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Abel-Tauber theorems for Hankel and Fourier transforms

Hipeyuki KIKUCHI

ABSTRACT. We prove Abel-Tauber theorems for Hankel and Fourier transforms. For
example, let f be a locally integrable function on [0, co) which is eventually decreasing
to zero at infinity. Let p = 3,5,7,--- and ¢ be slowly varying at infinity. We
characterize the asymptotic behavior f(t) ~ £(¢)t™” as ¢t — oo in terms of the
Fourier cosine transform of f. Similar results for sine and Hankel transforms are
also obtained. As an application, we can give an answer to a problem of R. P. Boas
on Fourier series.

1. Introduction and results

As a prototype, we use Fourier cosine transforms to explain our problem. Let f
be a locally integrable, eventually decreasing function on [0, c0) which tends to zero
at infinity, and let F; be its Fourier cosine transform. Let p > 0 and ¢ be slowly
varying at infinity (see below). We are concerned with Abel-Tauber theorems which
characterize the asymptotic behavior f(t) ~ £(t)t™” as t — oo in terms of F.. It
turns out that the values 1,3, 5, - -+ of p are exceptional. For p # 1,3,5,---, one can
obtain the desired Abel-Tauber theorems using regular variation — or Karamata
theory. See Bingham-Goldie-Teugels [BGT, Ch. 4], where references to earlier work
by Hardy and Rogosinski, Aljan¢i¢, Bojani¢ and Tomi¢, Vuilleumier, Zygmund and
others are given. However the same theorems do not hold for p = 1,3,5, --. These
exceptional values are related to the power series expansion of the kernel cos z (see

Soni-Soni [SS]).
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In [I1], one of the authors showed that one could use II-variation — or de Haan
theory in the terminology of [BGT] — to obtain the desired Abel-Tauber theorem
for cosine transforms when p = 1. For theorems of the same type, we refer to [I1]
(cosine series and integrals), [I2] (sine series and integrals), [I3] (Fourier-Stieltjes
coefficients), and Bingham-Inoue [BI] (Hankel transforms).

In this paper, we consider the remaining exceptional values, e.g., p = 3,5, --- for
cosine transforms. In fact, as in [BI], we consider those for Hankel transforms from
the beginning; the results for cosine and sine transforms follow as special cases. As
an application, we can give an answer to a problem of R. P. Boas on Fourier series.

We write Ry for the class of slowly varying functions at infinity, that is, the class

of positive measurable ¢, defined on some neighbourhood of infinity, satisfying
¢(Az)/l(x) -1 (z—>00) VA>O.
For ¢ € Ry, the class I, is the class of measurable f satisfying
{f(Az) — f(z)} /b(z) — clogA (z—00) VA>0

for some constant c, called the ¢-indez of f. See [BGT] for background.

Let v > —1/2, t**3h(t) € LL [0,00), and h be ultimately decreasing to zero at

loc

infinity. We consider the Hankel Transform
o
H.(z)= / h(t)(zt) 2], (zt)dt (0 < z < 0), (1.1)
0
where fooo_ denotes an improper integral lim s fOM and J, is the Bessel function

JoAl) == Zc,,,ja:“’hzj (0 <z < o)
2+
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T ou+42j gL.Tw+j5+1)

Sl (v>-1/2, j=0,1,---). (1.2)

Since the improper integral on the right of (1.1) converges uniformly on each (a,00)
with a > 0, H, is finite and continuous on (0, co).

For n € N and z € (0,00), we define H,, by

n—1 o
A, .(z) ;= gvtaten Hu(l/x)—ZcU'j/ AR a2 H Y (1.3)
=h 0

if [ 24— tip g de < oo,

Theorem 1. Let £ € Ry andn € N. Let v > —1/2, t**3h(t) € L} [0,00), and h

be ultimately decreasing to zero at infinity, with Hankel transform H,. Then
W) mt22000) (= o0) (1.4)
of and only 1f
(oo} 3 -
/ t“"2t2h(t)dt <o and H,, €I, with ¢-index Coisd (1.5)
0
Note that Theorem 1 includes results for Fourier cosine and sine transforms, as
Y2 J_15(z) = \/gcos:r Y2 ], 9(z) = 4/ —2~sinx.
=3 T : / T
For z € (0,00), we define H, by

H,(z):=2"tiH,(1/z). (1.6)

We will prove Theorem 1 by reducing the problem to the following known result

(which corresponds to the case n = 0 of (1.4)):

3




Theorem A ([BI], extending [I1], [I2]). Let v, h, H, and ¢ be as in Theorem 1.

