graded-index nonlinear optical channel waveguides are also analyzed, and
the influence of refractive-index profiles on propagation characteristics of
the nonlinear guided waves is investicated. To date, all the papers con-
cerned with modal analysis of graded-index nonlinear optical waveguides
have dealt with only the planar guiding structures [28]-[33].

2.2 Basic Equations

We consider a nonlinear optical channel waveguide with arbitrary cross
section in the zy plane and assume that the structure is uniform along the
propagation direction (z axis). From Maxwell’s equations, the following
Helmholtz equation is derived under the assumption of a vanishing par-
asitic electric or magnetic field component, £, = 0 for the TE-like, E*
modes (main fields are E, and H,) and H, = 0 for the TM-like, EY modes
(main fields are F, and H,) [27], [34]:
0%¢p ¢

5.2 T pa—yg + gkgd — pB°p=0 (1)

p

where kg 1s the free space wavenumber, (3 is the propagation constant along
z axis, and the main field ¢(z,y) and coefficients p, ¢ are written as

ded By, el glent (2)




for E* modes, and
b=H., p=1/n°, g=1 (3)

ad

for EY modes. Assuming electrostrictive and thermal nonlinearities [7]
which are usually supposed in modal analysis of nonlinear optical waveg-
uides, the intensity-dependent refractive index n is given by

n=nlE, |E|“)) (4)

The electric field vector E used in (4) is approximated as

E=Foa, -5, (5a)
1 dq
AT A S (5b)
Taff JdxT
for E* modes, and
Bl ek .4 (6a)
Ny 7 I SIGR
l/:~n fr ()¢7 E::__‘]_g(b‘ h' — {Q—?
(i n> dY

for Y modes. Here ¢,, t,, and %, are the unit vectors in the z, y, and z
directions, respectively, £ and § are the Cartesian coordinates normalized
by the free space wavenumber, namely, Z = koz and § = koy, n.ss is the
eflective refractive index defined as n.sr = B/ko, and Zj is the free space
impeadance.

In the case of a planar optical waveguide (9/9x = 0) the above equations
for the E¥ and EY modes give exact expressions for truely TE and TM
polarizations, respectively:.

2.3 Finite Element Discretization

We divide the waveguide cross section into a number of isoparametric tri-
angular elements as shown in Fig. 1, where closed circles 1 to 6 denote
nodal points and open circles 1 to 7 denote sampling points used for nu-
merical integration. In the isoparametric element the polynomial order
representing the geometry of an element is coincident with that interpo-

lating the field in an element. In the quadratic isoparametric element in
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Fig. 1 the field ¢ and the normalized Cartesian coordinates Z, ¥ can be
expanded as

6={N} {6} (7)
f:{z\'}f{;f}(, (8)
g={N} {7} (9)

with

L V) = 4L T (10)

where {¢}. and {Z}., {7}. are, respectively, the electric or magnetic field

and the normalized Cartesian coordinate vectors corresponding to the

nodal points 1 to 6 within each element e, {/N} is the shape function

vector, L, Lo, L3 are the area coordinates, and 7" denotes a transpose.
Defining the local coordinates &, n as

b=, L= Ly l-E5n (11)

the transformation for differentiation is given by

9/0¢1 . [8/0z] [Ju Ji]][8/0z
{3/077}_[(]}{3/5@} B {Jm J} {a/ay}
with

Jn=07/0¢ = {Ne}! {z}. (13a)
J12=07/9€ = {NeY {5}, (13b)
(13¢)
(134)

&I

J”:dl/&n:{/\ﬁ,} i
Jn=07/0n = {N,} {7}

where [J] is the Jacobian matrix and {N¢} = 9{N}/0¢, {N,} = 0{N}/0n.
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The transformation relation for integration of the function f(z,7) is
given by

//f y)dzdy = // f(&,m)|J|dEédn (14)

where |J| is the determinant of the Jacobian matrix and is known as the
Jacobian.
Using (12), ¢' in (5b), (6b) is expressed as

¢ = |J|7 (T2 Ne}' — TN} ) {0} (15)

for £ modes, and
§b/ FE “]’_1<—J21{[\/?£}T = Jll{lyvr]}T){Q,ﬁ}c (l())

for EY modes.
Applying the finite element technique to (1), we obtain

(K (e){dt=necss[M(6){o} (17)

with

Uﬂ@k§/ﬂuf 6,6 ){NHN}Y

Y;
—pe(Z, 7; 6, @) { Nz H{ Nz}
—m@d¢ N H N} Ndzdy (18)
M(@)=% [/ pe(,7: 6, ¢ {NHN} dzdy (19)

where the components of the {¢} vector are the values of ¢ at all nodal
points, {N;} = 90{N}/0z, {N;} = 0{N}/0y, and . extends over all
different elements.

Noting (7)-(16), the integrants in (18) and (19) are given as the func-
tions of the area coordinates, and thus, the numerical integration formulae
derived by Hammer et al. [26], [27] can be directly applied. The integral
calculations needed for constructing the matrices [K| and [M] can be re-
placed with simple product-sum calculations as

K (¢)]= ZZ*” | T1ilae(Zi, o5 60 SN FAN 1

L oi= l
—p(< uyugbz )




TABLE |
THE VALUES OF THE WEIGHTING COEFFICIENTS AND AREA COORDINATES

1 Wi <L11‘; Lo;, L:sz)
1 0.225 (a, a, a)
2 013239415  (8,7,7) a=1/3
3 0.13239415  (v,8,7)  B=0.05971587
4 0.13239415  (v,7,8)  ~v=0.47014206
5 0.12593918 ((5,6,6) 6=0.79742669
6 0.12593918 <€,(576) 6=0,1012%8651
7 0.12593918 (€,€,0)
x| J|;7*(Jaai{ Ne}i — Jrai{ N }i)
X (Ja2i{ Ne}ti — Jiai{ No}i)
SEA T B &)
x| J|7* (= J2ri{ Nei + Jui{ N i)
X(=Jni{ Ne}i + Jii{ No}i )] (20)
[A/I(qb)}:g 21 -;—W’z\zflz:pe(fl_?z, Ti; &, BN} AN}
(21)

where the subscript ¢ (=1, 2, ---, 7) denotes the quantity associated with
the sampling point i, the values of the weighting coefficient W, and the
area coordinates Ly;, Ly, Ls; are presented in Table I[26], [27].

The total guided wave power is evaluated as

1 o0 " Te A 2
fogn ':5././—x E H'dzdy = Qng '/_/_x 62 dady (22)
for E* modes, and
1, i ) NeriZo [ |0 .
P e i)~ //—x ——E,’/H.I.'dl,dy — _fé‘ 0 //~>C -;Lz—d]/dy <2')>

for EY modes [27].
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To obtain the intensity-dependent refractive index, it is necessary to

compute the actual field ¢ without normalization. The relation between

i B

the actual (¢) and the normalized (¢) fields can be written as

¢ = koy2ZoP/ness

0

(24)

for E* modes, and

6] = koy/2P/(ness Zo)| 9| (25)
for EY modes, where the usual normalization procedure of the eigenvector
of (17)

[ plélPdzdg = {6}T[M(#)|{¢} =1 (26)

1s considered.

