Three-dimensional shear wave structure beneath the Philippine Sea from land and ocean bottom broadband seismograms

Takehi Isse,1 Kazunori Yoshizawa,2 Hajime Shiobara,1,3 Masanao Shinhara,3 Kazuo Nakahigashi,3 Kimihiro Mochizuki,3 Hiroko Sugioka,1 Daisuke Suetsugu,1 Satoko Oki,3 Toshihiko Kanazawa,3 Kiyoshi Suyehiro,6 and Yoshio Fukao1

Received 29 March 2005; revised 16 January 2006; accepted 16 March 2006; published 20 June 2006.

We obtained three-dimensional (3-D) shear wave speed structure beneath the Philippine Sea and the surrounding region from seismograms recorded by land-based and long-term broadband ocean bottom seismographic stations. The ocean bottom data gave us a better station coverage to obtain a higher spatial resolution (about 300–400 km) in the Philippine Sea than in previous studies. We employed a new technique of surface wave tomography, in which multimode phase speeds are measured and inverted for a 3-D shear wave speed structure by incorporating the effects of finite frequency and ray bending. There is a sharp speed contrast along the Izu-Bonin-Mariana trench, across which the Philippine Sea side has a significantly slower upper mantle than the Pacific Ocean side. In the upper 120 km, the shear wave speed structure is well correlated with the age of the provinces. At depths greater than 160 km, the pattern is dominated by fast anomalies of the subducted slabs of the Pacific plate and two slow anomalies to the south of the Daito ridge and in the southernmost part of the Philippine Sea.

1. Introduction

The Philippine Sea consists of several small basins, ridges, and troughs with various seafloor ages (Figure 1). This can be explained by a complex history of back-arc spreading of the Philippine Sea plate [e.g., Hall et al., 1995]. The West Philippine Basin, the oldest inactive basin in the Philippine Sea, spread from the Central Basin Fault in ages between 33 and 49 Ma [Taylor and Goodliffe, 2004], and the Shikoku and Parece-Vela basins spread between 15 and 27 Ma [Okino et al., 1999]. The Mariana trough is an active back-arc basin and has been spreading since about 6 Ma [Hussong and Uyeda, 1981]. The upper mantle structure should reflect this complex evolution history of the Philippine Sea plate.

Since a pioneering work by Kanamori and Abe [1968], the upper mantle structure beneath the Philippine Sea has been extensively studied using surface waves mostly under a regionalized approximation [e.g., Seekins and Teng, 1977; Shiono et al., 1980; Oda and Senna, 1994; Kato and Jordan, 1999]. Recently, Lebedev et al. [1997] and Nakamura and Shibutani [1998] performed regional surface wave tomography to obtain 3-D shear wave speed structure models beneath the Philippine Sea. Lebedev et al. [1997] analyzed 281 broadband vertical component seismograms from the Global Seismolographic Network and the SKIPPY portable array in Australia by means of waveform inversion with an assumption that surface waves propagate along great circle path. Their model has a higher resolution down to depths of 200–300 km, showing the fast slabs subducted from the Izu-Bonin trench and slow shear wave speed anomaly beneath the Central Basin Fault of the Philippine Sea. Nakamura and Shibutani [1998] analyzed Rayleigh waves of 913 event-station pairs to obtain a 3-D shear wave speed structure down to 220 km from the fundamental mode dispersion. Their model is correlated well with the surface tectonics at depths between 80 and 100 km: The uppermost mantle of the older western Philippine Sea is faster than that of the younger eastern Philippine Sea. However, the resolution of the deeper part was limited because they used only the fundamental Rayleigh waves at periods between 30 and 100 s. Lebedev and Nolet [2003] obtained a shear wave tomographic model beneath the southeast Asia and western Pacific Ocean including the Philippine Sea by waveform inversion of 4038 vertical component seismograms. Their model shows slow shear wave speeds beneath the Central Basin Fault in good agreement with the previous studies. The model also shows the subducted slab beneath Japan and those beneath the northern Philippine Sea but little slab signatures beneath the Yap and Palau trenches.