Then
h(t) ~t™4"32(t)  (t = o0) (1.7)
of and only of
H, € I, with l-indez c, . (1.8)
The cosine case v = —3 of Theorem A is due to [I1], the sine case v = 1 to [I2)],

and the general case v > ——% to Bingham-Inoue [BI].
The theorems above treat the boundary cases to the following known Abel-

Tauber theorem for Hankel transforms:

Theorem B ([RS], [SS], extending [P], [B]). Let v,h, H, and ¢ be as in Theorem

1.

(1) For0< p< z/+%,
h(t) ~ t~PL(t) (t — o0) (1.9)

of and only if

H,(z) ~ 2~ 1¢(1/z) - 2577

5|

+ |+

[STAN TN
+

(z — 04). (1.10)

T TN
o (R
s, S h —

(2) LetneNandv—3+2n<p<v+ —3— + 2n. Then (1.9) holds if and only

if fooo tv=3+2np(t)dt < oo and

n—1 o0
Hu(x)—zc,,,j/ v+ 3t2p(t)dt - g tE T2
j=0 8 (1.11)
L(2+%-28)
A TG s it W (z — 0+).
Gh e




The part (1) of Theorem B is due to Pitman [P], Bingham [B], and Ridenhour-
Soni [RS], while the part (2) to Soni-Soni [SS].

We focus on Fourier (cosine and sine) transforms. Let f € L{ _[0,00) and f

be ultimately decreasing to zero at infinity. We write F. for the Fourier cosine

transform of f:
Felgl= /00— f(t) cos(zt)dt (0 <z < 00). (1.12)
0

Similarly, let g(t)t € L}, _[0,00), and g be ultimately decreasing to zero at infinity.

We write G for the Fourier sine transform of g:
-
() = / g(t) sin(zt)dt (0 2 ool {1.18)
0
Now, at least formally,
E0) = (<17 [ @pwa,  GE0) = (<17 [ pivigoa
0 0
So for n € N we define F , by

=% (0 <z < o0) (1.14)

Fon(X) = 22 { Fu(1/3) -

if F, € C?"~2([0,00)). Similarly, for n € N, we define Gs.n by

B n—l G§2]+l)(0) o
Gsn(z) := 2*"T1 L Gy(1/z) - Z mf_ZJ_l

=0

10:<€ ¢ < ¢0) (L.15)
if G5 € C*™~1([0,00)). Here as usual, C™([0,c0)) is the class of functions which
are of C™(I)-class for some open neighbourhood I of [0, c0).

Theorem 2. Let £ € Ry and n € N. Let f € L} _[0,00) and f be ultimately

loc

decreasing to zero at infinity, with Fourter cosine transform F.. Then

F) ~ 27100 (¢t — 00) (1.16)
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iof and only if

(=1)"
(2n)!

F. € C*%([0,00)) and F,., €Il with f-indec (1.17)

Theorem 3. Let £ € Ry and n € N. Let g(t)t € Ll _[0,00) and g be ultimately

loc

decreasing to zero at infinity, with Fourier sine transform Gg. Then
GLEY me 524000 (t — o0) (1.18)

of and only if

i

G, € C'Zn-—l([o’oo)) and Gs, € I, with £-index ——(Qn O

(1.19)

Remark. In Theorem 2, F, € C*"~2([0,00)) implies that the limit F.(0+) exists
and that F, with F;(0) := F¢(0+), is in C?"~2([0,0)); similarly for the meaning

of G5 € C?"~1([0,0)) in Theorem 3.

The proofs of Theorems 2 and 3 are based on Theorem 1.
We give an application of Theorem 3 to probability theory. Let X be a real
random variable defined on a probability space (€2, F, P). The taul-sum of X is the

function T' defined by
T(z) = P(X £ =z)+ P(X > (02 ok ook
Note that T is finite and decreases to zero at infinity. Now
LD
(-U@}e= [ T@sin@g)ds  (0<g <o)
0
where U is the real part of the characteristic function of X:

U(§) = Elcos(§X)] (£ €R)

6
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(see [BGT, p. 336]). By Theorem 3, the asymptotic behavior

e B T

T(z) ~ z727"2¢(z) (z — 00)

with n € N and ¢ € Ry is characterized in terms of U.