Equation (17) is a nonlinear generalized eigenvalue problem whose eigen-
value and eigenvector correspond to ng_ff and {¢}, respectively. Hence, one
can solve 1t self-consistently using the following iterative scheme:

1) Specify the refractive index n, the wavelength A = 27 /kg, and optical
power P as input data.

()
R

Assign initial values to n.ss and {¢}.

o8

) To obtain the nonlinear coefficient matrices [K(¢)] and [M(¢)], cal-
culate {¢} and n.

4) To obtain a new set of n.;; and {¢}, solve the matrix eigenvalue
equation (17).

5) Iterate the above procedures 2), 3), and 4) until the solution (eigen-
value) converges within the desired criterion.

Optical power specified in this iterative scheme is increased or decreased
between a certain range with appropriate intervals. For the linear case,
the solution can be obtained without assigning initial values, and for the
nonlinear case, the initial values at each optical power are assigned to
the convergent solutions calculated at the previous power. These initial
values differ between increasing and decreasing powers, and thus, the above
iteration scheme can evaluate the hysteresis nature of nonlinear optical
waveguldes as described later.

11




2.4 Numerical Results

A. Nonlhinear Elliptical Core Fibers

As a nonlinear optical waveguide with curved boundaries, we consider a
nonlinear elliptical core optical fibers as shown in Fig. 2. Here, for the
symmetric, fundamental modes, namely, E{, and E{; modes, we subdivide
one-quarter of the waveguide cross section into isoparametric elements.
Four profiles of finite element mesh division are considered, all of which are
shown i Fig. 3, where N, is the number of elements, and the Neumann

condition (d¢/0n = 0, where 9/9n is the outward normal derivative)
1s imposed on all the boundaries AB, BC, CD, and DA. The Dirichret
condition (¢ = 0) can also be utilized on the boundaries BC and CD

which are located far from the core region, however, the difference between
the results obtained by using the Neumann and Dirichret conditions is
undistinguishable.

Figure 4(a) shows power dispersion curves for an elliptical core optical
fiber with Kerr nonlinearity in the core and cladding, where the wavelength
A = 0.632um and the following waveguide parameters are used:

a=+v/2 um , b= 1/\/§um
ni=nyo[l + n'|E|*/(22Z)]
no=nyo[l + n'|E|*/(2Z))]
e 1468, o= 14D, G = 8.2.% 10 mt W

Here n' is the nonlinear optical coefficient.

Figure 4(b) shows power dispersion curves for an elliptical core opti-
cal fiber with Kerr nonlinearity in the core, where the wavelength A\ =
0.5145um and the following waveguide parameters are used:

a:\@ pm , b = 1/\/§ fm
m=nio[l + | B/ (22y)
Na=Mn20
nig=l.57; nay= 1,66, u =107 m*fW,

At low optical power, the results of the earlier approach using conven-
tional quadratic triangular elements with straight sides agree well with
those of the present approach using isoparametric triangular elements.
When the power is higher, however, a significant discrepancy is observed.

12




In the present approach the convergence of solutions is very fast irrespec-
tive of the polarization and the magnitude of the nonlinearity, and highly
accurate results can be obtained without increasing the computational ef-
fort. It is found from Figs. 4(a) and (b) that the modal birefringence is
greatly enhanced with increasing optical power.

We have found that in case of ¢ = b, namely a circular core optical fiber,
the results of the present approach are in good agreement with analytical
solutions [35]. It is interesting to note that the power dispersion curve for
the E%, mode of an elliptical core fiber (a = v/2um and b = 1/v/2um) is
similar to that for the LPy; mode of a circular core fiber with the same
core area (a = b = lum).

B. Graded-Index Nonlinear Channel Waveguides

We consider a graded-index nonlinear optical channel waveguide as shown
in Fig. 5, where the wavelength A\ = 0.515um and the following waveguide
parameters are used:

t=1:0.0m
nr=nyo + Ang{l — exp[—non'|E|*/(2An:7Z0)]}
ne=ns0 + Anf(z)g(y)
Ne="Nc0
nf=1.95, ng = 1.99, neo = 1.0
An=0.02, Ay = 0.04, n' =107 m*/W.

Here the nonlinearity is produced by a saturable system. The refractive
index profile in the substrate region is assumed to be

f(z)=exp[—(z/d;)’]

g(z)=exp(—y/d,)
for ‘type 1’ with Gaussian and exponential profiles in the z and y direc-
tions, respectively,

F(o)=exp—(2/d.)]

g(z)=exp|—(y/d,)?

for ‘type 2’ with Gaussian profiles in both the directions, and

f(z)=u(z +d;) — u(x — d;)
g(z)=uly) — uly — d,)

13




for ‘type 3’ with step-index profiles in both the directions, where u is the
unit-step function, and d, and d, are the diffusion lengths in the z and y
directions, respectively. A typical element division is shown in Fig. 6, and
the Neumann condition is imposed on all the boundaries AB, BC, CD,
and DA.

Figures 10(a) and (b) show power dispersion curves of the E¥, and the
E{, modes, respectively, where d,=d,=3um. The change in the effective
index with optical power is initially slower, but above a certain threshold
the mode moves abruptly from the linear substrate into the nonlinear film
causing a jump 1n the effective index. The threshold power of the graded-
index waveguide (type 1 or 2) is much lower than that of the step-index one
(type 3). When decreasing optical power, the dispersion curve exhibits the
hysteresis nature and the mode returns abruptly to the linear substrate.
The threshold power becomes higher and the width of the hysteresis loop
becomes also larger in the order, type 1, type 2, and type 3. The hysteresis
loop for the step-index waveguide is significantly different between the E7,
and the E{; modes.

Figure 8 shows the proportions of optical power carried by the film and
substrate regions for the Ef;, and E{; modes, respectively. Only negligible
power propagates through the cover region. When optical power increases
(or decreases), beyond the threshold power, suddenly most of the power
moves to the film (or substrate) and the power inside the substrate (or
film) falls drastically.

2.5 Conclusion

We have formulated an efficient approach based on the scalar finite el-
ement method for the analysis of nonlinear optical channel waveguides.
Both TE-like and TM-like modes have been treated, and in order to im-
prove the convergence and accuracy of solutions, isoparametric elements
and numerical integration formulae derived by Hammer et al. have been
introduced. Numerical results have been presented for nonlinear elliptical
core optical fibers and graded-index nonlinear optical channel waveguides.

For the numerical advantage, we have used the symmetry of nonlinear
waveguides, however, 1t should be noted that its use can exclude some
modes which may be allowable in nonlinear waveguides. Although the

14
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modal solutions provide useful information about the nonlinear properties
of the guided waves, more involved beam propagation analysis is needed

in a practical situation.
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Fig.1  Isoparametric triangular element.

