Large-effective-area uncoupled few-mode multi-core fiber

Yusuke Sasaki,1,* Katsuhiro Takenaga,1 Ning Guan,1 Shoichiro Matsuo,1 Kunimasa Saitoh,2 and Masanori Koshiba2

1Optics and Electronics Laboratory, Fujikura Ltd., 1440, Matsuzaki, Sakura, Chiba, 285-8550 Japan
2Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan

* yusuke.sasaki@jp.fujikura.com

Abstract: Characteristics of few-mode multi-core fiber (FM-MCF) were numerically analyzed and experimentally confirmed. The cores of FM-MCF were designed to support transmission of LP01 and LP11 modes from the point of bending loss of LP11 and LP21 modes. Inter-core crosstalk between LP11 mode was calculated to determine core pitch of fibers. It was confirmed that the fabricated fibers was two-mode transmission over C-band and L-band with the effective area of LP01 mode of about 110 μm² at 1550 nm. The crosstalk of the fibers was estimated to be smaller than −30 dB at 1550 nm after 100-km propagation. The crosstalk dependence on wavelength was also measured and matched well with the simulated results.

©2012 Optical Society of America

OCIS codes: (060.2270) Fiber characterization; (060.2280) Fiber design and fabrication.

References and links

1. Introduction

Space division multiplexing (SDM) is expected as a new advanced technology that overcomes the capacity limit of the current optical communication systems [1]. The SDM is realized by multi-core fiber (MCF) and few-mode fiber (FMF). To improve space multiplicity, 10-core fiber with large effective area (Aeff) [2], 19-core fiber with small Aeff [3], and five-mode fiber [4] have been proposed. However, there are limits in improvement of spacial multiplicity only by using those teqchniques each other from the perspective of inter-
core crosstalk or inter-mode crosstalk. The combination of MCF and FMF will improve the multiplicity furthermore.

In this paper, we present the characteristics of few-mode multi-core fiber (FM-MCF) that supports $L_{{P01}}$ and $L_{{P11}}$ modes over C-band and L-band. The fabricated fibers based on simulations realized the A_{eff} of $L_{{P01}}$ mode which is about 110 μm^2 at 1550 nm, propagation of both $L_{{P01}}$ and $L_{{P11}}$ modes over the bands, and 100-km inter-core crosstalk of smaller than -30 dB at 1550 nm. Finally the crosstalk dependence on wavelength was measured and compared with simulated results.

2. FM-MCF design for two-mode transmission

It is effective to enlarge A_{eff} in order to suppress the non-linearity. Figure 1 shows the calculated results of A_{eff} of $L_{{P01}}$ and $L_{{P11}}$ modes at 1550 nm as functions of relative refractive index difference Δ and core radius a [5]. The full-vector finite-element method was used for the calculation [6]. The lower side of a black line is where the bending loss of $L_{{P21}}$ mode is larger than 1 dB/m at 1530 nm and a bending radius of 140 mm. The upper side of a white line is where the bending loss of $L_{{P11}}$ mode is smaller than 0.5 dB/100 turn at 1625 nm and a bending radius of 30 mm. The areas which satisfy both conditions support $L_{{P01}}$ and $L_{{P11}}$ modes over C-band and L-band and realize the A_{eff} of both modes which is larger than 100 μm^2 at 1550 nm.

The small inter-core crosstalk of MCFs is preferable to reduce the load of signal processing. In the case of FM-MCF, we should concern crosstalk related to higher order mode such as $L_{{P11}}$-$L_{{P11}}$ inter-core crosstalk (X_{11-11}) and $L_{{P01}}$-$L_{{P11}}$ inter-core crosstalk (X_{01-11}) in addition to $L_{{P01}}$-$L_{{P01}}$ inter-core crosstalk (X_{01-01}) that is only crosstalk for a single-mode MCF. Figure 2 shows the simulated 100-km inter-core crosstalk at 1550 nm among modes as a function of core pitch, assuming $a = 6.47$ μm and $\Delta = 0.45\%$ [5]. The core supports two-mode propagation as shown in Fig. 1. The 1550-nm A_{eff} of $L_{{P01}}$ and $L_{{P11}}$ modes would be 110 μm^2 and 170 μm^2, respectively. The X_{11-11} and the X_{01-11} depend on the angle of $L_{{P11}}$ mode of adjacent cores because $L_{{P11}}$ mode is composed from two spatial degenerated modes and shows asymmetry field distribution. We define $L_{{P11}}$ mode related crosstalk such as X_{11-11} as the worst crosstalk over various angles. A red line, a green line and a blue line indicate X_{01-01}, X_{01-11} and X_{11-11}, respectively. The worst is X_{11-11}, because the power of $L_{{P11}}$ mode distributes more extensively than that of $L_{{P01}}$ mode. We can realize 100-km X_{11-11} smaller than -30 dB for a core pitch of larger than 52 μm.