In all of these previous models, the lack of seismic stations and earthquakes in the mid Philippine Sea limited
the lateral resolution of the shear wave speed structures and made it difficult to eliminate the artifact due to effects of the structure outside the Philippine Sea. The ray theoretical great circle assumption for surface wave propagation, which was used in the previous studies, may not be warranted in such a zone as the rim of the Philippine Sea across which shear wave speed changes sharply.

Since 1990s, the number of stations around the Philippine Sea plate has increased: A dense broadband seismic network F-net (formerly called FREESIA) was deployed across Japan by the National Institute for Earth Science and Disaster Prevention (NIED) [Fukuyama et al., 1996]; A broadband seismic network was established in the western Pacific Ocean by the Ocean Hemispheric network Project (OHP) [Fukao et al., 2001], along which broadband ocean bottom seismometers (called BBOBS hereafter) have also been installed in the Philippine Sea and northwestern Pacific [Kanazawa et al., 2001; Shiobara et al., 2001]. Isse et al. [2004] obtained the phase speed maps of the fundamental Rayleigh waves in the northern Philippine Sea by using the seismograms recorded by land-based and ocean bottom broadband stations. It was the first attempt to reveal the mantle structure by using the long-term broadband ocean bottom seismometers. They measured phase speed dispersions by a two-station method and showed that the quality of BBOBS was comparable with that of land stations in the period between 20 and 100 s, indicating that the BBOBS was useful for surface wave studies.

In the present study, we attempt to determine a more accurate 3-D shear wave structure with a higher resolution than in previous studies using Rayleigh waves recorded by land-based and ocean bottom seismic stations. We employ a new inversion technique of surface wave analysis, the three-stage inversion, which makes it possible to incorporate the effects of multimode dispersion, off-great circle propagation, and the finite frequency of Rayleigh wave in a common framework [Kennett and Yoshizawa, 2002; Yoshizawa and Kennett, 2004]. The use of the multimode phase dispersion data should resolve better the depth variation of shear wave speed than the conventional analysis method of fundamental mode dispersion. Corrections for the off-great circle propagation and finite frequency effects should improve resolution and accuracy of a 3-D model as in the present case where the lateral variation in seismic wave speed is large and sharp.

2. Data

We used broadband vertical component seismograms recorded by stations located in a latitudinal range from 20°S to 45°N and a longitudinal range from 110°E to 165°E: 18 F-net stations, 8 OHP stations, 4 IRIS stations, a station of the GEOSCOPE network, and 20 BBOBS stations. Locations, period of observations, network names, and sensors are listed in Table 1. Among the BBOBS stations, array stations across the northern Philippine Sea and in the Mariana trough were equipped with the PMD sensors manufactured by the PMD Scientific, Inc. Other stations in the northwestern Pacific Ocean, the Shikoku Basin, and the central Philippine Sea are equipped with the CMG-1T or CMG-3T sensors manufactured by the Guralp Systems Ltd. The PMD has a flat velocity response at periods from 0.05 to 30 s and the CMG-1T and CMG-3T sensors have a flat velocity response from 0.02 to 360 s. The seismograms recorded by the BBOBSs with the PMD sensors were corrected for their tilt of the sensors because the PMD sensor does not have an active leveling unit while the BBOBS with CMG-1T or CMG-3T has.

We analyzed events which took place around the Philippine Sea since 1990. The body wave magnitudes are greater than 6.0 for land-based stations. To increase the number of the data observed by BBOBSs, we chose a smaller magnitude threshold of 5.5 for the BBOBS stations. Note that the observation period was less than one year for most of the BBOBS stations because of the temporal deployment, resulting in smaller amounts of data for the BBOBS stations than the land-based stations. The event and station locations are shown in Figure 1. We analyzed 1089 events, including 398 events with focal depths greater than 40 km.

3. The Three-Stage Inversion Method

We employed the three-stage inversion method developed by Yoshizawa and Kennett [2004]. The method consists of three independent stages: (1) measurements of
multimode phase speed dispersion; (2) 2-D mapping of phase speed for each mode and period; and (3) inversion of multimode phase dispersion at each grid for 3-D shear wave speed model. We will explain the method step by step.