16




g Tt e e ey 7 P S B o B VAP Ry P e € 5101

2a

cladding

Fig.2  Nonlinear optical elliptical core fiber.

17




e 9 % e o et 2 rem e < o P gt

oo > e bt e oy 1 e e

B
C
B
C

i
N,
-
(d) N,=96

R
{/
Lusls
S—_
(b)
N 7/'—\"_ P
1 7\f//

>
A
1ehen

o] R-irt a

(e) N.=b4
Element divisions for nonlinear optical elliptical core fibers.

Fig.3




P T R Ty e £ e P

1.50 1.60 o
With isoparametric elements Isoparametric Conventional ! y
SNl e Ne =56 elements clcmenw L1 /

|.49F ====N¢=24 ——N.=6 1.59F —Ne=96 ——N.=96  JI}/

Without lsnp.lr.mutrlc elements

J B, e N =56
————N =24 == N.=6

.'/

W
oo

T
oo

B
~
L

Etfective index
Effective index

1 46 15
1 45 : B 155 1 l
0.0 05 1.0 s >0 10 20 30
Total power[MW] Optical power [UW]
(a) Kerr nonlinearity in core (b) Kerr nonlinearity in core.

and cladding.

(1) E¥ mode

1.50 1.60

With isoparametric elements

Isoparametric Conventional
elements elements

Ne =96 —— N, =96
[ ——Ne=36 —— No=36

W
\O

3 5 ML S
£1.48¢ =158
O ]
= =
5147 ,‘;_31_57
E - N R ol

1.46 L56F

1.42 4 : . 1.55 : :

0.0 0.5 1.0 1.5 0 10 20 30
Total power[MW] Optical power [UW]
(a) Kerr nonlinearity in core (b) Kerr nonlinearity in core.

and cladding.

(i1) EY mode

Fig.4  Dependence of optical power on effective indices of

nonlinear optical elliptical core fibers.

19




g
i
i
i
|
]
i
|
{
L}
i
i

A D
e : cladding |
ne 7| nonlinear film | ¢

|
|
i
| substrate
|
i
|

Fig.5 Graded-index nonlinear optical channel waveguide.

20




Fig.6  Element division for graded-index nonlinear optical channel
waveguides(N,=440).
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3 Approximated Scalar Finite Element Beam Prop-
agation Analysis of 3-Dimensional Nonlinear Op-
tical Wavegudes

3.1 Introduction

Recently, modal [9] and/or beam propagation analyses [10] of nonlinear
optical waveguides have been performed for a symmetric planar guid-
ing structure which is composed of a thin film embedded in intensity-
dependent nonlinear media, and phenomena peculiar to nonlinear guided
waves such as symmetry-breaking behaviour, existence of symmetric/ asym-
metric modes and spatial soliton emission have been demonstrated. Modal
characteristics of a nonlinear optical fiber with nonlinear cladding have also
been analyzed [11], [12], and axially symmetric modes [11] whose field pro-
files are similar to surface wave modes and asymmetric modes [12] whose
field profiles have no axial symmetry have been found. To the best of our
knowledge, however, the excitation and the stability of these interesting
stationary modes have not been investigated.

In this paper a numerical approach based on the finite element method
(FEM) for the fiber cross section and the finite difference method along
the propagation direction is described for 3-dimensional beam propagation
analysis of nonlinear optical fibers. Padé approximation [36]-[41] is ap-
plied to the differential operator along the propagation direction. With a
view to improving the efficiency of the scalar FEM which is considered ef-
fective for the analysis and design of nonlinear optical channel waveguides,
1soparametric elements are introduced, and the use of numerical integra-
tion formulae derived by Hammer et al. [14], [26], [27] is attempted for
the calculation of integrals necessary for constructing element matrices.
By means of this approach, the refractive index change within each ele-
ment can be faithfully evaluated according to the electric field distribution
without fixing the index constant in each element, and the graded-index
nonlinear optical waveguides with curved boundaries can also be easily
treated. Using the numerical approach developed here, the modal and
propagation characteristics of optical fibers with linear core and nonlinear
cladding are analyzed, and the hysteresis nature of the stationary mode,
the linear LPy; mode excitation and the stability of the stationary mode,
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and the spatial soliton emission are investigated. Furthermore, opera-
tions of all-optical logic gates using the interaction between optical spatial
solitons are investigated. Recently, optical logic gates which consist of a
five-layer dielectric structure with a nonlinear layer was proposed [42], and
the fundamental and theoretical perspective for realizing all-optical AND,
OR, and XOR operations based on the interaction of spatial solitons was
investigated. Although the results are very fascinating, because of the
difficulty of the broad slab-mode excitation and the self-focusing effect of
nonlinear media, the feasibility of these optical logic gates cannot be fully
proved with the 2-dimensional analysis. For more practical discussion, it
is necessary to deal with 3-dimensional structures. Here, all-optical logic
gates with 3-dimensional geometry consisting of optical fibers and a non-
linear film are proposed, and their operations of Boolean arithmetric such
as AND, OR, and XOR logic functions are demonstrated.

3.2 Basic Equations

We consider a nonlinear optical fiber with cross section in the zy plane.
From Maxwell’s equations, the following Helmholtz equation is derived for
linearly z-polarized modes with the electric field £, (E, = 0) as

2 L - 5 L I b ek
ox? 0y? 0z2

where kg is the free space wavenumber, and the intensity-dependent re-

4 kin K, = 0 (27)

fractive index n is given by
b ey (B (28)

with E being the electric field vector.
The Helmholtz equation (27) is transformed with the substitution of
a solution of the form under the slowly varying envelope approximation

(SVEA)
E.(z,y,2) = ¢(z,y, z)exp(—jkonoz) (29)
into the following equation for the slowly varying complex amplitude ¢:
92 4 9./ 2 4 2 4
g;: — 2jkong gj + i;i . g;
+kj(n® —ng)¢ =0 (30)
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where ng is the reference refractive index.
The electric field vector E used in (28) is approximated as
E(z,y,z) = ¢exp(—jkonoz)t,
—7(9" [ kono)exp(—jkongz)i. (31)

where ¢’ = 0¢/0z, 1, and 1, are the unit vectors in the x and z directions,

respectively.

