

HOKKAIDO UNIVERSITY

Title	Selective introduction of fluorine atoms to the tert-carbons of functionalized adamantanes by BrF3
Author(s)	Shishimi, Toru; Hara, Shoji
Citation	Journal of Fluorine Chemistry, 145, 128-131 https://doi.org/10.1016/j.jfluchem.2012.10.010
Issue Date	2013-01
Doc URL	http://hdl.handle.net/2115/52261
Туре	article (author version)
File Information	JFC145_128-131.pdf

Selective introduction of fluorine atoms to the *tert*-carbons of functionalized adamantanes by BrF_3

Toru Shishimi, Shoji Hara*

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Keywords: poly-fluorination, adamantane, bromine trifluoride

Abstract

The direct fluorination reaction of the functionalized adamantanes was achieved by using BrF_3 . In the reaction with methyl adamantane-1-caroxylate **1** and dimethyl adamantane-1,3-dicarboxylate **3**, three and two fluorine atoms, respectively, were introduced selectively to their *tert*-carbons. On the other hand, in the reactions with 1-acetoxymethyladamantane **5**, and 2-adamantanone **9**, not only the expected fluorination of their *tert*-carbons, but also unexpected reactions such as fluorination of carbonyl functionality occurred.

1. Introduction

Adamantane is a simple cage compound consisting of four *tert*-carbons and six *sec*-carbon atoms. Bioactive derivatives of adamantane are known, and 1-aminoadamantane (amantadine) and 1-amino-3,5-dimethyladamantane (memantine) have medicinal uses [1]. Introduction of fluorine atoms in bioactive compounds can enhance their activities and reduce undesirable side-effects. Therefore, the synthesis of

fluorinated adamantane derivatives has received significant attention [2]. Recently, we reported the direct fluorination of adamantanes by an electrochemical method [3]. One to three fluorine atoms can be introduced selectively on the tert-carbons of the adamantanes by controlling the conditions, and functional groups such as ester or cyano groups could survive under the conditions. However, a drawback is that special equipment is required for the electrochemical reaction. Therefore, we also studied the fluorination of adamantanes by non-electrochemical methods, and succeeded in the fluorination of adamantanes with IF₅, without the special equipment needed for electrolysis [4]. However, owing to the inherent reactivity of IF₅, only one or two fluorine atoms could be introduced. Moreover, when electron-withdrawing groups were attached on the substrate, fewer (or no) fluorine atoms could be introduced. For example, 1-cyanoadamantane and dimethyl adamantane-1,3-dicarboxylate were inert to IF₅, and only one fluorine atom could be introduced to methyl adamantane-1-carboxylate. For the introduction of more fluorine atoms to adamantane derivatives with low reactivity, a more reactive fluorination reagent than IF_5 is required [5]. Herein, we report the direct fluorination of adamantanes using BrF_3 [6], which is more reactive than IF_5 [8].

2. Results and discussion

Initially, the reaction of methyl adamantane-1-carboxylate 1 with BrF₃ was performed. The reaction proceeded even at -78 °C, and three fluorine atoms were introduced to its tert-carbons (Entry 1 in Table 1). The best result was obtained by performing the 0 °C reaction using of BrF₃ for 3 h. and methyl 4 eq at 3,5,7-trifluoroadamantane-1-carboxylate 2 was obtained in 88% yield (Entry 3). These results demonstrated the higher reactivity of BrF₃ compared to IF₅ in the direct fluorination reaction of the adamantanes.

Table 1

Reaction of methyl adamantane-1-carboxylate 1 with BrF₃

$\begin{array}{c} & & & \\ \hline \\ & & \\ & \\ & \\ & \\ & \\ & \\ &$							
Entry	BrF ₃ / 1	Temperature (0 °C)	React time (h)	Yield of $2 (\%)^a$			
1	6	-78	1	72			
2	4	0	2	(88)			
3	4	0	3	88 (95)			

^a Isolation yield based on **1**, in parentheses, ¹⁹FNMR yield.