![Fig. 1. Structural parameter dependence of A_{eff} of (a) $L_{{P01}}$ mode and (b) $L_{{P11}}$ mode.](image-url)
Fig. 2. Simulated inter-core 100-km crosstalk as a function of core pitch assuming $a = 6.47 \mu m$ and $J = 0.45\%$.

3. Fabricated fiber

We have fabricated three kinds of four-core FM-MCF (Fiber A, B and C) with stack and draw method. The core pitch of Fiber A was scaled to be 52 μm for XT_{11-11} at 1550 nm to be smaller than -30 dB. And the core pitch of Fiber B was scaled to be 44 μm for XT_{11-11} at 1550 nm to be about -10 dB. Fiber A, Fiber B and Fiber C had almost the same profile. A_{eff} of Fiber C was designed to be about 120 μm^2. Figure 3 shows a cross sectional view of Fiber A. Table 1 and Table 2 summarize the structural parameters and optical properties of LP$_{01}$ mode of fabricated fibers, respectively. The core pitch of fabricated Fiber A and Fiber B, and A_{eff} of Fiber C were as we had designed. The near field pattern (NFP) was measured to confirm two mode transmissions directly. Figure 4(a) is the NFP of Fiber B at 1550 nm, which shows the propagating mode was mainly LP$_{11}$ mode. By adding bends of 20 turns whose diameter was 10 mm, the NFP has changed to Fig. 4(b), which shows the propagating mode was mainly LP$_{01}$ mode. Those results shows both LP$_{11}$ and LP$_{01}$ modes are propagated at 1550 nm. We also measured cable cutoff wavelength of LP$_{11}$ mode and next higher order LP$_{21}$ mode. The definition of cable cutoff wavelength of LP$_{11}$ mode was applied to that of LP$_{21}$ mode. The cutoff wavelength of LP$_{21}$ mode was smaller than 1530 nm and that of LP$_{11}$ mode was larger than 2000 nm. Those results indicate that Fiber A, Fiber B and Fiber C realized LP$_{01}$ and LP$_{11}$ mode operation over C-band and L-band as we had designed. The differential mode group delay (DMGD) between LP$_{01}$ mode and LP$_{11}$ mode, which was measured with OFDR [7], was about 3000 ps/km. Intra-core mode coupling between LP$_{01}$ and LP$_{11}$ modes will be fully suppressed.

Fig. 3. Crosssection of the Fiber A.
Table 1. Structural parameters of fabricated fibers

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Fiber A</th>
<th>Fiber B</th>
<th>Fiber C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core pitch</td>
<td>μm</td>
<td>52.3</td>
<td>44.1</td>
<td>47.0</td>
</tr>
<tr>
<td>Cladding diameter</td>
<td>μm</td>
<td>175.9</td>
<td>150.5</td>
<td>160.0</td>
</tr>
<tr>
<td>a</td>
<td>μm</td>
<td>6.47</td>
<td>6.47</td>
<td>6.89</td>
</tr>
<tr>
<td>Δ</td>
<td>%</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 2. Measurement results of LP_{01} mode