3.3 Finite Element Discretization

Dividing the fiber cross section into a number of isoparametric triangular
elements [14], [26], [27], and applying the finite element technique to (30),
we obtain

UWﬁ%f}—Zﬂmeﬂﬁﬁ
+([K ()] — kgno[M]){¢} + [K]r{s} = {0} (32)

with

K (9)] = X[ [kin(z, v,z 6, ) {NHN)T

—{ NN} = {N,HN, Y |dady (33)
[M] = S {NHN} dzdy (34)
[K]p = \;/F —jkn{N}p{N}EdD (35)

where the components of the {¢} vector are the values of ¢ at all nodal
points, {N'} is the shape function vector, { N} is the shape function vec-
tor on the computational window edge I', {0} is a null vector, {N,} =
O{N}/0z, {N,} = 9{N}/0y, T denotes a transpose, and ¥, and ¥’
extend over all different elements and the elements related to the bound-
ary I', respectively. The parameter k, included in the matrix [K|r is the
wavenumber of the outgoing plane wave from the boundary I' [39]-[43].
The integrants in (33) to (35) are given as the functions of the area coordi-
nates, and thus, the numerical integration formulae derived by Hammer et
al. [14], [26], [27] can be directly applied. The integral calculations needed




for constructing the matrices [K(¢)|, [M], and [K]r can be replaced with
simple product-sum calculations [14].
Equation (32) can be rewritten formally as

o} _

=5 2] kQT'LO [A[} y
/A
([K ()] — kgng[M]){} A
A (:)L 0 - (3())
ijono dz
with B
[K(¢)] = [K(¢)] + [K]r (37)

Utilizing Padé approximation [36]-[41] and replacing d/dz in the denomi-
nator of (36) by

d 1 i i :
- = 5 M (K (6)] - KindM) (38)

the following Padé equation i1s obtained:

koM ()] L2

dz
+([K(¢)] — kin5[M]){s} = {0} (39)
with
[M(#)] = [M] + 5 ([K(8)] — kgng[M)) (40)

4kernd
The Fresnel or paraxial equation is easily obtained from (39) by replacing

the matrix [M(¢)] by [M].

3.4 Crank-Nicholson Algorithm

Applying the Crank-Nicholson algorithm for the propagation direction, z,
to (39) yields

[A(@)]i{d}iv1 = [B(d)]i {2} (41)
with
[A(9)]: = —9JAt”m[\[(¢ﬂ
+0.5A2([K ( — king . [M];) (42)
B(¢)]i = —‘?ka/{ J
—0.54z([K ] — kgng[M]:) (43)
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where Az is the propagation step size, and the subscripts ¢ and i + 1
denote the quantities related to the sth and (7 + 1)th propagation steps,
respectively.

The reference refractive index ng is renewed at each propagation step
automatically as [39]-[41], [44]

o _p | {SHIE(S){e):
4 ki{eh[M]{o},

where | denotes complex conjugate and transpose.

(44)

Equation (41) can be solved with the following iterative scheme:

1) Specify the refractive index n, the wavelength A\ = 27 /kg, and optical
power as input data.

2) Assign initial values of the reference refractive index ng and the slowly
varying complex amplitude {¢}.

| 3) Calculate coefficient matrices [A] and [B] and solve (41) for a new
| solution {@}; 1.

’ 4) Update n from (28) and ng from (44).

5) Iterate the above procedure 2), 3), and 4) until we reach the desired
number of iterations in the z direction.

3.5 Numerical Results and Discussion

3.5.1 Modal Analysis of Nonlinear Optical Fiber

The modal analysis [14] can be easily performed by setting d/dz = 0 in
(32), and then ng becomes the modal effective index, n.ss, and {¢} is the
corresponding modal (stationary) field. An iterative scheme for solving
this nonlinear generalized eigenvalue problem has already been reported
in [14]. We consider a nonlinear optical fiber as shown in Fig. 9. Here, we
subdivide all the fiber cross section into 360 isoparametric elements, and
the Neumann condition (0¢/dn = 0 with 9/9n being the outward normal
derivative) is imposed on all the computational window edges.

Fig. 10 shows power dispersion curves for the fundamental (LPy;) mode
of a nonlinear optical fiber with saturable nonlinearity in the cladding,

p:
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where P is the input optical power, the wavelength A = 1.3um, the core
diameter a = 5um, the refractive index of the core n; = 1.57, and the
refractive index of the cladding is given by

nrn'| E?
no = nr + Angy {1 — exp <~ R M

QZOA”,S(”

Here, the linear part of the nonlinear refractive index n; = 1.55, the non-
linear optical coefficient n’ = 107"m? /W, the saturation of the nonlinearity
Ang,s = 0.04, and Zj is the free space impedance.

The change in the effective index with optical power is initially slower,
but above a certain threshold the symmetry of the mode is broken and the
field is localized near the core-cladding boundary in nonlinear cladding,
causing a jump in the effective index. When decreasing optical power, the
dispersion curve exhibits hysteresis nature and the mode returns abruptly
to the linear core.

Figure 11 shows the field distributions at P = 0.5mW and 5.5mW.
When optical power is below the threshold, most of the power is within
the core region, but when optical power increases beyond the threshold,
the symmetry-breaking behaviour is observed, suddenly most of the power
moves to the cladding, the power inside the core falls drastically, and the
field becomes axially asymmetric.

3.5.2 Beam Propagation Analysis of Nonlinear Optical Fiber

We consider a nonlinear optical fiber with saturable nonlinearity in the
cladding and make an attempt to estimate the behaviour of propagating
waves excited by launching the linear LPy; mode. The analysis condition
1s the same as in the modal analysis, except that the transparent boundary
condition is imposed on all the computational window edges.

Figure 12 shows the contour plots of field amplitudes, where the input
LPg; power P = 0.5mW. Since this low input power does not stimulate
the cladding nonlinearity, the excited beam is propagating stably up to
the distance [ = 200pm, and the beam profile is quite similar to that of
the linear LP(, field. Figure 13 also shows the contour plots for P =
5.5mW. This input power is enough to stimulate the cladding nonlinearity
and to break the power confinement. At the propagation distance [ ~
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30 to 70um, a ring-shaped beam surrounding the core is formed, and
the intensity maxima lie near the core-cladding boundary in nonlinear
cladding. The shape is quite similar to the ring-shaped surface mode found
by assuming axially symmetric solutions [11]. The axially symmetric ring
mode 1s unstable, the symmetry is broken at [ ~ 70 to 80um, and the
beam splits into two packets. Then, these two beams draw each other, and
coalesce in the core region, but repulse each other again, and finally are
emitted into the cladding region. These emitted beams behave themselves
like spatial solitons [10], and may be applicable for constructing active
optical devices such as soliton couplers [45] and optical logic gates [42].

3.5.3  All-Optical Logic Gates

As all-optical logic gates with 3-dimensional structure, we consider a wave-
guide-type nonlinear optical device as shown in Fig. 14, where the wave-
length A = 1.064um, the core diameter a = 2um, the refractive indices of
core and cladding n; = 1.57 and ny = 1.55, respectively, the nonlinear film
thickness ¢ = 3um, and the refractive index of the nonlinear film is given

by

—nn/|E|?
QZOATLS(Lt

ng =nyr, + Ansat L eXp

Here, the linear part of the nonlinear refractive index n; = 1.55, the non-
linear optical coefficient n’ = 1077m? /W, the saturation of the nonlinearity
Angg = 0.04, and Zj is the free space impedance.

