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Extrinsic spin Nernst effect in two-dimensional electron systems
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The spin accumulation due to the spin current induced by the perpendicular temperature gradient (the spin
Nernst effect) is studied in a two-dimensional electron system (2DES) with spin-orbit interaction by employing
the Boltzmann equation. The considered 2DES is confined within a symmetric quantum well with δ doping at
the center of the well. A symmetry consideration leads to the spin-orbit interaction which is diagonal in the spin
component perpendicular to the 2DES. As origins of the spin current, the skew scattering and the side jump are
considered at each impurity on the center plane of the well. It is shown that, for repulsive impurity potentials,
the spin-Nernst coefficient changes its sign at the impurity density where contributions from the skew scattering
and the side jump cancel each other out. This is in contrast to the spin Hall effect in which the sign change of the
coefficient occurs for attractive impurity potentials.
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I. INTRODUCTION

The spin Hall effect1–3 is the generation of the spin
accumulation, or the difference in density between spin-up
and spin-down electrons, due to the spin current driven by the
perpendicular electric field. This transverse effect is produced
by spin-orbit interaction in the absence of magnetic field. It
has attracted much attention in the field of spintronics4 as a
promising way to create the spin accumulation in nonmagnetic
materials. The first report on the observation of the spin Hall
effect has been made by Kato et al.5 for three-dimensional
electron systems (3DES) in semiconductors, n-doped GaAs
and n-doped InGaAs, and is followed by many experimental
works including the observation in two-dimensional hole sys-
tems (2DHS)6 and that in two-dimensional electron systems
(2DES).7 Theoretical proposals have been made before such
observations and are classified into the intrinsic origin and the
extrinsic one. The intrinsic spin Hall effect8,9 is due to the
spin-orbit interaction induced by the crystal potential as well
as the confining potential of a quantum well. The extrinsic
spin Hall effect10–13 originates from electron scatterings from
nonmagnetic impurities in the presence of the spin-orbit
interaction. The spin Hall effect observed in the 3DES5 and
that in the 2DES7 have been explained by calculations based
on the extrinsic mechanism.14–16 In this paper we investigate
the extrinsic spin Nernst effect in 2DES.

The observation of the spin Hall effect in 2DES has been
made by Sih et al.7 in a (110) AlGaAs quantum well. They
have already suggested in their paper that the observed spin
Hall effect is extrinsic since (1) the quantum well is doped at the
area density of 1012 cm−2, (2) the measured value of the Rashba
coefficient is small, and (3) the Dresselhaus field should be
absent because of the current orientation along the [001] axis
in the (110) quantum well. Since the measurement in 2DES,7 as
the 3DES experiment,5 is made at the temperature of 30 K, the
phase coherence in the electron transport may not be important.
Therefore a theoretical study for this experiment has been
performed based on the Boltzmann equation by Hankiewicz
and Vignale,15 as well as the semiclassical theory by Engel
et al.14 for the 3DES experiment.

In the atomic-layer epitaxial growth of a semiconductor het-
erostructure, both positively and negatively ionized impurities

can be introduced at a precise distance from the heterointerface
by employing the method of δ doping.17 In fact, both Si (donor)
and Be (acceptor) have been doped successfully at a precise
distance from the interface of a GaAs/AlGaAs heterostructure,
and a strong dependence on the dopant type has been found
in magnetotransport properties of a 2DES located near the
dopant.18 Such an accurate control of the doping profile gives
the 2DES an advantage in that this can provide a method to
enhance strongly the spin accumulation due to the extrinsic
spin Hall effect.

A remarkable dependence of the extrinsic spin Hall current
on the impurity-limited mobility has been found in a model
of 2DES by Hankiewicz and others.15,19 The 2DES in their
model has a negligible width and therefore the dependence
on the above-mentioned doping profile is beyond the scope
of their works. There are two contributions to the extrinsic
spin Hall current. One is the contribution from the skew
scattering20–22 and the other is that from the side jump.23–25

Both have long been studied in the theory of the anomalous
Hall effect in ferromagnetic metals (see Refs. 26–28 for early
theories on the anomalous Hall effect and Ref. 29 for a recent
review). The skew-scattering contribution has a different sign
depending on whether the impurity potential is attractive or
repulsive, while the side-jump contribution is independent
of both the impurity potential and the impurity density. For
attractive impurity potentials, the contributions from the skew
scattering and the side jump are opposite in sign. Therefore
the direction of the spin current is switched as the weight of
the skew-scattering contribution is changed, for example, by
varying the mobility.15,19 This theoretical finding suggests that
the spin accumulation due to the extrinsic spin Hall effect
can be controlled in a wide range, for example, by changing
the impurity density. We expect that the controllability should
be enhanced by introducing various doping profiles with the
δ-doping technique.