Next, we applied BrF₃ to the fluorination of dimethyl adamanatane-1,3-dicarboxylate **3**, which inert IF₅, and obtained dimethyl was to 5,7-difluoroadamantane-1,3-dicarboxylate 4 in 86 % yield (Entry 2 in Table 2). Unexpected reactions also occurred during the fluorination reaction using BrF₃. When 1-acetoxymethyladamantane 5 was reacted with BrF3 at -78 °C for 0.5 h, two fluorine atoms were selectively introduced and 1-acetoxymethyl-3,5-difluoroadamantane 6 was obtained in 94 % yield (Entry 3). On the other hand, when the reaction was carried out 0 °C at for 6 h, three fluorine atoms were introduced and 1-acetoxymethyl-3,5,7-trifluoroadamantane 7 was obtained in 62 % yield (Entry 4). However, unexpectedly, 1-((1,1-difluoroethoxy)methyl)-3,5,7-trifluoroadamantane 8 was also formed in 14 % yield. Under these conditions, the fluorination of the carbonyl group also occurred [9]. In the reaction with 2-adamantanone 9, a mixture of

tetrafluorinated compounds **10** and **11** was obtained (Entry 5). Rearrangement of the carbonyl group occurred in addition to the fluorination of the carbonyl group and *tert*-carbons [11] (**Scheme 1**).

Scheme 1. Plausible mechanism for the formation of 10 and 11

These unexpected reactions were due to the high reactivity of BrF_3 , and were not observed in the case of IF₅.

Table 2

Reaction	of fun	ctionaliz	ed adaman	tanes with	BrF ₃ ^a
----------	--------	-----------	-----------	------------	-------------------------------

Entry	Adamantane	Conditions	Product	Yield
				(%) ^b
1	COOMe 1	0 °C, 2 h	F COOMe	88
2	COOMe 3	0 °C, 6 h	F COOMe COOMe 4	86
3	CH ₂ OAc	-78 °C, 0.5 h	F CH ₂ OAc	94
4	5	0 °C, 6 h	F F F T CH ₂ OAc	62 ^c
5	9	0 °C, 6 h	$F = \begin{array}{c} & & & & \\ F & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	67

^aIf otherwise not mentioned, the reaction was carried out in CH_2Cl_2 using 4 eq of BrF_3 . ^bIsolated yield based on **1** used. In parentheses, ¹⁹F NMR yield.

^c1-((1,1-difluoroethoxy)methyl)-3,5,7-trifluoroadamantane **8** was also formed in 14% yield.

3. Conclusion

Various functionalized adamantanes were reacted with BrF_3 , and two to three fluorine atoms were introduced selectively on their *tert*-carbons. Even when less reactive substrates such as methyl adamantane-1-carboxylate **1** or dimethyl adamantane-1,3-dicarboxylate **3**, were used, multiple fluorine atoms were introduced to their *tert*-carbons. On the other hand, in the reaction of 1-acetoxymethyladamantane **5** and 2-adamantanone **9**, unexpected reactions occurred, such as the fluorination of carbonyl group, and rearrangement.

4. Experimental

4.1. General

The melting points were measured with a Yanagimoto micro melting-point apparatus. The IR spectra were recorded using a JASCO FT/IR-410. The ¹H NMR (400 MHz) spectra, ¹⁹F NMR (376 MHz) spectra, and ¹³C NMR (100 MHz) were recorded in CDCl₃ on a JEOL JNM-A400II FT NMR and the chemical shift, δ , is referred to TMS (¹H, ¹³C) and CFCl₃ (¹⁹F), respectively. BrF₃ in a cylinder was purchased from Galaxy Chemicals, LLC and used without purification. BrF₃ was transferred from cylinder to a

TeflonTM bottle through a TeflonTM tube using nitrogen pressure, and a small quantity of BrF₃ in a small Teflon bottle was kept in a freezer [12]. It decomposes in air by humidity emitting HF fume and was handled in a bench hood with rubber-gloved hands under atmosphere of nitrogen. It is highly reactive and a special care is required for its use. BrF₃ is stable in glasswear but the reaction was carried out in a centrifuge tube of TeflonTM FEP with a tight screw cap because generation of HF occurs during the reaction.