<table>
<thead>
<tr>
<th>Item</th>
<th>Wavelength</th>
<th>Unit</th>
<th>Fiber A</th>
<th>Fiber B</th>
<th>Fiber C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFD</td>
<td>1550 nm</td>
<td>μm</td>
<td>11.4</td>
<td>11.2</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>1625 nm</td>
<td>μm</td>
<td>11.6</td>
<td>11.4</td>
<td>11.9</td>
</tr>
<tr>
<td>A_{eff}</td>
<td>1550 nm</td>
<td>μm^2</td>
<td>113.7</td>
<td>109.2</td>
<td>119.7</td>
</tr>
<tr>
<td></td>
<td>1625 nm</td>
<td>μm^2</td>
<td>116.9</td>
<td>111.3</td>
<td>122.9</td>
</tr>
<tr>
<td>Attenuation</td>
<td>1550 nm</td>
<td>dB/km</td>
<td>0.231</td>
<td>0.229</td>
<td>0.217</td>
</tr>
<tr>
<td></td>
<td>1625 nm</td>
<td>dB/km</td>
<td>0.238</td>
<td>0.236</td>
<td>0.223</td>
</tr>
<tr>
<td>Bending Loss</td>
<td>(R = 5 mm)</td>
<td>dB/m</td>
<td>0.30</td>
<td>0.12</td>
<td>0.91</td>
</tr>
<tr>
<td>Chromatic Dispersion</td>
<td>1550 nm</td>
<td>ps/nm/km</td>
<td>20.9</td>
<td>20.7</td>
<td>20.9</td>
</tr>
<tr>
<td>Dispersion Slope</td>
<td>1550 nm</td>
<td>ps/nm/km</td>
<td>0.063</td>
<td>0.063</td>
<td>0.063</td>
</tr>
<tr>
<td>PMD</td>
<td>1550 nm band</td>
<td>ps/√km</td>
<td>0.075</td>
<td>0.073</td>
<td>0.141</td>
</tr>
</tbody>
</table>

Fig. 4. The NFP at 1550 nm of Fiber B (a) without bends and (b) with bends.

4. Measurement of inter-core crosstalk

4.1 Measuring higher mode crosstalk

Figure 5 shows a setup for XT_{11-11} measurement. We reconsidered the measurement system which we use to measure crosstalk in the case of single mode MCF. A single-mode fiber (SMF) connected to light source was offset spliced to a core of a FM-MCF to excite both LP_{01} mode and LP_{11} mode. Output power from cores on another end face was measured with a two-mode fiber (TMF) which has almost the same profile as the FM-MCF.

Fig. 5. Measurement system of higher mode crosstalk.
Figure 6 explains the measurement procedure of XT_{11-11}. At first, we measure P_j, which is an output power of an offset excited core (core j) without bend as shown in Fig. 6(a). The P_j is the sum of the power of LP$_{01}$ and LP$_{11}$ modes: $P_j = P_{j,LP_{01}} + P_{j,LP_{11}}$. Then, P_j' is measured with bends of 20 turns whose diameter was 10 mm to eliminate LP$_{11}$ mode as shown in Fig. 6(b): $P_j' = P_{j,LP_{01}}$. The difference of the power ($P_j - P_j'$) indicates $P_{j,LP_{11}}$. Finally, the output power of core k P_k, which core is not the excited core, is measured without bend condition as shown in Fig. 6(c). The most of P_k is comprised of the power of LP$_{11}$ mode because the crosstalk between few-mode cores is dominated by LP$_{11}$-LP$_{11}$ crosstalk as shown in Fig. 2: $P_k = P_{k,LP_{11}}$. Accordingly, we obtain:

$$XT_{11-11} = 10 \log \left(\frac{P_{k,LP_{11}}}{P_{j,LP_{11}}} \right) = 10 \log \left(\frac{P_k}{P_j - P_j'} \right) \quad (1)$$

4.2 Results of measured crosstalk and comparison with simulated results

Figure 7 shows results of measured XT_{11-11} of Fiber A, Fiber B and Fiber C, respectively. The lengths of Fiber A, Fiber B and Fiber C were 3709 m, 2730 m and 4403 m, respectively. The fibers were wound on spools with a diameter of 210 mm. The horizontal axis denotes the excited core number and the graph legends denote the measured core number as shown in Fig. 3. The left side is measured crosstalk at 1550 nm and the right side is at 1625 nm. In the case of Fiber A, the crosstalk of the cores that located at the diagonal positions from the excited cores were about −80 dB, which were the lower limit of the measurement setup. On the other hand, in the case of Fiber B and Fiber C, crosstalk was detected even for the diagonal cores. The direct crosstalk between the diagonal cores is estimated to be very small compared to the measured crosstalk because of the large diagonal core pitch of 62 μm. The measured crosstalk of the diagonal cores may originate from the repeat of the crosstalk between adjacent cores.