The temperature gradient is another driving force for the
spin current in the perpendicular direction. This phenomenon,
called the spin Nernst effect, is one of the most important
subjects in “spin caloritronics,” a research field exploring the
interplay between the heat and the spin degree of freedom.30,31

The spin Nernst effect is the nonmagnetic analog of the
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anomalous Nernst effect. While the anomalous Nernst effect
has been studied in 3D ferromagnetic metals for nearly a
century (see Refs. 32 and 33 for early experiments and Refs. 24
and 34 for early theories), studies on the spin Nernst effect
have started quite recently. An experimental study to observe
the spin Nernst effect is in progress in 3D metals.35 Several
theoretical studies on the spin Nernst effect have been made in
2DES.36–38 However, these theories are only for the intrinsic
origin due to the Rashba term. The spin Nernst effect with the
extrinsic origin is worth studying theoretically, in particular,
the dependence on the type and the density of impurities. Even
the sign of each contribution in the extrinsic mechanism is not
known in the spin Nernst effect.

In this paper we study theoretically the spin Nernst effect
in 2DES based on the extrinsic mechanism by employing the
Boltzmann equation. In particular, we propose an efficient
method to control the spin Nernst effect by changing the
impurity type and density.

In Sec. II we describe our formulation. We start from the
Hamiltonian for an electron in a quantum well formed in a
semiconductor heterostructure with interfaces parallel to the
xy plane. Then we reduce it to the effective Hamiltonian for the
two-dimensional electron motion in the xy plane (Sec. II A).
Here we show that the 2D Hamiltonian becomes diagonal
in the z component of spin when each impurity is located
on the center plane of a symmetric quantum well. For such
2D Hamiltonian we write the Boltzmann equation and derive
the distribution function (Sec. II B). Using the distribution
function we obtain the current densities and the transport
coefficients (Sec. II C). We show here that the side jump also
gives rise to the current density component induced by the
temperature gradient.

Then we apply the formulation to the spin Nernst effect
in Sec. III. We consider a rectangular 2DES, apply the
temperature gradient along the x direction, and calculate the
gradient along y of the chemical-potential difference between
spin-up and spin-down electrons. We pay a special attention
to the signs of contributions from the skew scattering and the
side jump. We present the result as a function of the impurity
density for both attractive and repulsive potentials and compare
it with that of the spin Hall effect. Conclusions are given in
Sec. IV.

II. FORMULATION

A. 2D Hamiltonian

We consider conduction-band electron states which are
bound to a quantum well with translational symmetry in the
xy plane. We assume that the wave function describing the
motion along the z direction is frozen to the ground state, and
derive the effective Hamiltonian for the 2D motion in the xy

plane in the following.
We start from the Hamiltonian describing the 3D motion:

H3D = p2
x + p2

y + p2
z

2m
+ V3D(x,y,z) − ασ · (∇V3D × p),

(1)

where m is the effective mass, α is the effective coupling
constant of the spin-orbit interaction for an electron in the

conduction band of the semiconductor, and σ = (σx,σy,σz) is
the Pauli spin matrix. The potential energy is

V3D(x,y,z) = Vwell(z) + Vimp(x,y,z) + eE · r, (2)

where Vwell(z) is the well potential, Vimp(x,y,z) is the potential
due to randomly distributed impurities, E = (Ex,Ey,0) is the
in-plane electric field, and e > 0 is the absolute value of the
electronic charge.