4.2. Fluorination of adamantane derivatives by BrF₃.

Methyl 3,5,7-trifluoroadamantane-1-carboxylate (2): To a CH₂Cl₂ solution (1.5 mL) mmol) in a of BrF₃ (378 mg, 2.76 Teflon[™] FEP reactor. methyl adamantane-1-carboxylate (134mg, 0.69 mmol) in CH2Cl2 (0.8 mL) was added at -78 °C through a Teflon[™] cannula and the mixture was stirred at 0 °C for 2h. Then the mixture was cooled to -78 °C again, and 2mL of Me₃SiCl was added slowly to decompose the excess of BrF₃. The mixture was brought up to room temperature and neutralized with aq NaHCO₃. The mixture was extracted with CH₂Cl₂ (20 mL X 3) and the combined organic phase was washed with aq Na₂S₂O₃ and dried over MgSO₄. After concentration under reduced pressure, 2 was isolated by column chromatography (silica gel, hexane-ether) in 88 % yield. mp 109-112 °C (sealed tube) (lit.[2] 108.5-110 °C); IR (KBr) 2958, 1737, 1339, 1259, 1226, 964 cm⁻1; ¹H NMR (400 MHz, CDCl₃) δ 3.74 (s, 3H), 2.16–1.99 (m, 12H); ¹⁹F NMR (376 MHz, CDCl₃) δ –144.00 (s, 3F); ¹³C NMR (100MHz, CDCl₃) δ 173.4 (q, ${}^{4}J_{C-F}$ = 3.4 Hz), 91.7 (dt, ${}^{1}J_{C-F}$ = 191.2, ${}^{3}J_{C-F}$ = 15.3 Hz, 3C), 52.6, 46.6-46.0 (m, 3C), 43.2 (q, ${}^{3}J_{C-F} = 11.8$ Hz), 42.1–41.7 (m, 3C); HRMS (EI) calcd for C₁₂H₁₅O₂F₃ 248.1024, found 248.1013.

Dimethyl 5,7-difluoroadamantane-1,3-dicarboxylate (4): mp 87-89 °C (sealed tube);

IR (KBr) 2960, 1738, 1435, 1275 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.72 (s, 6H), 2.12 (t, J = 5.3 Hz, 2H), 2.05–1.97 (m, 8H), 1.93 (brs, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -140.21 (s, 2F); ¹³C NMR (100MHz, CDCl₃) δ 173.9 (t, ⁴ $J_{C-F} = 2.6$ Hz, 2C), 92.4 (dd, ¹ $J_{C-F} = 189.1$, ³ $J_{C-F} = 14.3$ Hz, 2C), 52.4 (2C), 46.7 (t, ² $J_{C-F} = 19.3$ Hz), 45.0 (t, ³ $J_{C-F} = 11.0$ Hz, 2C), 42.2 (t, ³ $J_{C-F} = 6.0$ Hz, 2C), 42.0 (t, ³ $J_{C-F} = 5.9$ Hz, 2C), 38.3 (t, ⁴ $J_{C-F} = 2.0$ Hz); HRMS (EI) calcd for C₁₄H₁₈O₄F₂, 288.1173, found 288.1183.

1-(Acetoxymethyl)-3,5-difluoroadamantane (**6**): IR (neat) 2949, 1741, 1243 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 2H), 2.49 (brs, 1H), 2.10 (brs, 2H), 2.08 (s, 3H), 1.83–1.65 (m, 8H), 1.43(brs, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ –137.54 (s, 2F); ¹³C NMR (100MHz, CDCl₃) δ 170.9, 93.0 (dd, ¹*J*_{*C*-*F*} = 188.1, ³*J*_{*C*-*F*} = 13.6 Hz, 2C), 71.1 (t, ⁴*J*_{*C*-*F*} = 1.9 Hz), 47.5 (t, ²*J*_{*C*-*F*} = 19.0 Hz), 43.3 (t, ⁴*J*_{*C*-*F*} = 5.5 Hz), 43.1 (t, ⁴*J*_{*C*-*F*} = 5.6 Hz), 40.8 (t, ⁴*J*_{*C*-*F*} = 5.4 Hz), 40.6 (t, ⁴*J*_{*C*-*F*} = 5.4 Hz), 39.2 (t, ³*J*_{*C*-*F*</sup> = 10.3 Hz), 36.6 (t, ⁴*J*_{*C*-*F*</sup> = 2.1 Hz), 30.4 (t, ³*J*_{*C*-*F*} = 10.6 Hz), 20.7; HRMS (EI) calcd for C₁₃H₁₈O₂F₂ 244.1275, found 244.1285.}}