Figure 8 shows the 100-km inter-core crosstalk estimated from the measured crosstalk with the coupled-power theory [8] and simulated XT_{11-11} for comparison as a function of core pitch. Lines are simulated results. Deep blue and red lines correspond to Fiber A and Fiber B. The pale blue and red lines correspond to Fiber C. The parameters used in the simulations are also shown. The symbols indicate the averaged crosstalk and the error bars indicate the maximum and the minimum values. The blue ones are at 1550 nm and red ones are at 1625 nm. In the case of Fiber B and Fiber C, estimations match well with simulated results. In the case of Fiber A, there were discrepancies between estimations and simulated results. We think there are two reasons. The first is the simulations were based on the worst case where the overlap of fields of LP$_{11}$ mode between adjacent cores gets to be maximum. The second is these simulations did not take into account of crosstalk dependence on bending diameter [9]. Although, the averaged 100-km crosstalk of Fiber A was −42 dB at 1550 nm and −32 dB at 1625 nm, which means Fiber A realized 100-km crosstalk of smaller than −30 dB over C-band and L-band as we had expected.
Fig. 7. Results of measured $XT_{11,11}$ of (a) Fiber A, (b) Fiber B and (c) Fiber C.

Fig. 8. The comparison of 100-km crosstalk estimation from measured results and simulation results as a function of core pitch.
4.3 Wavelength dependence of crosstalk

Figure 9(a) and 9(b) shows the wavelength dependence of crosstalk from core 1 to core 2 and core 1 to core 4 of Fiber B. We measured the wavelength dependence, which is denoted as a black line in Fig. 9, by using supercontinuum wideband light source and spectrum analyzer as shown in Fig. 10. The fiber length was 22 m and a bending diameter was 280 mm. In Fig. 9, solid symbols indicate the estimated 22-m crosstalk from measured crosstalk, which is already shown in Fig. 7(b), with the conventional measurement setup shown in Fig. 5. A blue line and a red line indicate simulated results of XT_{11-11} and XT_{01-01} as a function of wavelength. Simulated inter-core crosstalk is dominated by XT_{11-11} over the wavelength from LP$_{21}$ cutoff wavelength of about 1530 nm to LP$_{11}$ cutoff wavelength of about 2000 nm because XT_{11-11} is much larger than XT_{01-01} by 40 dB. In this area, the measured wavelength dependence of crosstalk matched with the simulated wavelength dependence of XT_{11-11}. The measured crosstalk gradually converged to the simulated XT_{01-01} over the wavelength longer than LP$_{11}$ cutoff wavelength of about 2000 nm. The change of the measured crosstalk around 1400 nm originates from the crosstalk that relates to the next higher modes such as LP$_{21}$ mode. The results indicate that FM-MCF should be designed with the careful consideration of crosstalk of higher-modes.

![Fig. 9. Wavelength dependence of inter-core crosstalk](image-url)

Fig. 9. Wavelength dependence of inter-core crosstalk (a) from core 1 to core 2 and (b) from core 1 to core 4.
5. Conclusion

We have designed and fabricated few-mode multi-core fibers which support both LP_{01} and LP_{11} modes over C-band and L-band. The fibers had the A_{eff} of LP_{01} mode of about 110 μm² at 1550 nm. Inter-core crosstalk characteristics of the fibers were numerically analyzed. Large-effective-area uncoupled few-mode multi-core fiber whose inter-core 100-km crosstalk is smaller than −30 dB at 1550 nm was realized.

Acknowledgment

This work was partially supported by National Institute of Information and Communication Technology (NICT), Japan under “Research on Innovative Optical fiber Technology”.

Fig. 10. Measurement setup for measuring wavelength dependence of inter-core crosstalk.