We assume the device input by launching the linear LPy; mode into the
left and right cores, that is, input ports, and the output by detecting the
optical power in the nonlinear film, that is, output port. At first, we should
define the correlation between propagating beams and binary state in the
optical logic gate. The Boolean logic state in the device considered here is
related to the existence of optical power in the ports, in other words, the
presence/absence of power in each port represents the Boolean variable
such as “1/0”, “H/L”, or “T/F”. The output Boolean variable can be
decided by comparing the output power to certain threshold.

In our binary criterion, the output state is set to “1” if the output power
in the nonlinear film occupies over 50% of the input power per port P,
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and 1s set to “0” otherwise. For the sake of simplicity and convenience,
we 1ntroduce the concept of the input power per port P to the expression
of the launching power. In short, P = P;, for single-port excitation and
P = P,,/2 for double-port excitation, where P,, represents total input
pOWwer.
The device length is determined so that spatial soliton interactions in
the device can realize the operation of Boolean logic functions. Figure
| 15 shows the condition of input-port excitation and device length for the
| power emergence in the output port which satisfies our binary criterion
| for setting the variable “1”. The region with horizontal lines denotes the
possible region to define the output as “1” for single-port excitation, and
the region with vertical lines also denotes the same region but for double-
port excitation, without relative phase difference. The darkest area is the
overlap of them. From this figure we can get the information how to choose
the input power and the device length in order to realize desired Boolean
AND/OR functions. In addition, if we consider the case of double-port
excitation with relative phase difference of 7, output port is set to “0”
| in the region of P < 250uW and the device length shorter than 150um.
| Therefore, we can also realize the XOR function by using the combination
’ of single-port and double-port opposite-phase excitations.

Figure 16 shows an example of AND gate operation with P = 1504W. In
the case of single-port excitation, the launching LPg; beam is propagating
stably up to 70pm, and the beam profile is remaining as the LP;; mode.
The input power is not so high for spatial soliton emission, except for
double-port in-phase excitation at the same P. A couple of LPy; incident
beams stimulates the film nonlinearity, and allows spatial solitons to emit.
At the propagation distance [ ~ 40um, the two beams are coupled, and
most of the power is shifted to the nonlinear film at { = 70pum. In our
binary criterion, output port is set to “0” in single-port excitation and “1”
in double-port excitation, and considering the state of input and output
ports 1n our binary criterion, this optical logic gate acts as AND gate, that
1s “0A1=1A0=0" in single-port excitation and “1 A1 = 1" in double-
| port excitation. The result “0 A0 = 07 is trivial, taking the situation that
no beam excitation makes no output into account.

Figure 17 shows an example of OR gate operation with higher input
power P = 250uW than that in the AND gate example. The input power
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is high enough to emit the spatial soliton in single-port excitation. The
excited beam in the output port is moving to the nonlinear film in the
70pm propagation. In double-port in-phase excitation at the same P
the two beams are coupled at | ~ 30um, most of the power lies in the

3

nonlinear film at [ >~ 40pum to 70um. Considering the state of input and
output ports in our binary criterion, this optical logic gate acts as OR
gate, that is, “0v 1 =1V 0 = 0” in single-port excitation, “1 V1 = 1" in
double-port excitation, and the trivial result of “0 v 0 = 0”.
Figure 18 shows an example of XOR gate operation with P = 2504W.
The result of single-port excitation is the same as the OR gate example
in Fig. 17(a), and most of the power lies in the nonlinear film at [ =
100pm. As mentioned above, the XOR function can be realized by using
the combination of single port and double-port opposite-phase excitations.
In double-port opposite-phase excitation, the film nonlinearity is not so
stimulated as the in-phase excitation case, because of the cancellation of
electric field near the core-film interface, and the zero-intensity distribution
1s remaining up to 100pm in the nonlinear film. In the same way as the
| AND and OR gate examples, considering the binary state of input and
output ports in our binary criterion, the XOR logic function can be proved
{ as “0p1 =160 = 0" in single-port excitation, “141 = 1" in double-port
excitation, and the trivial result of “0 9 0 = 0”.

These results show that AND, OR, and XOR logic gates are feasible
without changing the transverse structure, but we should choose suitable
input power, relative phase of double-port excitation, and device length for
each logic gate to link the spatial-soliton interaction with logic functions.

3.6 Conclusion

We have newly formulated an efficient 3-dimensional beam-propagation
approach based on the Crank-Nicholson finite element method for the
analysis of nonlinear optical fibers. Using the numerical approach devel-
oped here, both the modal and propagation characteristics of optical fibers
with linear core and nonlinear cladding have been analyzed. We have con-

\ A s . .
| firmed the existence of the symmetric and asymmetric stationary modes.
| When launching the linear LPy; mode with relatively high power onto the

fiber center, the spatial soliton emission has been observed. Furthermore,
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all-optical logic gates with practical, 3-dimensional geometry consisting of

)

optical fibers and a nonlinear film have been proposed, and their opera-

tions of Boolean arithmetric have been demonstrated.
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Fig. 9 Nonlinear optical fiber.
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Fig. 10 Power dispersion curves for the fundamental (LPy;) mode of
a nonlinear optical fiber with saturable nonlinearity in the cladding.




(a) symmetric mode (P=0.5mW). (b) asymmetric mode (P=5.5mW).

Fig. 11 Optical field distributions.
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(a) input beam. (b) I = 200um.

Fig. 12 Contour plots of propagating waves excited by the LPy; mode

(P=0.5mW).
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4 Vector Finite Element Analysis of 3-Dimensional
Nonlinear Optical Wavegudes

4.1 Introduction

Nonlinear optical waveguides have many potential applications in all-
optical signal-processing devices. For channel wavegulides, all six com-
ponents of electromagnetic field vectors are involved, indicating that full-
wave calculations are needed. Recently the finite element method with
nodal elements has been applied to optical channel waveguides with Kerr
and/or Kerr-like nonlinearities, based on the rigorous vectorial approach
[15]-[20], or the scalar field theory [13], [14], [17].
The use of the approximate scalar theory would be possible under cer-
tain restrictions on magnitudes of nonlinearities and optical intensities.
The most serious problem associated with the vectorial finite element ap-
proach, on the other hand, is the appearance of spurious solutions. The
penalty function method has been used to cure this problem, but in this
technique the working variables are restricted to the magnetic field com-
ponents, and therefore, the electric field components needed for evaluating
nonlinear refractive indices can not be directly given. Furthermore, in the
| full vectorial formulation, the effective index is first glven as an input da-
tum and subsequently the operating wavelength is obtained as a solution.
There is another serious problem in the full vectorial approach. Such an
| approach is quite difficult for dealing with corner and interface singulari-
ties so long as conventional nodal elements are used to approximate vector
| fields.
{ In this paper, a rigorous numerical approach based on the vectorial fi-
| nite element method is newly formulated for solving Intensity-dependent
dispersion characteristics of nonlinear optical waveguides. In order to elim-
inate spurious solutions and to treat corner and interface singularities, the
hybrid element [21], [22] is introduced. It is a combination of the edge
element for transverse components of the electric or magnetic field and
the nodal element for the axial one. The present approach can solve di-
rectly the effective index and the corresponding field distribution at a
given operating wavelength. To confirm the validity of the newly for-

mulated full-wave approach, nonlinear dispersion characteristics are cal-
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culated for optical fibers, strip-loaded optical channel waveguides, and
multiple-quantum-well-embedded optical channel waveguides. A compari-
son 1s made with results computed by a simple scalar finite element method
previously developed by the authors. Serious limitations on the validity of
the scalar field approximation are found in the high power regime, where
nonlinearities are expected to play an essential role in forming the station-
ary mode.