3.1. Measurement of Multimode Phase Speeds

[10] The first stage of the three-stage inversion is to measure multimode dispersion from observations. All seismograms are corrected for instrumental response, decimated to a sampling rate of 2 s and converted to displacements mograms are corrected for instrumental response, decimated to a sampling rate of 2 s and converted to displacements. All seismograms are corrected for instrumental response, decimated to a sampling rate of 2 s and converted to displacements.

<table>
<thead>
<tr>
<th>Station Code</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
<th>Period</th>
<th>System/Network</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWPA01</td>
<td>3.6500</td>
<td>137.9000</td>
<td>142.0</td>
<td>2000.03.02– 2000.03.02</td>
<td>BBOBS</td>
<td>PMD</td>
</tr>
<tr>
<td>NWPA02</td>
<td>3.6500</td>
<td>137.9000</td>
<td>142.0</td>
<td>2000.03.02– 2000.03.02</td>
<td>BBOBS</td>
<td>PMD</td>
</tr>
<tr>
<td>NWPA03</td>
<td>3.6500</td>
<td>137.9000</td>
<td>142.0</td>
<td>2000.03.02– 2000.03.02</td>
<td>BBOBS</td>
<td>PMD</td>
</tr>
</tbody>
</table>

In this inversion method, the neighborhood algorithm (NA) of Sambridge [1999] is adopted as a global optimizer that explores the model parameter space to find a model with the best fit to the data. The process to find the best model is as follows: (1) generate a path-averaged 1-D shear wave speed model using NA; (2) compute a synthetic waveform using this 1-D model; (3) calculate the misfit between the synthetic and observed waveforms; (4) repeat steps 1–3 until N (3000 in the present study) models are calculated; (5) find the best fitting 1-D model for which multimode phase dispersions are computed; and (6) estimate reliability of the dispersion measurement.

[11] For the computation of synthetic waveforms, the centroid moment tensor solutions reported by the Harvard University were used for source parameters in the present study.
study. An initial shear wave speed model for island stations is based on PREM [Dziewonski and Anderson, 1981] with a crustal structure corrected with the 3SMAC model [Nataf and Ricard, 1996]. The same crustal correction is applied to a reference model for BBOBS stations, which is three percent slower than PREM from the Moho to 250 km depth to give a better fit to data. Three thousand models have been generated for each path, and the best fit 1-D model was obtained from the ensemble of models. We estimated the standard error of each dispersion curve from standard deviations of the best one thousand trials among all the generated models. The multimode phase speeds were then computed from the 1-D model using the normal mode theory [e.g., Takeuchi and Saito, 1972], which are regarded as the path-averaged phase speeds of each event-station pair. We took the reliability of phase speed measurement [Yoshizawa and Kennett, 2002a] to be greater than 4.5 and 2 for the fundamental and higher mode, respectively.

We obtained 1087 phase speed dispersion curves for the fundamental mode Rayleigh wave at periods between 40 and 167 s, 82 for the first higher mode, 142 for the second higher mode and 95 for the third higher mode at periods between 40 and 120 s. Because of the shorter observation periods (Table 1), the number of dispersion curves obtained from BBOBS seismograms is

![Figure 2](image_url)

Figure 2. Ray path coverages at (a) 42 and (b) 125 s for the fundamental mode Rayleigh waves. All the rays are traced on the phase speed models at each period, taking the ray bending effect into account. The ray paths to the BBOBS stations are indicated in red. (c) and (d) The corresponding phase speed models, where the reference phase speeds are 3.93 and 4.16 km/s, respectively.
limited. 127, 6, 14, and 3 for the fundamental and the first three higher modes, respectively. The estimated errors for the fundamental mode are less than 0.02 km/s at periods shorter than 83 s and less than 0.03 km/s at the longer periods. Those for the higher modes are less than 0.04 km/s in the studied period range.

