Title: Photoelectrochemical Reduction of Carbon Dioxide at Si(111) Electrode Modified by Viologen Molecular Layer with Metal Complex

Author(s): Sun, Yu; Masuda, Takuya; Uosaki, Kohei

Citation: Chemistry Letters, 41(3), 328-330

Issue Date: 2012-03

Doc URL: http://hdl.handle.net/2115/52105

Type: article (author version)
Photoelectrochemical Reduction of Carbon Dioxide at Si(111) Electrode Modified by Viologen Molecular Layer with Metal Complex

Yu Sun, Takuya Masuda, and Kohei Uosaki

1Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810
2Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044
3International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044

(Received <Month> <Date>, <Year>; CL-<No>; E-mail: <insert corresponding e-mail address>)

Photoelectrochemical carbon dioxide reduction was carried out at a p-type Si(111) electrode modified with a viologen molecular layer and AuCl$_2$$^-$ or PdCl$_2$$^-$ It was proved that the reduction reaction was mediated by viologen moiety and while CO$_2$ reduction was dominant at the Si(111) electrode modified with PdCl$_2$$^-$ in the potential region where viologen moiety was in the first reduced state, it became dominant at the electrode modified with AuCl$_2$$^-$ when viologen moiety became the second reduced state, FT-IR measurement confirmed the formation of formic acid/formate ion at the PdCl$_2$$^-$/viologen-modified Si electrode.

Carbon dioxide fixation attracts much interest of many scientists and engineers not only because CO$_2$ is considered to be one of the main causes of global warming but also because it is scientifically very challenging to convert CO$_2$, one of the most stable molecules, to fuels and useful chemicals. Electrochemical reduction of CO$_2$ is one of the most studied systems, but very large overpotential and low current efficiency prevent its practical use. Moreover, if electricity is generated by using fossil fuel, more CO$_2$ is produced. Photoelectrochemical and photocatalytic reduction of CO$_2$ using semiconductor is ideal as solar energy can be utilized to reduce CO$_2$. Unfortunately, however, most of the semiconductors, which have a suitable bandgap for solar energy conversion, are corrosive in aqueous solutions. Furthermore, most of the semiconductor surfaces are not catalytically active for multi-electron transfer reactions such as hydrogen evolution and CO$_2$ reduction, because they do not adsorb reaction intermediates with suitable strength. One of the methods to solve these problems is to modify the semiconductor surface with metal or metal ions, which act as catalyst. But this approach has one severe problem that surface states, which act as charge recombination centers, are often introduced at the metal-semiconductor interface as a result of the surface modification by metal.

Several groups used organic molecular layers to separate catalytic metals and semiconductor surfaces so that the introduction of surface states, which is the result of direct contact between catalytic metals and semiconductor surface, can be avoided and demonstrated that efficiencies of photoelectrochemical reactions are significantly enhanced, although the position and amount of catalyst are not well controlled. Recently, we have demonstrated that very efficient photoelectrochemical hydrogen evolution reaction (HER) can be achieved at a Si(111) electrode modified with a highly ordered organic molecular layer with viologen moieties, which is directly bonded to Si surface via Si-C bond, as an electron mediator and Pt complex, which is confined within the molecular layer as a catalyst.

In this paper, we have extended this approach to photoelectrochemical carbon dioxide reduction at p-type Si(111) electrode modified with viologen molecular layer and various metal complexes. AuCl$_2$ and PdCl$_2$ are chosen as complexes as electrochemical CO$_2$ reduction is known to proceed efficiently at Au and Pd electrodes while H$_2$ generation is dominant at Pt electrode in CO$_2$ saturated solution.

Surface modification was carried out as schematically shown in Scheme 1. Details of the procedure for the modification by organic layers and characterization of modified surfaces have been reported before. Briefly, a freshly prepared hydrogen-terminated (H-) Si(111) surface was sequentially treated to yield a viologen monolayer-modified (V$^{++}$-) Si(111) substrate: (1) H-Si(111) surface was illuminated with 254 nm light for 2 h in deaerated 4-vinylbenzylchloride to yield a 4-ethylbenzylchloride-modified (EBC-) Si(111) surface, (2) the substrate was then kept in benzene solution saturated with 4, 4'-bipyridine and then in 1-bromobutane, both at 70$^\circ$C for 12 h to obtain a V$^{++}$-Si(111) surface. The V$^{++}$-Si(111) was immersed in an aqueous solution containing 10 mM of NaAuCl$_4$ or K$_2$PdCl$_4$ for 20 min at room temperature to yield Au- and Pd-V$^{++}$-Si(111) surfaces, respectively.