4.2 Basic Equations

We consider a nonlinear optical waveguide with cross section in the Ty
plane. From Maxwell’s equations, the following vectorial wave equation
for the electric field vector E is derived:

VXVXE-kn’E=0 (45)

where ky 1s the free space wavenumber and n is the intensity-dependent
nonlinear refractive index expressed as

S e T {2 ). (46)
| The functional for this wave equation is given by
F=[[[(VxE)(VxE)
—kin*E* - E)dxdy (47)

where * denotes complex conjugate.

4.3 Finite Element Discretization

Dividing the waveguide cross section into a number of high-order hybrid
edge/nodal triangular elements [21], [22] as shown in Fig. 19, the electric
field vector E in each element is expressed as

B, (UY{E,)}.
b= £y, | = {V}T{E,}(, (43)
| B HNP{E.}

where {U} and {V'} are the shape function vectors for the linear edge el-
ement, {/V} is the ordinary shape function vector for the quadratic nodal
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element, T denotes a transpose, {FE;}. is the edge variables in the trans.
verse plane for each element, and {F.}. is the nodal axial-field vector for

each element. More detailed informations about the formulation of the
vector finite element method (VFEM) with high-order hybrid edge/nodal

triangular elements can be found in [21].

Applying the finite element technique to (60), we obtain the following

matrix equation which gives solutions directly for the propagation constant

B and the corresponding field distributions:
[ K] (0] J { {E:} }
0] [0] ] | B7HE.}

g { i i J {ﬁ{{g }

atl

[Ku(B) =3 || [PPH{UHUY
+HVHVI)

+({Uy} = {Vz})
x ({Va}! = {U,}")] dedy

K] =% [ [{UHNYT
+ {VH{N,}")] dzdy
= [K.i]"

[Koo(B)) =% [ [P RUNHN)T
——{M,}{N,.}T
“{1\0}{’\11}T>} drdy

M=% | [{UHU)”
+{X}{L}[)} dxdy

with

(49)

(50)

(51)

The integrants in (64) to (67) are given as the functions of the area coor-

dinates, and thus, the numerical integration formulae derived by Hammer

46




e o et A e i

et al. [14], [26], [27] can be directly applied. The integral calculations
needed for constructing the matrices K, K], [K., |K..], and [ My]
can be replaced with simple product-sum calculations [14].

From the eigenvector solution, the normalized electric fields vector is ob.

tained. To obtain the intensity-dependent refractive index. it is necessary

to compute the actual electric field vector without normalization. The re-
lation between the actual (E) and the normalized (e) fields can be written

Ik = (Wﬁ) e (54)

with

Ty ] o !
P=Re [2%20 //Q e x (V xe) - i,drdy

1 ..
Im(ﬁ{et}T[MttHet}
+{e:} [Kil{e.}) (56)

where Zj is the free-space impedance, 7, is the unit vector in the z direc-
tion, and the normalized field e is expanded as

ez {U} {e}e
e=|e | =| {V}{e]} (57)
e, F{N}H {e.}

Equation (49) is a nonlinear generalized eigenvalue problem whose eigen-

- 9 :
value and eigenvector correspond to 3% and e, respectively. Hence, one can
solve it self-consistently using the following iterative scheme:

1) Specify the refractive index n, the wavelength \ = 27 [ ko, and optical
power P as input data.

2) Assign initial values to 8 and e.

3) To obtain the nonlinear coefficient matrices [K(E)] and (M (E)), cal-
culate E and n.

4) To obtain a new set of 8 and e, solve the matrix eigenvalue equation

(49).
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5) Iterate the above procedures 2), 3), and 4) until the solution (eigen-
value) converges within the desired criterion.

Optical power specified in this iterative scheme is increased or decreased
between a certain range with appropriate intervals. For the linear case,
the solution can be obtained without assigning initial values, and for the
nonlinear case, the initial values at each optical power are assigned to
the convergent solutions calculated at the previous power. These initial
values differ between increasing and decreasing power, and thus, the above
iteration scheme can evaluate the hysteresis nature of nonlinear optical
waveguldes as described later.

4.4 Numerical Results and Discussion

4.4.1 Nonlinear Optical Fiber

We consider a nonlinear optical fiber as shown in Fig. 20. Here, we
subdivide a half of the fiber cross section into 180 elements as shown in
Fig. 21, and in order to deal with the TE-like (LP*) modes, the magnetic
wall is imposed on the computational window edge AB that is parallel to
T-axis.

Figure 22 shows power dispersion curves for the LP§, mode of a nonlinear
optical fiber with saturable nonlinearity in the cladding, where the wave-
length A = 1.3um, the core diameter is 5 pm, and the following waveguide
parameters are used:

157 (core)
U3 i Ansat
== ’ nin'|E|?
X —exp | —
QATLSCL[ZD
: (cladding)
with
ny =155, n" =10""m?/W , An,,; = 0.04.
) Here, n; is the linear part of the nonlinear refractive index. n’ is the

nonlinear optical coefficient, and An,,; is the saturation of the nonlinearity:.
The change in the effective index with optical power is initially slower,
but above a certain threshold the symmetry of the mode is broken and the
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field is localized near the core-cladding boundary in nonlinear cladding,
causing a jump in the effective index. When decreasing optical power,
the dispersion curve exhibits the hysteresis nature and the mode returns
abruptly to the linear core. The results using the present VEEM approach
agree well with those of approximate scalar finite element method (SFEM)

14].

Figures 23 and 24 show, respectively, the field distributions derived by

the SFEM and VFEM, where optical power P = 0.5mW and 5.5mW.
When optical power is below the threshold, most of the power is within
the core region, but when optical power increases beyond the threshold,
the symmetry-breaking behaviour is observed, suddenly most of the power
moves to the cladding, the power inside the core falls drastically, and the
field becomes axially asymmetric. The field patterns of SFEM are similar
to those of VFEM, and the validity of SFEM is found not only in the

low-power region, but in the high-power regime.