3.2. Inversion for 2-D Phase Speed Maps

In the second stage, we invert the path-averaged multimode phase speeds to 2-D phase speed maps of each mode as a function of frequency. It is this stage to take into consideration the finite frequency effect and the ray path deviation from the great circle. The Fresnel area ray tracing technique [Yoshizawa and Kennett, 2002b] is used for tracing rays and calculating the width of the influence zone around the surface wave path at finite frequencies. Yoshizawa and Kennett [2002b] have identified with careful investigation of a stationary phase field that the influence zone of surface wave paths is nearly one third of the width.
of the first Fresnel zone. Since the influence zone has been
defined as the finite area over which surface waves are
coherent in phase, we can regard the observed phase speed
as an average within the influence zone rather than just as an
average along the path.

[14] Using the ray centered coordinate system \((s, n)\),
where \(s\) is a length along a path and \(n\) is an off distance
from the path, the linear relation for average phase speed
along the ray can be represented as follows:

\[
\frac{\langle \Delta c \rangle}{c_0} = \frac{1}{\Delta} \int_{\text{path}} ds \frac{1}{2N_w(n)} \int_{\text{width}} dn W(s, n) \frac{\Delta c(s, n)}{c_0},
\]

where \(c\) is phase speed and \(N_w(s) = \int \Delta W(s, n)\) is understood
as the effective width of the influence zone. We adopt a
cosine taper as the weight function \(W(s, n)\) over the width of
the influence zone to smooth the edges of the influence zone
at which the assumption of the phase coherency tends to be
violated [Yoshizawa and Kennett, 2004]:

\[
W(s, n) = \cos \left[\frac{\pi}{2} \frac{n}{N(s)} \right]^2.
\]

The integration along the path should be undertaken
between the two edges of the influence zone. The length
of the influence zone should be slightly longer than the ray
path length by one sixth of the wavelength, since the zone is
not confined between the source and receiver, which
extends slightly behind the source and receiver locations
as shown by Yoshizawa and Kennett [2002b].

[15] The influence zone becomes wider at longer periods
because the absolute phase speed is faster. From (1) we can
obtain an expression of the two-dimensional distribution of
sensitivity to surface wave phase. The weighted surface
wave sensitivity to phase speed structure varies along the
path but is nearly constant over the width of influence zone
and highest sensitivity is concentrated near the source and
receiver [see, e.g., Yoshizawa and Kennett, 2004, Figure 4].

[16] Equation (1) can be written as a generalized form,
\(\mathbf{d} = \mathbf{Gm}\), where the data vector \(\mathbf{d}\) consists of the observed
phase speed variations \(\langle \Delta c / c_0 \rangle\) \((i = 1, 2, ..., M)\) and \(M\) is
the total number of paths; \(\mathbf{m}\) is a vector of model
parameters \(m_j\) \((j = 1, 2, ..., N)\) and \(N\) is the total number of
model parameter and \(\mathbf{G}\) is the kernel matrix. In
the present study, we use a spherical B spline function
\(F(0, \phi)\) defined at the center of a geographic cell as a
basis function [e.g., Lancaster and Salkauskas, 1986;
Wang and Dahlen, 1995] to expand the phase speed perturbation:

\[
\frac{\Delta c(0, \phi)}{c_0} = \sum_{j=1}^{N} m_j F_j(0, \phi),
\]

where the model parameter \(m_j\) is the coefficient of the \(j\)th
basis function \(F_j\).

[17] Using the B spline function, the components of the
kernel matrix \(\mathbf{G}\) can be written as follows:

\[
G_{ij} = \frac{1}{\Delta_i} \int_{0}^{\Delta_i} ds F_j(s),
\]

when we ignore the finite frequency effect, and

\[
G_{ij} = \frac{1}{\Delta_i} \int_{0}^{\Delta_i} ds \int_{\text{width}} dn W(s, n) F_j(s),
\]

when we take the finite frequency effect into account using
the influence zone. The ray paths have been computed using
a technique of Fresnel area ray tracing [Yoshizawa and
Kennett, 2002b]. The epicentral distance \(\Delta_i\) is measured
along the ray path.