We can apply Theorems 1 and A to Question 7.19 of Boas [Bo|. For f € L![0, ],

we define its Fourter cosine coefficients a,, by

R S A R S e T T SR

2 ™ 1 s
Sl N P & T AT Vit (n=0). (12
A ﬂ/o Pe costntiat =1, B Tr/o f()dt (n=0). (1.20)

Similarly, for g € L'[0, 7], we define its Fourier sine coefficients b, by

2 s
by 1= ——/ g(t) sin(nt)dt (n=1,2,1"). (1.21)
& Jo

/ Theorem 4. Let f € L'[0, 7] with Fourier cosine coefficients (ax). We assume
‘; that ar, > 0 for all k > 0. Letn € N and £ € Ry. Then

Tv

! = ¢m) 1

3 ; o = sy iz 00) (1.22)
1 =m

|

q? of and only if

] 2n—2 7 - : (=1

| feC ([0,7]) and fn €1Ilp with £-index Gl (1.23)
% where

I n-l £(2) (0 ‘

i falz) ;= 22" f(l/r)—zf ( )1:'27 (L/m =z <o) (1.24)
= (2)!

5 Corollary. In Theorem 4, we further assume that (a) is decreasing. Then (1.23)
f

E 18 equivalent to

5 Ym)

%t Um ~ (m — o0). (1.25)
7
b




Theorem 5. Let g € L'(0, 7] with Fourier sine coefficients (by). We assume that

b, 20 forallk > 1. Letne N and £ € Ry. Then

¢(m) 1
Z e m2n+l  on 1] (m — o0) (1.26)

k=m

iof and only if

ey

ge Czn—l([o, 7)) and g, € I, with ¢-index CEEmE (1.27)
where
2n+1 = 2”1) 2321
gn(z) =27 ¢ 9(1/z) — e (1/m <z <oo). (1.28
JZ:; (27 + 1 ) ( )

Corollary. In Theorem 5, we further assume that (by) is decreasing. Then (1.27)

1S equivalent to

¢(m)

bm e m2n+2

(m — o0). (1.29)

Remark. We understand that L![0, 7] consists of equivalence classes with respect to
the equivalence relation f; ~ fa & fi = fy a.e. So, e.g., in (1.23), f € C?"~2([0, 7))
implies that there exists a function in C?"~2([0, 7]) which lies in the equivalence
class of f and that we identify the function with f. In particular, if "2 |ax| < oo,
then by [Z, Ch. III, Theorem 3.9] (Theorem of Lebesgue on Cesaro summability)
f € C([0,7]) and we may assume that f(z) = > oo akcos(kz) for 0 < z < .
Similarly, if 322, |bx| < oo, then g € C([0,7]) and we may assume that g(z) =
Y ey bpsin(kz) for 0 < 2 £ .

For (1.26) with n = 0, we have the following:

8




Theorem 6. Let g, (by) and £ be as in Theorem 5. We write §(z) := zg(1/z) for

x> 1/m. Then

- l(m
S b~ Sl A 0) (1.30)
m
k=m
iof and only if
g€ C(0,7]) and gell, with{-indez 1. (1.31)

See also [I2, Theorem 1.2].
Theorems 4, 5 and 6 treat the boundary cases to the following known results

due to Yong [Y]:

Theorem C ([Y]). Let f, (ax) and £ be as in Theorem 4. Letn € N and 2n—1 <

p<2n+1. Then

o0

Z ak ~ :1(;?)1 3 i ; (m — o0) (1.32)
k=m

if and only if f € C*"~2%([0, n]) and

n-1 s24) , -
f(Qj)(!()) Ak 2I'(p) cos(pm/2) z7H(1/z) (z — 0+). (1.33)

Theorem D ([Y]). Let g, (bx) and ¢ be as in Theorem 5. Letn € N and 2n < p <

2n + 2. Then

o0

; b ~ jﬁf:ﬁ)l : pi 7 (m — o0) (1.34)

if and only if g € C**~1([0, 7]) and

= gHt(0) ipn ™
(27 + 1)! 20 (p) sin(pm/2)

g(z) — P~ 1e(1/z) (z — 0+). (1.35)

=0

Theorems 4, 5 and 6, together with Theorems C and D, give an answer to [Bo,

Question 7.19].