![Scheme 1. Schematic illustration of the modification steps of hydrogen terminated (H-) Si(111) surface to obtain Au- and Pd-V$^{++}$-Si(111) surfaces. Metal Complex: AuCl$_4$ and PdCl$_2$. See the text for the detail.]

X-ray photoelectron spectra (XP spectra) obtained using a Rigaku model XPS-7000 with monochromic Mg Ka for the (A) Au- and (B) Pd-V$^{++}$-Si(111) surfaces in Au4f and Pd3d regions, respectively, confirm the incorporation of the metals.
Figure 1 shows I-V curves of the (A) Au- and (B) Pd-V⁺⁺⁻⁻Si(111) electrodes in Ar and CO₂ saturated 0.1 M Na₂SO₄ aqueous solutions. The pH of the Ar saturated 0.1 M Na₂SO₄ solution was adjusted to 4.4 by adding H₂SO₄, since the pH of 0.1 M Na₂SO₄ changed from 5.9 to 4.4 by CO₂ saturation. Relatively small current flowed at the n-Si(111) electrodes modified with viologen layer/metal complexes in dark both in Ar and CO₂ saturated solutions. However, currents in CO₂ saturated solution were clearly larger than those in Ar saturated solution at potentials more negative than ca. -0.5 V.

These trends are more clearly seen in the bottom panel of Fig. 1(C), which shows potential dependencies of the ratio between photocurrents in the CO₂ (I_CO₂) and Ar saturated solutions (I_Ar) at the Au-V⁺⁺⁻⁺ and Pd-V⁺⁺⁻⁻Si(111) electrodes. At the Pd modified Si electrode, I_CO₂ became larger than I_Ar as soon as photocurrent started to flow at 0 V but I_CO₂/I_Ar gradually decreased as potential became more negative than ca. -0.2 V and became 1 as potential became more negative than ca. -0.6 V as mentioned before. At the Au modified Si electrode, I_CO₂ was smaller than I_Ar in the relatively positive potential region but I_CO₂/I_Ar increased significantly as potential became more negative than ca. -0.5 V and reached 4 at -0.7 V. The top panel of Fig. 1(C) is the Cyclic voltammogram (CV) of V⁺⁺⁻⁻Si(111) electrode without metal complex under illumination obtained with very fast scan rate (50 mV/s). Reduction peaks of viologen moiety are clearly observed at -0.25 V and -0.7 V for the reduction of V⁺⁺ to V⁺ and of V⁺ to V⁻, respectively. Positions of these peaks were more positive than those observed at n-type V⁺⁺⁻⁻Si(111) electrode in dark as expected. Potential dependencies of photocurrent and I_CO₂/I_Ar seem to be related to the reduced state of viologen moiety. While at the Pd-V⁺⁺⁻⁻Si(111) electrode, large photocurrent flowed in both Ar and CO₂ saturated solution as soon as the reduction of V⁺⁺ to V⁺ started, at the Au-V⁺⁺⁻⁻ Si(111) electrode, only relatively small and almost no photocurrent were observed in Ar and CO₂ saturated solutions, respectively, in potential region where viologen moiety was in V⁺ and significant increase of photocurrent was observed in CO₂ saturated solution as soon as V⁺ was reduced to V⁻. This difference should be due to the difference in the energy to form adsorbed intermediate states on the metal catalysts.

As a qualitative analysis of the products of CO₂ reduction, in situ FT-IR measurements were performed at the Au- and Pd-V⁺⁺⁻⁻Si(111) electrodes in 0.1 M Na₂SO₄ solution saturated with CO₂. Figure 2(A) shows IR spectra (s-polarization) obtained at the Pd-V⁺⁺⁻⁻Si(111) in the CO₂ saturated 0.1 M Na₂SO₄ solution keeping the potential at -0.7 V for a given period of time under illumination with a spectrum measured in dark before illumination as a reference.

![Graph showing I-V curves of Au- and Pd-V⁺⁺⁻⁻Si(111) electrodes in Ar and CO₂ saturated solutions.](image1)

![Graph showing potential dependencies of the ratio between photocurrents in CO₂ and Ar saturated solutions.](image2)

![IR spectra showing the products of CO₂ reduction.](image3)
1325-1475 cm⁻¹ regions with background correction, and (C) at various potentials in 1200-1800 cm⁻¹ region.