[18] We solved the linearized inversion equation with a
damped least squares scheme, minimizing the objective
function

\[
\Phi(\mathbf{m}) = (\mathbf{d} - \mathbf{Gm})^T C_d^{-1} (\mathbf{d} - \mathbf{Gm}) + \lambda^2 \mathbf{m}^T \mathbf{m},
\]

where the data vector \(\mathbf{d}\) consists of the observed
phase speed variations \(\langle \Delta c / c_0 \rangle\) \((i = 1, 2, ..., M)\) and \(M\) is
the total number of paths; \(\mathbf{m}\) is a vector of model
parameters \(m_j\) \((j = 1, 2, ..., N)\) and \(N\) is the total number of
model parameter and \(\mathbf{G}\) is the kernel matrix. In
the present study, we use a spherical B spline function
\(F(0, \phi)\) defined at the center of a geographic cell as a
basis function [e.g., Lancaster and Salkauskas, 1986;
Wang and Dahlen, 1995] to expand the phase speed perturbation:

\[
\frac{\Delta c(0, \phi)}{c_0} = \sum_{j=1}^{N} m_j F_j(0, \phi),
\]

where the model parameter \(m_j\) is the coefficient of the \(j\)th
basis function \(F_j\).

[17] Using the B spline function, the components of the
kernel matrix \(\mathbf{G}\) can be written as follows:

\[
G_{ij} = \frac{1}{\Delta_i} \int_{0}^{\Delta_i} ds F_j(s),
\]

when we ignore the finite frequency effect, and

\[
G_{ij} = \frac{1}{\Delta_i} \int_{0}^{\Delta_i} ds \int_{\text{width}} dn W(s, n) F_j(s),
\]

when we take the finite frequency effect into account using
the influence zone. The ray paths have been computed using
a technique of Fresnel area ray tracing [Yoshizawa and
Kennett, 2002b]. The epicentral distance \(\Delta_i\) is measured
along the ray path.

[18] We solved the linearized inversion equation with a
damped least squares scheme, minimizing the objective
function

\[
\Phi(\mathbf{m}) = (\mathbf{d} - \mathbf{Gm})^T C_d^{-1} (\mathbf{d} - \mathbf{Gm}) + \lambda^2 \mathbf{m}^T \mathbf{m},
\]

where the data vector \(\mathbf{d}\) consists of the observed
phase speed variations \(\langle \Delta c / c_0 \rangle\) \((i = 1, 2, ..., M)\) and \(M\) is
the total number of paths; \(\mathbf{m}\) is a vector of model
parameters \(m_j\) \((j = 1, 2, ..., N)\) and \(N\) is the total number of
model parameter and \(\mathbf{G}\) is the kernel matrix. In
the present study, we use a spherical B spline function
\(F(0, \phi)\) defined at the center of a geographic cell as a
basis function [e.g., Lancaster and Salkauskas, 1986;
Wang and Dahlen, 1995] to expand the phase speed perturbation:

\[
\frac{\Delta c(0, \phi)}{c_0} = \sum_{j=1}^{N} m_j F_j(0, \phi),
\]

where the model parameter \(m_j\) is the coefficient of the \(j\)th
basis function \(F_j\).

[17] Using the B spline function, the components of the
kernel matrix \(\mathbf{G}\) can be written as follows:

\[
G_{ij} = \frac{1}{\Delta_i} \int_{0}^{\Delta_i} ds F_j(s),
\]

when we ignore the finite frequency effect, and

\[
G_{ij} = \frac{1}{\Delta_i} \int_{0}^{\Delta_i} ds \int_{\text{width}} dn W(s, n) F_j(s),
\]

when we take the finite frequency effect into account using
the influence zone. The ray paths have been computed using
a technique of Fresnel area ray tracing [Yoshizawa and
Kennett, 2002b]. The epicentral distance \(\Delta_i\) is measured
along the ray path.