4.4.2  Strip-loaded Nonlinear Optical Channel Waveguide

We consider a strip-loaded nonlinear optical channel waveguide as shown
in Fig. 25 [16]. Here, we subdivide a half of the waveguide cross section
imto 252 to 292 elements as shown in Fig. 26, and in order to deal with
the fundamental TE-like (E{,) and TM-like (EY,) modes, the electric and
magnetic walls are imposed on the computational window edge AD, re-
spectively. The wavelength is A = 0.515um and the following waveguide
parameters are used:

e =10, iy = 1.57, ng=1.55

nl’n/\E’Q
n =n; o Ansat = exp —‘)ATL o
Ve sat 40

with
Al T 10_91112/\\7 AT RS 3

Figure 27 shows power dispersion curves for the EY, and E/; modes. Hys-

teresis loops are observed in the dispersion curves for linear-strip thickness
t = 8 and 10um (see Figs. 27(b) and (c)). The results of the present
VFEM approach agree well with those of the conventional penalty VEEM
approach [16]. In [19] only the results for the Ef, mode are presented.
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Quite well agreement between the VFEM and SFEM results is also ob-
served in the low-power regime. However, a great discrepancy is found
between the VFEM and SFEM results in the high-power region, and the
modal birefringence is enhanced in the SFEM calculation, showing that
the scalar field theory cannot predict accurately the modal birefingence of
nonlinear optical channel waveguides.

4.4.3 MQW-embedded Nonlinear Optical channel Waveguide

In order to discuss the limitations of the scalar field theory in detail,
we consider MQW-embedded nonlinear optical channel waveguides with
strong modal birefringences as shown in Fig. 28, where the wavelength

A = 0.820pm and the following waveguide parameters are used:
We=1.0pm, t = 1.0um
nin'| E|?
QAU,S(H‘.Z()
o s e O N R T T SR

Ty =101 ~+ DXMgap s 1 = XD

with

By a= 3650 == 1.505 % lD_SmQ/VV g ENATL g ()2
where the numbers of the well and barrier layers are N, and N, = N, — 1,
respectively. Here, we subdivide a quarter of the waveguide cross section,
and the magnetic and electric walls are imposed on the computational
window edges, considering the TE-like and/or TM-like polarizations.

We can control the modal birefringence by choosing the number of well
layers IV,,. Fig. 29 shows power dispersion curves for the E?, and EY,
modes. For a large number of layers, N,, = 21 and 11, the results of SFEM
agree well with those of VFEM. For a small number of layer, N, = 1, on
the other hand, the modal birefringence of SFEM is larger than that of
VFEM, reflecting the previous results shown in Fig. 27. The scalar field
theory may be applicable to MQW-embedded nonlinear optical waveguides
with a large number of layers.

4.5 Conclusion

A self-consistent full-vectorial finite element approach for the modal anal-
ysis of nonlinear optical channel waveguides was newly formulated. To
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confirm the validity of the newly formulated full-wave approach, nonlin-
ear dispersion characteristics were calculated for various 3-dimensional
optical waveguides. A comparison was made with results of a simple
scalar finite element method, and it was found that the scalar field the-
ory 1s appropriate in the low-power regime which does not stimulate the
intensity-dependent refractive-index nonlinearity and that for nonlinear

optical waveguides with a small number of layers the modal birefringence
1s overestimated with the approximate scalar theory.
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Fig. 20 Nonlinear optical fiber.
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Fig. 23 Optical field distributions derived by SFEM.
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Fig. 24 Optical field distributions derived by VFEM.
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5 Vector Finite Element Beam Propagation Analysis
of 3-Dimensional Nonlinear Optical Wavegudes

5.1 Introduction

The 3-dimensional beam propagation analysis with approximated-scalar
finite-element and finite-difference methods, described in Chapter 3 of this
paper, is available under the assumption of the nonlinear guided wave as a
scalar field. When the guided wave in strong-nonlinearity and high-power
regims, however, exceeds the limit of the approximation, the full-vectorial
beam propagation analysis becomes to be necessary. Recent papers [23]—
25] propose the analysis based on the vector finite element beam prop-
agation method. Since the approach is also based on split-step proce-
dure, however, it is quite difficult to treat the polarization dependence
of the guided wave characteristics. Moreover, the papers demonstrate
only 2-dimensional nonlinear optical waveguides. The importance of 3-
dimensional full-vectorial beam propagation analysis to the fascinating
feature of nonlinear guided waves is never negligible.

5.2 Basic Equations

We consider a nonlinear optical waveguide with cross section in the Y
plane. From Maxwell’s equations, the following vectorial wave equation
for the electric field vector E is derived:

VXV xE~-kn*E=0 (58)

where kg is the free space wavenumber and n is the intensity-dependent
nonlinear refractive index expressed as

EJ%). (59)

o= wl e s
The functional for this wave equation is given by

F:%ﬂVx@ﬁwa)
~kin*E* - Eldzdy (60)

where * denotes complex conjugate.
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5.3 Finite Element Discretization

Dividing the waveguide cross section into a number of high-order hybrid
edge/nodal triangular elements [21], [22] as shown in Fig. 30, the electric
field vector E in each element is expressed as

L0 I O T TP, e iR, g
R (! W}Uﬂ}[ﬁ&@mj‘mjm“” L8

where {U} and {V'} are the shape function vectors for the linear edge el-
ement, { IV} is the ordinary shape function vector for the quadratic nodal
element, T" denotes a transpose, {F,}. is the edge variables in the trans-
verse plane for each element, and {F.}. is the nodal axial-field vector for
each element. More detailed informations about the formulation of the
vector finite element method (VFEM) with high-order hybrid edge/nodal
triangular elements can be found in [21].

Applying the finite element technique to (60), we obtain the followin

o
O

matrix equation:

i

~

d , d
[Ktt}{Et} = (d*/z = 2];5()”()% e kS’n(%) [Ai/tt]{Et}

- (j;; - kono> et = {0} (62)

— (72 + kono) [EL0{ED + (KB = (0} (63)

with
Ku(E)] =X || ["*K3({UHUY

HV RV )

+({Uy} = {VI})
x ({Va}' = {U,}")] daedy (64)

K] =3 | [{UHN.}T

+ {VH{N,})| dzdy
= [K,}" (65)

Ko (B) =% || [k ({NHNY
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o {A/\Tr } {*/\JZT}T
—{ N HN})] dady (66)
(M) = z// ({UHUY
HVHV})] dedy (67)
Equation (62) can be rewritten formally as
. d /
ol . e
([Ke] = kgng[Mu)) {Ei} — kono[Ki[{ E.} — J[[\t:]j{Es}
= il 3 = (69)
h ijono dz
Utilizing Padé approximation [36]-[41] and replacing (d?/dz?){E,} in (62)
by
b e e
M55 { B} = —j 57— ([Kul = kon [Mtt])*{Et} B [[\f F—{b 1 (70)
# £ g

the following Padé equation is obtained from (62) and (63):

_j{%ong[mt} K. } d { {Et}}

e 0] (E.)
1= )] (0]
with
[My] = [Mn]+4k§n8({[(tt] % no[]\[”]) (72)
. Ry )

The Fresnel or paraxial equation is easily obtained from (71) by replacing
the matrix [My] and [K}.] by [My] and [K}.], respectively.