In this paper, we give a proof only to Theorem 1 which is our main theorem.

For the rest, we refer to [IK].

2. Proof of Theorem A

As we stated in §1, Theorem A is due to [BI]. Since our main theorem, that
is Theorem 1, is proved using Theorem A, we give its proof following [BI] for
completeness.

Step 1. Choose X so large that h is positive and non-increasing on [X, 00). We
first show that we lose no generality by supposing that h vanishes on [0, X).

Set A(t) := Iix,00)(t)R(t), and let H, be its Hankel transform:

H,(z) := /000— h(t)(zt)/2 ], (zt)dt (z > 0).

By the mean-value theorem, there exists ¢; € (0, c0) such that

27" (z) =y~ L) £ 1]z — ¥ Qe y 1),

So for A > 1,
%l{ﬁu(/\ﬂ - H,(2)} - {2)* T2 H,(1/Az) — 24 A, (1/2)}
. /X R {(t/A2) "0 T, (t/AT) — (t/z) =" J, (t)z) dt
Az 0 i ’
(1 » )\—1) T i % — )

So (1.8) holds if and only if z*t% H,(1/z) € II, with f-index cu0- Hence we may

replace h by h — that is, we may assume that h vanishes on [0, X).

10




Step 2: Abelian part. First we assume (1.7) and show (1.8). For z > 0,

;h(x){Hu(x)—cu,o/oxh(t)tu*r%dt} = [(z) + [I(z), (2.1)

zv+3

where

1 7. v+2 Lo §
I(z) = / G L ) {ul/:zvfu(U) - cu,ou‘“’%} i
0

IU+2h/(:C> uu+2’

RN e T
I1(z) ._/1 Wul/zJ,,(u)du.

By the uniform convergence theorem for regularly varying functions ([BGT, Th.
1.5.2]), (zu)***h(zu)/z*+2h(z) converges to u'/2 as z — oo uniformly in u € (0,1].

Hence we find that

1

1

1@ = [ = {8200 - ot }du (o= o)
0 U "2

We note that the integral above converges absolutely since there exists c2 € (0,00)

such that

]:r—”J,,(:z:) - c,,,o) < 22 (0 <z < 1). (2.2)

In the same way, for any ¥ > X,

Y Y
/ Mul/zJ,,(u)du — / . ~u'/2J, (u)du (z — o).
1 h(z) ] wErTE

By the second integral mean-value theorem ((WW, §4.14]), for z > 1,

e h(:ru)ul/2 4 _ hz¥Y+) Ylul/z wdu
fo = 5 [

for some Y’ € (Y, 00). If we set

:O<a:<y<oo},

y
/ w2 J, (u)du

b

€3 1= BUp {

then

: h(zY) c3
< limsup Ay c3 = mv

limsup
r—00

T h(xu)uuz A
/Y S )

11
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which can be made arbitrarily small by choosing Y large enough. So

(o o] 1 :
II(z) — / w2 J, (u)du (z — o0).
1

uu+%

Therefore

3 o Az Eath . T T
e {(HU(A:E) —cu,o/o h(t)t“*2dt) — (H,(z) — cu,o/o h(t)t +-dt)} 410

as ¢ — oco. Hence, by the Uniform Convergence Theorem,

. H,(\z) - H,(z) Sl g /“ L
] = 1 * 3l
o °(z) LoiSrmot W

2“3 h(z) /’\ (zw)* 3 h(zu) du
1

=lim-¢
(3 +in(z) u

sreo 0 4(z)
A
du
= cL,,o/1 — =Eub log A.

Thus (1.7) implies (1.8).