[18] We solved the linearized inversion equation with a
damped least squares scheme, minimizing the objective
function

\[
\Phi(\mathbf{m}) = (\mathbf{d} - \mathbf{Gm})^T C_d^{-1} (\mathbf{d} - \mathbf{Gm}) + \lambda^2 \mathbf{m}^T \mathbf{m},
\]
Figure 5. Map projections of the shear wave speed at depths (a) 40, (b) 80, (c) 120, (d) 160, (e) 200, and (f) 240 km. (g) The reference shear wave speed profile (solid line), which is the laterally averaged structure of our 3-D model. The dashed line in Figure 5g is the SV wave speed of PREM at a reference period of 100 s. Green solid lines in Figure 5a show the location of the cross sections given in Figure 6.
where C_d^{-1} is the inverse data covariance matrix and λ is an arbitrary damping parameter that controls the trade-off between the model variance and resolution. Assuming that measured phase speeds for different paths are uncorrelated and their variances are mutually different, the covariance matrix can be represented as $C_d = \sigma_d^{-1}I$, where σ_d is the measurement error for the ith datum.

The equation (2) can be represented as $F(m_0) = \gamma_d 0 \gamma_m = \gamma_m$, where $\gamma_d = \gamma_d / \sigma_d$ and $\gamma = \gamma / \sigma_d$.

The inverse problem is then to solve the linear equation system $G_0 l I / C_20/C_21 m_0 = \gamma_d 0 \gamma_m$; for which we use the iterative LSQR algorithm [Paige and Saunders, 1982].

3.2.1. Multimode Phase Speed Map

By the method described above we inverted the path-averaged phase dispersion curves obtained in the first stage for the 2-D multimode phase speed maps with a grid interval of 2.0° at periods between 39 and 167 s for the fundamental mode, between 39 and 125 s for the first and second higher modes, and between 39 and 83 s for the third higher mode. The phase speed maps obtained at the initial iteration are those corrected for the finite frequency effect via the influence zone around the great circle paths. Then we use these maps as laterally heterogeneous reference models to incorporate the effects of ray bending as well as the effects of finite frequency around the ray path for updating the phase speed models.

Considering a trade-off between misfits of data and variance of parameters, we chose $\lambda = 1.5$ as the damping parameter for the fundamental mode and $\lambda = 0.7$ for the higher modes in the present study. The variance reductions for the fundamental mode are about 80, 48 and 33% at periods of 42, 125 and 167 s, respectively. The variance reductions of first higher mode are about 58 and 68%, those of second higher mode are about 52 and 73% and those of third higher mode are about 48 and 68% at periods of 42 and 125 s. Figures 2a and 2b show the path coverage for the fundamental mode at periods of 42 and 125 s which were calculated from the final 2-D phase speed maps shown in Figures 2c and 2d, respectively. The rays well cover the Philippine Sea and the westernmost Pacific Ocean near the Izu-Bonin-Mariana trench.

The final 2-D phase speed maps at 42 and 125 s are shown in Figures 2c and 2d. There are slow phase speed anomalies along the Izu-Bonin-Mariana trench, fast phase speed anomalies in the West Philippine Basin and the Pacific Ocean at a period of 42 s. The fast phase speed anomalies exist along the Izu-Bonin-Mariana trench at a period of 125 s. The slow phase speed anomalies exist at the Mariana trough at periods of 42 and 125 s.

3.2.2. Checkerboard Resolution Test

To see how these maps could be distorted by nonuniform path coverage, we performed checkerboard resolution test with different cell sizes: 6 degrees (Figures 3a–3c) and 4 degrees (Figures 3d–3f) at a period of 42 s. In this resolution test, we have used the ray paths shown in Figure 2a which we have calculated with the effect of ray bending and finite frequency. In case of the 6-degree cell, checkerboard patterns and amplitude are well retrieved in the Philippine Sea region including the Izu-Bonin-Mariana trench, whereas, for the 4-degree case, the patterns are well recovered in the same region but the amplitude decreases to be a half of the input checkerboard (Figures 3b and 3e). In the Pacific region, the recovery of the patterns of 4-degree
T = 42 sec

Figure 7. Map projections of the fundamental mode phase speed at a period of 42 s taking into account of the effect of finite frequency via the influence zone around the great circle paths. The effect of ray bending is (a) not taken into account and (b) taken into account. (c) Difference in phase speed between the two models. (d) Examples of the off-great circle paths (red solid lines) and their great circle paths (green thick solid lines). The phase speed map in Figure 7d is the same of that in Figure 7b.