5.4 Crank-Nicholson Algorithm

Applying the Crank-Nicholson algorithm for the propagation direction, z,

o (71) yields

[A(@)]i{d}iv1 = [B(8)]i{o} (74)
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_] ?-A‘On()[;\?/tt}i {Kt:}/ J
pienr 0]

[[(ﬁ},‘ = kgng[i\[”},‘ _k()n(){]\'[:], AT
DBz ; i :
it { —kono| K4 (K 3]s (75)
: Qkono[fvﬁ}z [Kt:}z; }
B i — o
[B(¢)] J { K., 0]
U\/tt}i - kS‘nS[MnL —ko‘77/()[[i—t;]z'
—0.5Az 2 : 76
{ —k()TZ()[]&zt}i []Xzz}é < )

o = |13 (77

where Az is the propagation step size, and the subscripts i and i + 1
denote the quantities related to the ith and (i + 1)th propagation steps,
respectively.

The reference refractive index ng is renewed at each propagation step
automatically as [39]-[41], [44]

—b; + /b7 + 4a,c;
S 4 ‘L%)”” ac} (78)
20
with
a; = {Et}j:j\/[tt}z’{Et}i (79)
bi = { B} [ Kol { E. i + { B [K L) { B (80)
C; = {Et}j:[ftt]z{Et}i (81)

where | denotes complex conjugate and transpose.
Equation (74) can be solved with the following iterative scheme:

1) Specify the refractive index n, the wavelength \ = 27 / kg, and optical
power as input data.

2) Assign initial values of the reference refractive index no and the slowly
varying complex amplitude {¢}.

3) Calculate coeflicient matrices [4] and [B] and solve (74) for a new
solution {¢};,;.
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4) Update n from (59) and ng from (78).
5) Iterate the above procedure 2), 3), and 4) until we reach the desired

number of iterations in the z direction.

5.5 Numerical Results and Discussion

5.5.1  Beam Propagation Analysis of Nonlinear Optical Fiber

The modal analysis [14] can be easily performed by setting d/dz = 0 in
(62), and then ny becomes the modal effective index, nesf, and {¢} is the
corresponding modal (stationary) field. An iterative scheme for solving
this nonlinear generalized eigenvalue problem has already been reported
in [14]. We consider a nonlinear optical fiber as shown in Fig. 31. Here,
we subdivide all the fiber cross section into 360 hybrid elements (Fig. 32),
and 1n order to deal with the TE-like (LP?) modes, the magnetic wall is
imposed on the computational window edge AB that is parallel to z-axis.

Figure 33 shows the contour plots of field amplitudes for an optical fiber
with Kerr nonlinearity in the core, where the input LPy-beam power
P = 0.5mW, the wavelength A = 0.5145um, the core diameter a = 2/4m,
the refractive index of the cladding ny = 1.55, and the refractive index of
the core is given by

ny = 1.57[1 +n'|E|*/(2Z0)] , n' =107° m?/W.

In this input power, the excited beam is propagating stably up to the
distance | = 200um, and the beam profile is quite similar to that of the
nonlinear LPg; field at this input power P = 0.5mW, and these results
show the validity of this beam propagation approach.

9.6 Conclusion

We have newly formulated an efficient 3-dimensional beam-propagation
approach based on the Crank-Nicholson finite element method for the anal-
ysis of nonlinear optical fibers. Using the numerical approach developed
here, propagation characteristics of optical fibers with nonlinear core and
linear cladding have been analyzed by launching the linear LPy; beam. We
have confirmed the validity of this beam propagation approach, in compar-
1son with the field profile of propagating beams and nonliear LP;; modes
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in the nonlinear fiber. By the use of this numerical techinique, unique
features of nonlinear optical waveguides and devices are now Investigated
and the results will be reported in near future.




Fig. 30 Edge and nodal hybrid elements.
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Fig. 31 Nonlinear optical fiber with nonlinear core and linear cladding.
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Fig. 32 Element division profile.
(216 elements)
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6 Summary

This research has proposed and has formulated the numerical approaches
based on the finite element method for modal and beam-propagation anal-
ysis of 3-dimensional nonlinear optical waveguides whose materials have
intensity-dependent refractive index. In general, 1t is quite difficult or
sometimes impossible without applying the numerical approach to assess

| the unique phenomena of nonlinear guided waves such as optical bista-

1 bility, axially asymmetric modes in cylindrical optical waveguides, spatial

| soliton emission, and so on. Hence these proposed numerical approaches
reveal the interesting feature of nonlinear optical waveguides and inte-
grated nonlinear optics.

In chapter 2, a self-consistent numerical approach based on the scalar
finite element method is described for the analysis of both TE-like and
TM-like nonlinear guided waves in optical channel waveguides. In order
to improve the convergence and accuracy of solutions, isoparametric ele-
ments and numerical integration formulae derived by Hammer et al. are
introduced. Numerical results are presented for nonlinear elliptical core
optical fibers, and it is confirmed that in this approach, highly accurate

| solutions can be obtained with small scale computation. Furthermore,
graded-index nonlinear optical channel waveguides are also analyzed, and
the influence of refractive-index profiles on propagation characteristics of
the nonlinear guided waves 1s investigated.

In chapter 3, a 3-dimensional beam propagation method is described for
the analysis of nonlinear optical fibers, where the finite element and fi-
nite difference methods are, respectively, utilized for discretizing the fiber
cross section and the propagation direction. For efficient evaluation of
wide-angle beam propagation, Padé approximation is applied to the dif-
ferential operator along the propagation direction. In order to improve the
efficiency and accuracy of solutions, isoparametric elements and numeri-
cal integration formulae derived by Hammer et al. are introduced. The
propagation characteristics of nonlinear optical fibers with linear core and
nonlinear cladding are analyzed, and unique features of nonlinear guided-

wave propagation are investigated. Furthermore, all-optical logic gates
with practical, 3-dimensional geometry consisting of optical fibers and a
nonlinear film are proposed, and their operations of Boolean arithmetric
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are demonstrated.

In chapter 4, a self-consistent full-vectorial approach based on the finite
element method is described for the modal analysis of nonlinear optical
channel waveguides, and an application of conventional scalar field theory
to the prediction of modal properties of both TE-like and TM-like nonlin-
ear gulded modes i1s examined. Numerical results are presented for nonlin-
ear optical fibers, strip-loaded nonlinear optical channel waveguides, and
multiple-quantum-well-embedded nonlinear optical channel waveguides.
Serious limitations on the validity of the scalar field approximation are
found in the high power regime, where nonlinearities are expected to play
an essential role in forming the stationary mode.

In chapter 5, a 3-dimensional full-vectorial beam propagation method
is described for the analysis of nonlinear optical waveguides, where the
finite element and finite difference methods are, respectively, utilized for
discretizing the waveguide cross section and the propagation direction. In
order to improve the efficiency and accuracy of solutions, isoparametric
elements and numerical integration formulae derived by Hammer et al.
are introduced.

These numerical techniques based on the finite element method devel-
oped in this research will be applied successfully to the computer-aided
design for nonlinear optical waveguides and integrated nonlinear optical

devices.
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