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Abstract:  

Land degradation and global warming are currently highly active research topics. Land degradation can both change land cover 

and surface climate and significantly influence atmospheric circulation. Researches have verified that carbon dioxide (CO2) 

and methane (CH4) are major greenhouse gases (GHG) in the atmosphere and are directly affected by human activity. 

However, to date, there is no research on the spatial distribution of GHG concentrations and also no research on how land 

degradations affect GHG concentrations in arid and semi-arid regions. In this study, we used GHG data from the 

ENVIronment SATellite (ENVISAT) and the Greenhouse gases Observing Satellite (GOSAT), the Normalized Difference 

Vegetation Index (NDVI) and Land Surface Temperature (LST) data from the MODerate resolution Imaging 

Spectroradiometer (MODIS) and precipitation data from ground stations to analyze the way land degradation affects GHG 

concentrations in northern China and Mongolia, which exhibit the most serious land degradation process in East Asia. Our 

research revealed that the CO2 and CH4 concentrations (XCO2 and XCH4) increased from 2003 to 2009 and then decreased 

into 2011. We used geostatistics to predict and simulate the spatial distribution of XCO2 and XCH4 and found that the 

distribution of XCO2 displays a seasonal trend and is primarily affected by plant photosynthesis, soil respiration and 

precipitation. As the distribution of XCH4 is mainly affected by the sources’ distribution, microbial processes, LST and 

submarine hydrate, the CH4 concentration presents no obvious seasonal changes and the high XCH4 values are primarily found 

in northeast and southeast China. Land degradation increases the concentration of GHG: the correlation coefficient between 

NDVI and XCO2 is R
2
 = 0.76 (P < 0.01) and the value between NDVI and XCH4 is R

2
 = 0.75 (P < 0.01). 
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1. Introduction 

Climate change is one of the great challenges of the 21st century (IPCC, 2011); the average surface temperature 

has increased by 0.74 °C over the past 100 years (1906–2005). The increasing concentration of greenhouse gases 

(GHG) in the atmosphere has been verified as the most important reason for global warming, which is a major 

environmental concern and a prominent research topic (Wu and Shi, 2011; Zhang et al., 2005). According to the 

analysis of the World Data Centre for Greenhouse Gases (WDCGG, http://gaw.kishou.go.jp/wdcgg/wdcgg.html), 

the average global CO2 concentration (XCO2) in 2010 was 389.0 ppm, which is 11.9 ppm more than in 2004; this 

figure has increased 39% from the pre-industrial global level of 280.0 ppm. The average CH4 concentration (XCH4) 

was 1808 ppb in 2010, which represents an increase of 158% from approximately 700 ppb in the pre-industrial era 

(WMO Greenhouse Gas Bulletin, 2004-2010).  

Current GHG emission rates may escalate in the future due to population growth and changing diets. Wu and Shi 

(2011) recognized that the rapid development of the tourism industry can also increase the emission of GHG. Land 

degradation caused by unviable agricultural practices is another source of increased GHG emissions (Dutt and 

Gonzalez, 2011). 

The degradation of vegetation and soils in drylands, also referred to as desertification, is thought to be a serious 

threat to the sustainability of human habitation. The reduction in vegetation cover that accompanies desertification 

has also led to soil erosion (Hassan, 2004). The rise in global atmospheric temperatures may also increase the 

frequency of droughts in the middle latitudes during the summer months (Ci and Yang, 2010). The land 

degradation through unviable agricultural practices and land use has also resulted in the increased emission of 

GHG (Hulme and Kelly, 1993).  

Climate change may adversely affect biodiversity and exacerbate desertification due to increases in 

evapotranspiration and likely decreases in rainfall in drylands. However, because CO2 is the raw material of 

photosynthesis and is also a major resource for plant productivity, efficient water use in arid and semi-arid areas 

will significantly increase for some dryland species that may respond favorably to increases in CO2. The 

contrasting responses of different dryland plants to increasing CO2 and temperatures may lead to changes in the 

species’ composition and abundance (Zafar et al., 2005). 

An adequate understanding of the sources and sinks of GHG and their feedbacks is a prerequisite for the reliable 

prediction of the climate of our planet. However, our current understanding of this is inadequate due to the lack of 

accurate time-series data. While measurements of fluxes and ground-based measurements of CO2 and CH4 are 

highly accurate, they are sparse and inefficient. Launching satellites to collect GHG data can solve this issue quite 

well. At present, SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) 

aboard ENVISAT (ENVIronmental SATellite), launched in 2002 but lost in April 2012, and TANSO (Thermal 

And Near infrared Sensor for carbon Observation) aboard GOSAT (Greenhouse gases Observing SATellite), 

http://gaw.kishou.go.jp/wdcgg/wdcgg.html
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launched in 2009, are the instruments measuring NIR radiation in appropriate absorption bands at approximately 

0.76, 1.6, and 2.0 µm, with sufficient spectral resolutions to retrieve XCO2 and XCH4 (Reuter et al., 2010). 