We define the Hamiltonian for two-dimensional motion as

H2D = 〈H3D〉, (3)

where the brackets represent the average with respect to the
motion along z as

〈H3D〉 =
∫

dz ϕ0(z)H3Dϕ0(z). (4)

Here ϕ0(z) is the wave function of the ground state at energy
ε0 which satisfies the Schrödinger equation:[

p2
z

2m
+ Vwell(z)

]
ϕ0(z) = ε0ϕ0(z). (5)

We begin with evaluating terms in H2D which originate
from the spin-orbit interaction. Here we assume that Vwell(z)
is symmetric with respect to the center of the well z = 0. Then
Vwell(z) gives no spin-orbit term in H2D. The in-plane electric
field gives a spin-orbit term with σz only (no terms with σx

and σy), since 〈pz〉 = 0 and Ez = 0.
Spin-orbit terms in H2D, which is due to the impurity

potential, are separated into the following three components:

H
so,imp
2D,x = −ασx[〈(∇yVimp)pz〉 − 〈∇zVimp〉py],

H
so,imp
2D,y = −ασy[〈∇zVimp〉px − 〈(∇xVimp)pz〉], (6)

H
so,imp
2D,z = −ασz[(∇xvimp)py − (∇yvimp)px],

with the effective impurity potential in the 2DES,

vimp(x,y) = 〈Vimp(x,y,z)〉. (7)

Since a term in H
so,imp
2D,x can be rewritten as 〈(∇yVimp)pz〉 =

ih̄(∇y〈∇zVimp〉)/2 and the same is true for H
so,imp
2D,y , the

magnitude of H
so,imp
2D,x and that of H

so,imp
2D,y are determined by

〈∇zVimp〉, ∇x〈∇zVimp〉, and ∇y〈∇zVimp〉. On the other hand,
the magnitude of H

so,imp
2D,z is determined by ∇xvimp and ∇yvimp.

Equation (6) demonstrates that the 2D Hamiltonian for
2DES formed in a quantum well, in general, contains in-plane
components of spin σx and σy due to the combined action of the
impurity potential and the spin-orbit interaction. The resulting
spin relaxation due to the Elliott-Yafet mechanism4,39,40 has
already been reported in the literature.41,42 However, the z

component of spin σz is conserved when the condition

〈∇zVimp〉 = 0 (8)

is satisfied. This condition is satisfied when impurities are
located on the center plane (z = 0) of the symmetric quantum
well. Such a precise placement of impurities is in fact possible
by using the method of δ doping.17,18

We therefore assume the condition Eq. (8). Our Hamiltonian
for the two-dimensional motion of the 2DES is simplified to
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become

H2D = p2
x + p2

y

2m
+ v2D(x,y) − ασz[(∇xv2D)py − (∇yv2D)px],

(9)

with

v2D(x,y) = vimp(x,y) + e(Exx + Eyy). (10)

This 2D Hamiltonian coincides with that employed to study
the extrinsic spin Hall effect of 2DES in the previous theory.15

B. Boltzmann equation and the distribution function

Hankiewicz and Vignale in their study on the extrinsic spin
Hall effect of 2DES15 have obtained the distribution function
by solving the Boltzmann equation up to the first order of
the electric field E and of the spin-orbit coupling constant
α. Here we extend their formulation to include gradients of
the chemical potential and the electron temperature as driving
forces, and obtain the distribution function up to the first order
of all the driving forces, which is denoted simply by O(E)
below, and up to O(α). We show that the side jump, as well as
the skew scattering, gives a temperature-gradient term in the
distribution function.

Since our 2D Hamiltonian conserves the z component of
spin, the distribution function for each of its eigenvalues σ =
±1 is determined independently by the Boltzmann equation.
The Boltzmann equation for the distribution function of
electrons with spin σ , fσ (r,k) in a steady state is

v · ∂fσ

∂ r
+ (−e)E

h̄
· ∂fσ

∂k
=

(
∂fσ

∂t

)
c

. (11)

The distribution function is decomposed into that in the local
equilibrium f (0) which depends on k through the energy εk =
h̄2k2/2m, and the deviation in the first order of the driving
forces f (1)

σ which depends on the direction of k relative to E:

fσ (r,k) = f (0)[εk,μσ (r),Te(r)] + f (1)
σ (r,k), (12)

where f (0)(ε,μ,T ) = {exp[(ε − μ)/kBT ] + 1}−1, μσ is the
spin-dependent chemical potential, and Te is the electron
temperature. Note that the first term of fσ (r,k) includes spatial
dependencies of μσ and Te, although the function f (0) itself is
of the zeroth order of the driving forces. The r dependence of
f (1)

σ (r,k) also originates from the driving forces, and therefore
it gives only terms of O(E2). Since

v = h̄k
m

+ O(E),
1

h̄

∂fσ

∂k
= v

∂f (0)