cell is not satisfactory, while the patterns of 6-degree cell are well retrieved in the region to the west of 150°E. The heterogeneity patterns are elongated in the northwest-south-east direction in the Caroline sea, where a majority of surface waves used in the present study are traveling in such directions. [25] Though the checkerboard patterns in the northern Philippine sea region are somewhat elongated, each cell shape can be clearly identified and thus the phase speed
maps are not severely distorted by the 2-D tomographic process in the Philippine sea region. The spatial resolution is estimated to be about 300 km in better resolved regions of the Philippine Sea and about 400 km on the average. The resolution is poorer on the Pacific Ocean side.

3.2.3. Improvement of the Result by Using BBOBS Seismograms

Figures 2a and 2b shows the ray coverage using land-based and BBOBS seismograms. These indicate that the use of BBOBS data has improved the ray coverage in the southern Philippine Sea region and the northwestern Pacific Ocean. Figures 3c and 3f display the results of checkerboard resolution tests with no BBOBS data. We used only land-based seismograms for the results in Figures 3c and 3f. Figures 3c and 3f shows that the shapes of 4-degree and 6-degree cells are elongated in the north-west-southeast direction in the Philippine Sea region and are not retrieved in the Pacific Ocean. These suggest that the horizontal resolution in the previous studies based only on land-based seismograms is likely to be more degraded than in the present study.

Even though the number of BBOBS data is only about 10% in our data set, the BBOBS data contribute to our result significantly and are of great help in improving our tomographic model.

3.3. Inversion for 3-D Shear Speed Model

The third stage of the three-stage inversion method is to invert the multimode dispersion curves obtained at each grid of phase speed maps for the shear wave speed model in that grid. The multimode phase dispersion can be represented as a function of density, P wave speed, and shear wave speed. We fixed the density and P wave speed structure to the reference model and solved only for shear wave speed. We used a standard deviation \(s = 0.1 \text{ km/s} \) and a correlation length \(L = 5 \text{ km} \) above the Moho, \(L = 10 \text{ km} \) from the Moho to 60 km depth and \(L = 20 \text{ km} \) below 60 km depth so that large perturbations are allowed in the crust. The reference 1-D model is based on PREM except for the crust for which we adopted the CRUST2.0 model [Bassin et al., 2000].

4. The 3-D Shear Wave Speed Model Beneath the Philippine Sea

Figure 4 shows the resolution kernel of the typical 1-D shear wave speed profile at 18\(^\circ\)N and 144\(^\circ\)E, suggesting sufficient resolution down to a depth of 250 km beneath the Philippine Sea.

Figures 5a–5f show the geographical distributions of the inverted 3-D shear wave speed beneath the Philippine Sea. We show only well resolved area. The shallowest 100 km of the upper mantle is slow in the Izu-Bonin-Mariana back arc and fast beneath the West Philippine...
Figure 9. Comparison of the shear wave speed models with and without the BBOBS data. The shear wave speed maps at depths of (a and b) 80 km and (c and d) 200 km are shown. The BBOBS data are used in Figures 9a and 9c and not used in Figures 9b and 9d.
Basin. There is a striking wave speed contrast across the Izu-Bonin-Mariana trench, where the mantle on the Pacific side is about 6% faster than the mantle on the Philippine Sea side down to 120 km depth. Figure 5g shows the depth profile of the average shear wave speed of the upper mantle beneath the Philippine Sea, indicating a significantly slower upper mantle on the whole than PREM.

[32] The speed is lowest under the Mariana trough where the low-speed anomalies reach 10% and continue down at least to 200 km. The mantle under the Daito ridge and the Shikoku Basin is slightly slow down to 80 km depth, where the inverted speed may be in part affected by the thick crust reported beneath the Daito ridge [Nishizawa et al., 1983, 2004]. The pattern of lateral variation changes across depths from 120 to 160 km.