1-(Acetoxymethyl)-3,5,7-trifluoroadamantane (**7**): mp 58–63 °C (sealed tube); IR (KBr) 2947, 1749, 1336, 1237, 1217, 1024 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 2H), 2.16–2.08 (m, 6H), 2.10 (s, 3H), 1.69 (brs, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ –144.07 (s, 3F); ¹³C NMR (100MHz, CDCl₃) δ 170.7, 92.0 (dt, ¹*J*_{*C*-*F*} = 190.5, ³*J*_{*C*-*F*} = 15.0 Hz, 3C), 70.2 (q, ⁴*J*_{*C*-*F*} = 2.1 Hz), 46.7–46.2 (m, 3C), 42.4–42.1 (m, 3C), 37.0 (q, ³*J*_{*C*-*F*} = 11.4 Hz), 20.7; HRMS (EI) calcd for C₁₃H₁₇O₂F₃ 262.1181, found 262.1167.

1-((1,1-difluoroethoxy)methyl)-3,5,7-trifluoroadamantane (8): IR (neat) 2964, 1336, 1027 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 2H), 2.15-2.04 (m, 6H), 1.75 (t, *J* = 13.3 Hz, 3H), 1.69 (brs, 6H) ; ¹⁹F NMR (376 MHz, CDCl₃) δ –69.92 (q, *J* = 13.3 Hz, 2F), –144.07 (s, 3F); ¹³C NMR (100MHz, CDCl₃) δ 124.8 (t, ¹*J*_{*C*-*F*} = 260.6 Hz), 92.1 (dt, ${}^{1}J_{C-F} = 191.6$, ${}^{3}J_{C-F} = 3.2$ Hz, 3C), 69.2-69.0 (m), 47.0 -46.2 (m, 3C), 42.5-42.2 (m, 3C), 37.1 (t, ${}^{4}J_{C-F} = 11.5$ Hz), 22.5 (t, ${}^{2}J_{C-F} = 32.6$ Hz) ; HRMS (EI) calcd for C₁₃H₁₇F₅O 284.11996, found 284.11940.

1,5,5,8-Tetrafluoro-4-oxatricyclo[**4.3.1.13,8**]**undecane** (**10**): mp 102-104 °C, IR (KBr) 2965, 1389, 1116 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.59 (s, 1H), 2.79 (brs, 1H), 2.31–2.25 (m, 4H), 2.18–2.04 (m, 2H), 2.03–2.00 (m, 2H), 1.91 (brs, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ –57.71 (s, 2F) –135.66 (s, 2F); ¹³C NMR (100MHz, CDCl₃) δ 128.2 (t, ¹*J*_{*C*-*F*} = 248.2 Hz), 93.0 (dd, ¹*J*_{*C*-*F*} = 185.9 Hz, ³*J*_{*C*-*F*} = 13.2 Hz, 2C), 71.6–71.2 (m), 47.1 (t, ³*J*_{*C*-*F*} = 18.8 Hz), 41.2-40.8 (m, 2C), 36.4-35.5 (m, 2C), 34.5-34.2 (m); HRMS (EI) calcd for C₁₀H₁₂F₄O 224.08243, found 224.08195.