∂εk

+ O(E), (13)

and

∂fσ

∂ r
= ∂f (0)

∂μσ

∇μσ + ∂f (0)

∂Te
∇Te + O(E2), (14)

then the left-hand side of the Boltzmann equation [Eq. (11)] is
written in the first order of the driving forces as

v · ∂fσ

∂ r
+ (−e)E

h̄
· ∂fσ

∂k
= v · Fσ (εk)

∂f (0)

∂εk

, (15)

with a generalized force

Fσ (εk) = −∇μec
σ − εk − μσ

Te
∇Te. (16)

Here μec
σ is the spin-dependent electrochemical potential

defined by

μec
σ = eE · r + μσ , (17)

and the chemical potential μσ consists of terms in the zeroth
and first orders of the driving forces:

μσ = μ(0)
σ + μ(1)

σ . (18)

The collision term is written as15(
∂fσ

∂t

)
c

=
∑

k′
[−Wkk′σ fσ (k) + Wk′kσ fσ (k′)], (19)

where Wkk′σ is the rate of transition from kσ to k′σ and has the
contribution from the normal scattering W n

kk′σ and that from
the skew scattering W ss

kk′σ :

Wkk′σ = W n
kk′σ + W ss

kk′σ , (20)

with

W n
kk′σ = Wn(εk,θ )δ(εk′ − εk + eE · 	r),

(21)
W ss

kk′σ = σ sin θ Wss(εk,θ )δ(εk′ − εk + eE · 	r).

Here θ is the angle of k′ relative to that of k. Since we
retain only terms up to O(α), Wss(εk,θ ) representing the skew
scattering is O(α), while Wn(εk,θ ) due to the normal scattering
has no dependence on α. Both Wn(εk,θ ) and Wss(εk,θ ) are an
even function of θ . The δ function expresses the conservation
of energy, in which we take into account the potential energy
shift due to the position change in the side jump at the scattering
from kσ to k′σ ,

	r = −2ασh̄(k′ − k) × ez, (22)

where ez = (0,0,1) and the vector k should be regarded as
a three-dimensional vector with vanishing z component k =
(kx,ky,0). Note that the functions Wn(εk,θ ) and Wss(εk,θ ) are
defined in the absence of E where the difference between εk

and εk′ is absent.
The collision term is separated into four components,(

∂fσ

∂t

)
c

= Cn0 + Cn1 + Css0 + Css1, (23)

with

Cn0 =
∑

k′
W n

kk′σ [f (0)(εk′) − f (0)(εk)],

Cn1 =
∑

k′
W n

kk′σ
[
f (1)

σ (k′) − f (1)
σ (k)

]
,

(24)
Css0 =

∑
k′

W ss
kk′σ [−f (0)(εk′) − f (0)(εk)],

Css1 =
∑

k′
W ss

kk′σ
[−f (1)

σ (k′) − f (1)
σ (k)

]
.

We retain terms up to O(E) and those up to O(α). Then we
immediately have Css0 = 0 since the side jump 	r giving
terms of O(α2) in Css0 is to be neglected and the integrand of
Css0 becomes an odd function of θ . On the other hand, Cn0

is not zero in the presence of the side jump. The side jump
gives the difference between f (0)(εk′) and f (0)(εk) of Cn0 in
two ways. One is from the difference in the kinetic energy εk ,
which comes from the potential energy shift and the energy
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conservation at the scattering. The other is from the difference
in the distribution between two points separated by 	r , which
is described in the local equilibrium by the difference in μσ

and that in Te. Such considerations give

f (0)(εk′) − f (0)(εk) = ∂f (0)

∂εk

(εk′ − εk) + ∂f (0)

∂μσ

∇μσ · 	r

+∂f (0)

∂Te
∇Te · 	r (25)

and εk′ − εk = −eE · 	r using the energy conservation.
We seek the solution for f (1)

σ of the form

f (1)
σ (k) = −∂f (0)

∂εk

h̄k · V σ (εk), (26)

and substitute this form into Cn1 and Css1. Then a straightfor-
ward calculation gives, for ε = εk ,(

∂fσ

∂t

)
c

= ∂f (0)

∂ε
h̄k ·

[
V σ (ε)

τn(ε)
+ σ V σ (ε) × ez

τss(ε)

+ 2ασ ez × Fσ (ε)

τn(ε)

]
. (27)