No significant difference was noticed between the p- and s-polarized spectra. Negative going peaks due to the consumption in the thin layer were observed at around 1600, 2350, and 3,200 cm⁻¹, corresponding to bending of OH of water, CO stretching of dissolved CO₂, and OH stretching of water, respectively, showing that HER and CO₂ reduction proceeded. A small positive going peak due to the accumulation of reduction product was observed at around 1,410 cm⁻¹, which corresponds to symmetric stretch of carboxylate group. The growth of this peak with time is more clearly seen in Fig. 2 (B), which shows IR spectra in 1325-1475 cm⁻¹ region with correction of background due to strong negative going OH bending peak. This agrees with previous reports that the main product of electrochemical carbon dioxide reduction reaction at Pd electrode is formic acid/formate ion. Asymmetric stretching peak of carboxylate group, which should be present at around 1,510 cm⁻¹ is not visible because of strong negative going OH bending peak at this potential. IR spectra obtained various potentials shown in Fig. 2(C) indicate that at -0.2 V, the negative going OH bending peak is not visible and small positive going peaks due to symmetric and symmetric stretch of carboxylate group are observed. This is in good agreement with the result shown in Fig. 1(B) that dominant reaction at this potential is CO₂ reduction.

In situ FT-IR measurements obtained at the Au-V⁺⁺-Si(111) electrode in 0.1 M Na₂SO₄ solution saturated with CO₂ shows only negative going peaks due to the consumption in the thin layer at around 1600, 2350, and 3,200 cm⁻¹, corresponding to bending of OH of water, CO stretching of dissolved CO₂, and OH stretching of water, respectively, and no positive going peaks were observed. Thus, although it is confirmed that HER and CO₂ reduction proceeded at the Au-V⁺⁺-Si(111) electrode, no product was determined. According to previous reports, main product of CO₂ reduction at gold electrode is CO₃⁻.

In conclusion, photoelectrochemical carbon dioxide reduction was significantly enhanced by modifying Si(111) surfaces by the organic molecular layer with viologen moieties and AuCl₄⁻ or PdCl₄²⁻. It was confirmed that viologen moiety plays an important role for mediating electron transfer from Si to metal catalysts. While CO₂ reduction was dominant at the Si(111) electrode modified with PdCl₄²⁻ in the potential region where viologen moiety was in the first reduced state, the second reduced state is required to reduce CO₂ at the electrode modified with AuCl₄⁻. FTIR measurements confirmed the formation of formic acid/formate ion as a product of CO₂ reduction and selectivity of CO₂ reduction to HER is high at the positive potential at Pd-V⁺⁺-Si(111) electrode. The decrease of selectivity for CO₂ reduction at the Pd-V⁺⁺-Si(111) electrode as potential became negative should simply be due to the low surface concentration of CO₂ with respect H₂O (H+) for HER. More detailed analysis including gaseous products is under way.

Professors Katsuaki Shimazu and Toshikazu Kawaguchi are acknowledged for XPS measurements. The present work was partially supported by GCOE Program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science), World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, and MEXT Program for Development of Environmental Technology using Nanotechnology from Ministry of Education, Culture, Sports, Science and Technology, Japan. YS is supported by MEXT scholarship for foreign students.

References and Notes

17. Illumination was provided by a 500 W xenon lamp (Ushio, UXL-500-D) through an IR cut filter (Toshiba, IRA-20), a UV cut filter (Sigma Koki) and an ND filter (Toshiba).
18. ATR FT-IR spectra were obtained in thin layer configuration using a Bio-Rad FTS-30 spectrometer equipped with a mercury cadmium telluride (HgCdTe) detector cooled with liquid nitrogen. A diode laser (13 mW”) was used as a light source. All the spectra were measured by integrating 32 interferograms with a resolution of 2 cm⁻¹.
20. It must be noted the non-zero contribution of surface species in s-polarized IR spectra at semiconductor electrode, although s-polarized IR spectra at metal electrode contains no information from the surface species.
Graphical Abstract

Textual Information

Title

Photoelectrochemical Reduction of Carbon Dioxide at Si(111) Electrode Modified by Viologen Molecular Layer with Metal Complex

Authors’ Names

Yu Sun, Takuya Masuda, and Kohei Uosaki

Graphical Information

- **Diagram 1**: Illustration of the photoelectrochemical process involving Au and viologen moieties on p-type Si.
- **Diagram 2**: A graph showing the photocurrent density vs. potential for Au and Pd, indicating the efficiency of CO₂ reduction under light irradiation.
- **Diagram 3**: Schematic representation of the molecular layer with viologen moieties on the surface of the Si electrode.