1,3,5,5-Tetrafluoro-4-oxatricyclo[**4.3.1.13,8**]**undecane** (**11**): mp 85-87 °C, IR (KBr) 2961, 1371, 1111 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.77 (brs, 1H), 2.59-2.50 (m, 2H), 2.37–2.21 (m, 3H), 2.10–2.02 (m, 2H), 1.96–1.89 (m, 3H), 1.72–1.68 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ –59.87 (d, *J* = 166.3 Hz, 1F), –63.34 (d, *J* = 166.3 Hz, 1F), –95.10 (d, *J* = 9.0 Hz, 1F), –135.99 (s, 1F); ¹³C NMR (100MHz, CDCl₃) δ 124.4 (dt, ³*J*_{*C*-*F*} = 11.5 Hz, ¹*J*_{*C*-*F*} = 254.2 Hz), 114.3 (dt, ¹*J*_{*C*-*F*} = 217.0 Hz, ³*J*_{*C*-*F*} = 15.3 Hz), 90.2 (dd, ¹*J*_{*C*-*F*} = 184.1 Hz, ³*J*_{*C*-*F*} = 14.3 Hz), 46.6 (dt, ⁴*J*_{*C*-*F*</sup> = 2.9 Hz, ³*J*_{*C*-*F*</sup> = 23.8 Hz), 40.6–40.1 (m, 2C), 39.8 (dt, ³*J*_{*C*-*F*} = 12.2 Hz, ²*J*_{*C*-*F*</sup> = 30.5 Hz), 35.3–35.0 (m), 28.8 (dd, ³*J*_{*C*-*F*</sup> = 12.4 Hz, ³*J*_{*C*-*F*</sup> = 10.5 Hz), 28.2 (brd, ⁴*J*_{*C*-*F*</sup> = 6.9 Hz); HRMS (EI) calcd for C₁₀H₁₂F₄O 224.08243, found 224.08157.}}}}}}

Acknowledgment

We are grateful to prof. Hermann-Josef Frohn (University of Duisburg-Essen, Germany)

for his kind advice on the handling of BrF₃.

References

- [1] (a) J. W. Tilley, M. J. Kramer, in: G. P. Ellis, G. G. West, (Eds), Progress in Medicinal Chemistry, Elsevier, Amsterdam, Netherlands, 1981, pp. 1-44.
- (b) C. G. Parsons, W. Danysz, G. Quack, Neuropharmacol. 38 (1999) 735-767.
- (c) A. A. Spasov, T. V. Khamidova, L. I. Bugaeva, I. S. Morozov, Pharm. Chem. J. 34 (2000) 1-7.
- (d) W. J. Geldenhuys, S. F. Malan, J. R. Bloomquist, A. P. Marchand, C. J. Van der Schyf, Med. Res. Rev. 25 (2005) 21-48.
- [2] V. J. Jasys, F. Lombardo, T. A. Appleton, J. Bordner, M. Ziliox, R. A. Volkmann, J. Am. Chem. Soc., 122 (2000) 466-473.
- [3] M. Aoyama, T. Fukuhara, S. Hara, J. Org. Chem., 73 (2008) 4186-4189.
- [4] S. Hara, M. Aoyama, Synthesis, (2008) 2510-2512.
- [5]S. Hara, in: K. K. Laali, (Ed), Advances in Organic Synthesis, Bentham Science Publishers LTD., Hilversum, Netherlands, 2006, pp. 49-60.
- [6] Previously, the reaction of 1-cyanoadamantane with BrF_3 was reported to give 3,5-difluoroadamantane [7].
- [7] S. Rozen, D. Rechavi, A. Hagooly, J. Fluorine Chem. 111 (2001) 161-165.
- [8] As for the reviews of the fluorination using BrF_3 , see: (a) S. Rozen, Acc. Chem. Res.
- 38 (2005) 803-812. (b) S. Rozen, Adv. Synth. Catal. 352 (2010) 2691-2707.
- [9] Conversion of an ester group to a diffuoromethylene ether was previously reported by the reaction of α -cyano esters with BrF₃ [7][10].
- [10] A. Hagooly, S. Rozen, J. Org. Chem. 69 (2004) 7241-7245.

[11] A similar fluorination reaction accompanying the rearrangement was reported in the reaction of a trivalent bromine reagent with benzaldehyde, see: M. Ochiai, A. Yoshimura, M. M. Hoque, T. Okubo, M. Saito, K. Miyamoto, Org. Lett. 13 (2011) 5568-5571.

[12] BrF₃ can be stored in a cylinder at room temperature under complete blocking of humidity.