The first and second terms in the square brackets come from
Cn1 (the normal scattering) and Css1 (the skew scattering),
respectively, with τn and τss defined by

1

τn(ε)
=

∑
k′

δ(εk′ − ε)Wn(ε,θ )(1 − cos θ ), (28)

1

τss(ε)
=

∑
k′

δ(εk′ − ε)Wss(ε,θ ) sin2 θ. (29)

Note that τss(ε) can be negative since Wss(ε,θ ) starts from
the third order in the expansion with respect to the impurity
potential.43 The third term comes from Cn0 (the side jump)
and is induced by the gradient of the chemical potential and
that of the electron temperature as well as the electric field.
Substituting the drift term Eq. (15) and the collision term
Eq. (27) into the Boltzmann equation [Eq. (11)] gives the
following equation for V σ (ε):

Fσ (ε)

m
= V σ (ε)

τn(ε)
+ σ V σ (ε) × ez

τss(ε)
+ 2ασ ez × Fσ (ε)

τn(ε)
. (30)

Up to the first order of the spin-orbit coupling constant α,
V σ (ε) is obtained to be

V σ (ε) = τn(ε)

m

[
Fσ (ε) − σ

τn(ε)

τss(ε)
Fσ (ε) × ez

]
+ 2ασ Fσ (ε) × ez. (31)

Substituting this formula of V σ (ε) into that of f (1)
σ in Eq. (26)

we obtain the distribution function fσ (r,k) in Eq. (12) in the
presence of the electric field, the chemical potential gradient,
and the temperature gradient.

C. Current densities and transport coefficients

The number current density of spin-σ electrons is defined
by

jnσ = 1

S

∑
i

〈vi〉av, (32)

where the summation is taken over spin-σ electrons in the area
S, and vi is the velocity operator of the ith electron given by

vi = pi

m
+ 2ασ∇v2D(r i) × ez. (33)

The second term of vi comes from the spin-orbit interaction
induced by the potential due to the electric field and impurities
v2D(r i), and reduces to −2ασ (d pi/dt) × ez in O(α). The
brackets in Eq. (32) take the average with respect to the wave
packet in the steady state. In the steady state the acceleration
by the electric field is balanced with the deceleration by the
impurity potential when each wave packet travels through the
system, that is 〈d pi/dt〉av = 0, which leads to the vanishing
contribution from the second term of vi to the current. This
semiclassical argument made by Hankiewicz and Vignale15

has been supported in terms of a rigorous density-matrix
formalism by Culcer et al.44 The first term of vi gives

jnσ = 1

S

∑
k

h̄k
m

[
f (0)(εk) + f (1)

σ (k)
]
. (34)

Here the contribution from f (0) vanishes since f (0) depends
only on the magnitude of k. Substituting the expression of f (1)

σ

[Eq. (26)] we have

jnσ = 〈ρεV σ (ε)〉σ , (35)

where ρ is the constant density of states per unit area per spin
for two-dimensional electrons and the brackets represent the
statistical average for spin-σ electrons:

〈· · ·〉σ =
∫ ∞

0
dε · · ·

[
−∂f (0)(ε,μσ ,Te)

∂ε

]
. (36)

The heat current density is obtained in a similar manner as

jqσ = 〈ρεV σ (ε)(ε − μσ )〉σ . (37)

In the linear-response regime, each component of the
number current density jnσ is a linear function of components
of thermodynamic forces, and the same is the case for jqσ . The
thermodynamic force corresponding to each current density is
obtained from the expression of the entropy production45,46

to be −T −1
e ∇μec

σ for jnσ and −T −2
e ∇Te for jqσ . Therefore

the linear relations between the current densities and the
thermodynamic forces are written as(

jnσ

jqσ

)
=

(
L11σ L12σ

L21σ L22σ

) ( −∇μec
σ

−T −1
e ∇Te

)
, (38)

with the transport coefficients

Lijσ =
(

L
ijσ
xx L

ijσ
xy

L
ijσ
yx L

ijσ
yy

)
, i = 1,2, j = 1,2. (39)

The common factor T −1
e of the thermodynamic forces is

absorbed in the transport coefficients. Since the 2DES in our
model is isotropic in the xy plane, the transport coefficients
have the following symmetry relation: Lijσ

xx = L
ijσ
yy and L

ijσ
xy =

−L
ijσ
yx .