[33] In the upper 120 km, the shear wave speed structure is well correlated with the age of the provinces: the wave speed is fastest beneath the oldest region (150 Ma for the Pacific Ocean) and decreases as the age of the province becomes younger (33–49 Ma for the West Philippine Basin; 15–27 Ma for the Parece-Vela Basin; 0–6 Ma for the Mariana trough). This suggests that the relatively high wave speed portion in the uppermost mantle corresponds to the oceanic lithosphere, which is thicker in the older region than in the younger region, although it is difficult to define the thickness quantitatively in the present study because of our parameterization allowing for continuous shear wave speed variation. The above correlation is qualitatively consistent with the previous studies showing thick lithospheres beneath the Pacific Ocean and the West Philippine Basin and a thin lithosphere beneath the eastern Philippine Sea [e.g., Shiono et al., 1980; Oda and Senna, 1994].

[34] At depths greater than 160 km, the anomaly pattern is dominated by fast anomalies of the subducted Pacific slabs and slow anomalies uncorrelated with the surface tectonics as shown in Figures 5d–5f. The fast anomalies along the Izu-Bonin arc are shifted westward with depth, delineating the subducted Pacific slab dipping to the west. The westward dipping slab anomaly is a persistent feature delineating the subducted Pacific slab dipping to the west. For the model without the bending effect, the transition from the slow to fast anomalies does not occur exactly along the trench: the fast anomalies on the oceanic side continue further westward to the inner side across the trench. This westward leakage of the fast anomaly is likely to be an artifact due to ignoring the effect of ray bending. Figure 7d shows that the actual ray paths depart from their great circle path, especially when they graze the Izu-Bonin-Mariana trench zone. The off-great circle path effect is not significant for rays passing mostly through the Pacific Ocean or the Philippine Sea. It is important to consider the effect of ray bending, especially in regions involving sharp speed change such as the trench or the ocean-continent boundary.

[37] Figure 8 demonstrates the effect of finite frequency of the fundamental Rayleigh wave at a period of 42 s. Figure 8a shows the perturbation map obtained by the ray theory with the great circle approximation. Figure 8b displays a differential map between the ray theoretical model (Figure 8a) and the finite frequency model (Figure 7a) with the effects of the influence zone around the great circle path. Heterogeneity in both models are similar and the phase speed differences of models are less than 1.5% in most areas (Figures 7a, 8a, and 8b). In the Pacific Ocean, phase speeds of the models with ray theory are faster than those of the models with the influence zone. In the Philippine Sea, we are able to find no systematic difference. Yoshizawa and Kennett [2004] have demonstrated that the recovery of heterogeneity patterns and amplitude can be improved with the influence zone, resulting in a better resolution and accuracy of the finite frequency models. Thus we have taken into account of the influence zone in our final model in Figure 5.

[38] To examine the improvement by the seafloor data, we compared the models obtained with and without the BBOBS data in Figure 9. At a depth of 80 km, the differences between the two models are not so large, but the model with the BBOBS data shows stronger slow anomalies on the back-arc side of the Izu-Bonin trench and more laterally variable fast anomalies on the Pacific side of the Izu-Bonin-Mariana trench. At a depth of 200 km, there are obvious differences between the two models (Figures 9c and 9d): The model with the BBOBS data shows slow anomalies in the Mariana trough while the model without the BBOBS data does not. The subducted Pacific slab is more clearly imaged in the model with the BBOBS data than without them. We believe that the present model has higher spatial resolution and accuracy over the previous models [Nakamura and Shibutani, 1998; Lebedev et al., 1997; Lebedev and Nolet, 2003], since the ray bending effect, as well as the finite frequency effect, was taken into consideration and since the BBOBS data were used. We plan to deploy another BBOBS array from 2005 for 4 years, which will enable us to determine more detailed structure under the Philippine Sea and to study the evolution of the Philippine sea region.

[39] Acknowledgments. We thank staffs of IRIS, GEOSCOPE, OHP, and F-net data center for their effort to maintain and manage the seismic stations. We also thank two anonymous reviewers and an Associate Editor.
for their helpful comments. This work was supported by Grant-in-Aid for Scientific Research [KAKENHI, 15740282, 15740266] from Japan Society for the Promotion Science. The GMT software package [Wessel and Smith, 1991] and SAC2000 [Goldstein and Minner, 1996] were used in this study.

References