Step 3: Tauberian part. We now prove the implication from (1.8) to (1.7). By a

formula of Gegenbauer,

u+%

Yy

(:132+y2)“+% (z>0),

/ trr et (y) /2 ] (yt)dt = d,,
0

where d, = n M2 NP 4 %) ([WW, §13.2 (5)]). So by Parseval’s formula for

Hankel transforms ([RS]), for z > 0

(0%) 00— ’Ey‘“*%
vt} -t gy _ Ty T* o
/o D" R Rdt 2=, . H,(y) (22 + g2+ Y. (2.5)
By the second integral mean-value theorem,
[H,(y)| < csh(X)/y (0 <y <o0), (2.6)

12




e
Sl s AT

whence

o0 yu+%—
}yu Yy dl <
g e O

On the other hand, by [BGT, Th. 3.7.4], (1.8) implies |H,| € Ry, whence

b o i s Mo ool B
1wy = | T < oo

Thus the integral on the right of (2.5) converges absolutely — and so the results of
[BGT Ch. 4] apply.

We use Laplace transforms. Write

where

$2u+2
k(z) i=d, —————e (z > 0)
(1+ z2)v+3

and k * H, denotes the Mellin convolution
0 -
(kx H,)(z) =/ k(z/t)H,(t)dt/t.

0

The absolute convergence strip of the Mellin transform
k(z) = / t™%k(t)dt/t

0

is =1 <Rz < 2v+ 2, and for z in the strip

klz) =




in particular,

~

k(0) =2"T'(v+1).

By (2.6), H, is locally bounded on [0,00). So by the argument of [BGT, p. 242]
(Abelian theorem for differences), we find that (1.8) implies k x H, € II, with ¢-
index 1 — i.e., so is U(1/-). So by a Tauberian theorem of de Haan (cf. [BGT, Th.
3.9.1]), we see that U € II, with ¢-index 1. Finally, by [BGT, Th. 3.6.10] (with

slow decrease replaced by slow increase), we obtain (1.7), completing the proof. [

3. Proof of Theorem 1

We note that (1.4) implies
g
/ IR dt < o0, (3.1)
0

So, when proving the equivalence of (1.4) and (1.5), we may assume (3.1).
We define hg, - ,hn_1 by
higlt) = / h(s)s”%ds (0 <t < o0),
¢

o0
hj(t) ::/ hj—1(s)sds (svr<os, 9=1+ n~1).
¢

Since h is eventually non-negative, h; are all eventually decreasing. By Fubini’s

oo 00 oo _—
hJ(O) :/ dtjtj/ dtj_ltj_l---/ h(to)t0+2dto

0 ts 31

00

theorem,

2

sk to tj—1
/ dtoh(to)t, 2/ dtltl---/ tdt,
0 0 0

150
= o h(t)tvt2t2i4t,
J:Jo

14
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f

Since
zHJu(@) = 0(1) (& — o),

d
= (77 L@} == Tpsa(o),

z™HJu () = cupo (x — 0+)

for any u > —1/2 (see Watson [W], pages 199 and 45), we obtain, by integration

by parts,

1

Hilr) =igtts /OOO_ h(t)tV*2 {(tz)™"J,(tz)} dt

I

= 24 o(0)cy,0 — 232 / ho(£)t {(t2) ™1, 41(tz) b dt = - -
0

po
I
—

(‘Ujfw%ﬂjhj(o)cuﬂ,o

2=0
1 e
+ (1t [ () ()
0
n—1 . g . 00—
- (=1)7z* 2+ b (0)cypj0 + (—1)”1:”/ g(t) (t2) Y2 J, 40 (tz)dt,
3=0 g
where
gt) :=t"ti"p. (1)  (0<t< o)
Since
(ki Ocusso=cus [ - Hne)as,
0
we have
H,,(z) = (-1)*zWtm+3 / g(t)(t/z)2 T, n(t/z)dt. (3.2)
0

Now t(“+tM+3g(t) € L;..[0,00) and g is eventually decreasing to zero, whence by

Theorem A (with v replaced by v +n) (1.5) is equivalent to

g(t) i t—u_n-%g(t) | (_——.Lcﬂ - t-—u-—n—%g(w . 1 (t - OO)
Cvtn,0 2nn!
or
hna(8) ~ £72(8) (t — o0). (3.3)

2nn!

15




Since h; is eventually decreasing, log {h;(t)t} is slowly increasing, whence by the

Monotone Density Theorem (see [BGT, §1.7]) (3.3) is equivalent to

ho(t) = /toos”%h(s)ds ~ t20(1) - % (t — o0). (3.4)

By assumption, / is eventually decreasing, whence log {h(t)t"*% } is slowly increas-
ing. Again by the Monotone Density Theorem, (3.4) is equivalent to (1.4). This

completes the proof. O
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