The expression for each transport coefficient is obtained by
substituting the formula of V σ (ε) in terms of the thermody-
namic forces Eq. (31) with Eq. (16) into those of the current
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densities Eqs. (35) and (37). The obtained expression is

Lijσ
μν = 〈Lμν(ε)(ε − μσ )i+j−2〉σ , (40)

with μ = x,y and ν = x,y. Here Lμν(ε) is the contribution
to the conductivity from electrons having energy ε. Diagonal
components

Lxx(ε) = Lyy(ε) = ρε
τn(ε)

m
(41)

have the form of the Drude conductivity divided by e2, while
off-diagonal components

Lxy(ε) = −Lyx(ε) = ρεσ

[
− τn(ε)2

mτss(ε)
+ 2α

]
(42)

are due to the spin-orbit interaction. The first term in the square
brackets is the contribution from the skew scattering, while the
second term is that from the side jump. Note that the spin-orbit
interaction gives rise to all off-diagonal transport coefficients
in L11σ , L12σ , L21σ , and L22σ .

When the 2DES is degenerate (μσ � kBTe),

L11σ
μν = Lμν(μσ ), L12σ

μν = π2

3
(kBTe)2

[
dLμν(ε)

dε

]
ε=μσ

.

(43)

Therefore the Mott relation47 holds, that is, the thermoelec-
tric conductivity tensor L12σ

μν is proportional to the energy
derivative of the electric conductivity tensor L11σ

μν . In addition,
the diagonal electric conductivity reduces to the Drude
conductivity e2L11σ

xx = nσ e2τn(μσ )/m, where nσ is the density
of spin-σ electrons.

In the discussion of the spin Nernst effect as well as the spin
Hall effect, it is convenient to reorganize the number and heat
current densities for both spins into the spin current density
j s, the number current density jn, and the heat current density
jq, as follows:

j s = ( jn↑ − jn↓)/2,

jn = jn↑ + jn↓, (44)

jq = jq↑ + jq↓,

where we have used the notation σ =↑ , ↓ instead of σ =
+1, − 1. The corresponding thermodynamic forces45,46 are
−T −1

e ∇μs
ec, −T −1

e ∇μn
ec, and −T −2

e ∇Te, respectively, with

μs
ec = μec

↑ − μec
↓ = μ↑ − μ↓,

μn
ec = (μec

↑ + μec
↓ )/2. (45)

The linear relations now become⎛
⎜⎝

j s

jn

jq

⎞
⎟⎠ =

⎛
⎜⎝

Lss Lsn Lsq

Lns Lnn Lnq

Lqs Lqn Lqq

⎞
⎟⎠

⎛
⎜⎝

−∇μs
ec

−∇μn
ec

−T −1
e ∇Te

⎞
⎟⎠ , (46)

where

Lss = L11↑ + L11↓

4
, Lsn = L11↑ − L11↓

2
,

Lsq = L21↑ − L21↓

2
, (47)

Lns = Lsn, Lnn = L11↑ + L11↓, Lnq = L21↑ + L21↓,

Lqs = Lsq, Lqn = Lnq, Lqq = L22↑ + L22↓.

In the following we employ the condition satisfied in
nonmagnetic systems, that is, the chemical potentials for both
spins are the same in equilibrium μ

(0)
↑ = μ

(0)
↓ . Then we have

L
ij↑
xx = L

ij↓
xx and L

ij↑
xy = −L

ij↓
xy . With use of these relations,

we confirm that the Onsager relation48,49 is satisfied, that is,
L

ij↑
μν = L

ji↓
νμ . In addition we have

Lij↑ + Lij↓ = 2Lij↑
xx I, I =

(
1 0

0 1

)
,

(48)

Lij↑ − Lij↓ = 2Lij↑
xy J, J =

(
0 1

−1 0

)
,

from which we find that Lsn (=Lns) and Lsq (=Lqs) are propor-
tional to J , while the other matrices in Eq. (46) are proportional
to I . Therefore we can separate Eq. (46) representing the linear
relations into the following two equations:⎛

⎜⎝
j s
x

j n
y

j
q
y

⎞
⎟⎠ =

⎛
⎜⎝

Lss
xx Lsn

xy L
sq
xy

Lns
yx Lnn

yy L
nq
yy

L
qs
yx L

qn
yy L

qq
yy

⎞
⎟⎠

⎛
⎜⎝

−∇xμ
s
ec

−∇yμ
n
ec

−T −1
e ∇yTe

⎞
⎟⎠ (49)

and ⎛
⎜⎝

j s
y

j n
x

j
q
x

⎞
⎟⎠ =

⎛
⎜⎝

Lss
yy Lsn

yx L
sq
yx

Lns
xy Lnn

xx L
nq
xx

L
qs
xy L

qn
xx L

qq
xx

⎞
⎟⎠

⎛
⎜⎝

−∇yμ
s
ec

−∇xμ
n
ec

−T −1
e ∇xTe

⎞
⎟⎠ . (50)

These equations indicate that, in nonmagnetic systems, the
spin current (say along the x axis) is coupled only to the
perpendicular component of the number and heat currents
(along the y axis).

III. SPIN NERNST EFFECT

A. Calculation of the spin Nernst coefficient

We consider a state in which all current densities are
uniform in a rectangular sample in the xy plane. In this state
the thermodynamic forces are also uniform as derived from
Eqs. (49) and (50). We apply a uniform temperature gradient
along the x axis (∇xTe = const. 
= 0, ∇yTe = 0), under the
condition that both the number current and the spin current are
vanishing ( j s = 0 and jn = 0). The spin Nernst effect in the
absence of the spin relaxation is the appearance of a uniform
gradient along the y axis of the chemical-potential difference
between up and down spins μs

ec = μ↑ − μ↓, proportional to
the applied temperature gradient along the x axis:

∇yμ
s
ec = Ns∇xTe. (51)

Here we call Ns the spin Nernst coefficient.
To obtain the formula of Ns in terms of transport coeffi-

cients, we write the conditions of j s
y = 0 and j n

x = 0 in terms
of the thermodynamic forces using Eq. (50) and eliminate
∇xμ

n
ec. Then we obtain

Ns = − 1

Te

Lnn
xxL

sq
yx − Lsn

yxL
nq
xx

Lnn
xxL

ss
yy − Lsn

yxL
ns
xy

, (52)

which becomes, in the first order of α,

Ns = 2

Te

L
11↑
xx L

21↑
xy − L

11↑
xy L

21↑
xx(

L
11↑
xx

)2 . (53)
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On the other hand, Eq. (49) with j s
x = 0, j n

y = 0, and ∇yTe =
0 gives ∇xμ

s
ec = 0, ∇yμ

n
ec = 0, and j

q
y = 0. In particular,

∇xμ
s
ec = 0 means that no spin accumulation is generated in

the same direction as the applied temperature gradient.
In calculating the spin Nernst coefficient, we consider the

degenerate electron gas in which the equilibrium chemical
potential μ = μ

(0)
↑ = μ

(0)
↓ is much larger than kBTe. In this

case, using Eq. (43), we obtain

Ns = 2π2k2
BTe

3

[
τ ′

n(μ)

τn(μ)
ns + τ ′

ss(μ)

τss(μ)

τn(μ)

τss(μ)

]
, (54)

with

ns = − τn(μ)

τss(μ)
− 2mα

τn(μ)
(55)

and

τ ′
n(μ) =

[
dτn(ε)

dε

]
ε=μ

. (56)

The first term of ns in Eq. (55) comes from the skew scattering,
while the second term is from the side jump. Hankiewicz and
Vignale50 have shown, in the calculation for a model impurity
potential, that the energy dependence of τss is smaller than
that of τn at the Fermi energy. Therefore the term with ns

is dominant in Ns in Eq. (54). They have also shown that
τss is negative (positive) for repulsive (attractive) impurity
potentials.15 On the other hand, the spin-orbit coupling
constant α is positive for semiconductors.

According to Kohn and Luttinger,51 both 1/τn and 1/τss

are proportional to the impurity density nimp up to the third
order in the expansion with respect to the strength of the
impurity potential. Therefore we employ this proportionality
by considering weak impurity potentials. Then in Eq. (55) the
first term of ns from the skew scattering is independent of nimp,
while the second term from the side jump is linear in nimp and
the coefficient is negative. In the case of the repulsive impurity
potential where the first term of ns is positive, ns changes its
sign when nimp is increased, as shown in Fig. 1, while, for the
attractive impurity potential, ns is negative at any value of nimp.

B. Comparison with the spin Hall coefficient

We compare the dependence of the spin Nernst coefficient
on the impurity density with that of the spin Hall coefficient
derived in Ref. 15. We apply the number current along the x

axis, while we keep the spin current vanishing. We also set the
condition that the current along the y axis is vanishing for both
the number and the spin, and that the electron temperature is
uniform. The condition of j s

y = 0 with ∇xTe = 0 in Eq. (50)
gives immediately

∇yμ
s
ec = Hs∇xμ

n
ec, (57)

with the spin Hall coefficient Hs given by

Hs = −Lsn
yx

Lss
yy

= 2
L

11↑
xy

L
11↑
xx

. (58)

When the electron gas is degenerate we obtain

Hs = 2hs, hs = − τn(μ)

τss(μ)
+ 2mα

τn(μ)
, (59)

(b)  attractive impurity potential

repulsive impurity potential

nimp

ns

hs

0

nimp

ns

hs

0

(a)

FIG. 1. Normalized spin Nernst coefficient ns in Eq. (55) and
the normalized spin Hall coefficient hs in Eq. (59) as a function of
the impurity density nimp for (a) a repulsive impurity potential and for
(b) an attractive impurity potential.

which reproduces the dependence of the spin Hall conductivity
on τn and τss derived in 2DES by Hankiewicz and Vignale.15

Comparing this formula of hs with that of ns in Eq. (55), the
difference appears only at the sign of the second term from
the side jump: The slope of hs as a function of nimp is positive,
while that of ns is negative. Therefore the change in sign of
hs with nimp appears for the attractive impurity potential as
shown in Fig. 1.

The sample in the experiment by Sih et al.,7 in which Si
donors are doped in the quantum well, corresponds to the
attractive impurity potential in Fig. 1(b). According to the
calculation for this sample by Hankiewicz and Vignale,15

the contribution to the spin Hall conductivity from the side
jump is comparable in size to that from the skew scattering.
Therefore we expect that the sign change of the spin Hall
coefficient should be observed if the density of Si impurities
in the well is changed around the value of the Si density used
in the experiment.

A Be impurity in GaAs is known to act as an acceptor.
Therefore doping Be in a quantum well introduces the
repulsive impurity potential for the 2DES.18 In this case it
is expected, according to the calculated result in Fig. 1(a), that
the spin Nernst coefficient changes its sign as a function of the
density of Be impurities.

IV. CONCLUSIONS

We have studied theoretically the spin Nernst effect due
to the spin-orbit interaction in the extrinsic origin in two-
dimensional electron systems (2DES) in the xy plane by
employing the Boltzmann equation. We consider a 2DES
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confined within a symmetric quantum well with δ doping at
the center of the well. We have shown in such a 2DES that the
spin-orbit interaction, including that induced by the impurity
potential, is diagonal in the z component of spin because of
the symmetry of the system.

In this model of 2DES we have investigated the dependence
of the spin Nernst coefficient on the sign of the impurity
potential and on the impurity density, and compared the result
with that of the spin Hall coefficient. We have found that

the spin Nernst coefficient changes its sign as a function of
the impurity density in the case of the repulsive impurity
potential, while no sign change occurs for the attractive
impurity potential. On the other hand, the spin Hall coefficient
changes its sign in the case of the attractive impurity potential,
as shown already by Hankiewicz and Vignale.15 The sign
change of each coefficient occurs due to the cancellation
between the skew-scattering contribution and the side-jump
contribution.
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4I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
5Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Science 306, 1910 (2004).

6J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev.
Lett. 94, 047204 (2005).

7V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and
D. D. Awschalom, Nat. Phys. 1, 31 (2005).

8S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348
(2003).

9J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

10M. I. Dyakonov and V. I. Perel, Sov. Phys. JETP 13, 467 (1971).
11M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).
12J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
13S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
14H.-A. Engel, B. I. Halperin, and E. I. Rashba, Phys. Rev. Lett. 95,

166605 (2005).
15E. M. Hankiewicz and G. Vignale, Phys. Rev. B 73, 115339 (2006).
16W. K. Tse and S. Das Sarma, Phys. Rev. Lett. 96, 056601 (2006).
17K. Ploog, J. Cryst. Growth 81, 304 (1987).
18R. J. Haug, R. R. Gerhardts, K. von Klitzing, and K. Ploog, Phys.

Rev. Lett. 59, 1349 (1987).
19E. M. Hankiewicz, G. Vignale, and M. E. Flatté, Phys. Rev. Lett.
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