Due to the infrequency of sustained periods of carbon uptake, there is no research on the spatial distribution of 

GHG concentrations in arid and semi-arid regions based on remote sensing data for that time frame. To fill this gap, 

the aims of this study were as follows: first, to analyze changes in XCO2 and XCH4 from 2003 to 2011 using 

ENVISAT SCIAMACHY and GOSAT TANSO data; second, to analyze the spatial distributions of XCO2 and 

XCH4 in the study area in 2010 based on the TANSO data and using the Ordinal Kriging method; and finally, using 

Normalized Difference Vegetation Index (NDVI) data from the MODerate resolution Imaging Spectroradiometer 

(MODIS) combined with precipitation data and land surface temperature (LST) data to analyze the spatial 

distribution of GHG concentrations. We know that human activities are the most important source of GHG (IPCC, 

2011). However, here we will only discuss the relationships between NDVI and GHG concentrations. 

2. Data and Methods 

2.1. Study region 

The study area was located in East Asia between 30°-50°N and 73.5°-134.5°E, covering approximately 7.46×10
6 

km
2
 of northern China and Mongolia (Fig. 1. The regions that covered by land cover data are the study area). This 

region exhibits the most serious desertification in East Asia. It is also one of the areas most highly prone to sand 

dust storms in Asia (Guo et al., 2012).  

In China, the area of desertification is 2.62×10
6 
km

2
, accounting for 27.31% of all terrestrial land. Nearly all of 

China’s desertified land (including the Gobi desert) is located in the north and west of the country. In addition to 

natural changes in climate, the increased temperature and decreased precipitation over northern China brought on 

by land degradation could alter the northern Chinese climate from a light drought to a severe drought (Zhang et al., 

2005). According to meteorological records, the temperature in northern China has shown an increasing trend and a 

significant reduction in precipitation. Droughts, especially serious droughts, often cause a reduction in agricultural 

productivity, a water resources crisis and even serious sand dust storms. According to incomplete statistics, since 

1960, Northern China has experienced 13 periods of serious drought (Ci and Yang, 2010).  

In Mongolia, the area of desertification is approximately 6.4×10
5 

km
2
, accounting for 41% of all the terrestrial 

land of Mongolia. Mongolia is also the origin of the “cold current” in Asia and Europe. Precipitation is highest in 

the north, which averages 200 to 350 mm per year, and lowest in the south, which receives 10 to 20 mm per year. 

The Gobi desert can be found in the extreme south, where some regions often receive no precipitation at all. 
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2.2. Data 

2.2.1. ENVISAT SCIAMACHY Data 

The SCIAMACHY instrument is part of the atmospheric chemistry payload of the European Space Agencies 

(ESA) environmental satellite ENVISAT, launched in March 2002. SCIAMACHY is a grating spectrometer, which 

is a multinational (Germany, The Netherlands and Belgium) contribution to ENVISAT, measuring reflected, 

backscattered and transmitted solar radiation in the spectral region of 214-2380 nm. The spectral near-infrared 

nadir measurements of the SCIAMACHY instrument are sensitive to concentration changes in the two most 

important GHG, CO2 and CH4, at all atmospheric altitude levels including the boundary layer, where the surface 

source signal is the highest (Schneising et al., 2011). 

In contrast to TANSO, SCIAMACHY was not specifically designed for the retrieval of GHG concentrations. As 

a result of SCIAMACHY’s coarser spatial and spectral resolution, the achievable accuracy is expected to be lower. 

Nevertheless, between the years 2002 and 2009, SCIAMACHY was the only satellite instrument measuring XCO2 

and XCH4 with significant sensitivity in the boundary layer. Long-term (2003-2009) global CO2 and CH4 dry air 

column-averaged mole fraction data sets from SCIAMACHY derived using the Weighting Function Modified 

DOAS (WFM-DOAS) developed at the University of Bremen were used in this study. 

2.2.2. GOSAT TANSO FST L2 data 

GOSAT was launched on January 23, 2009 by the Japanese Space Agency. It is the world’s first spacecraft 

designed to measure the concentrations of CO2 and CH4 from SWIR bands with global coverage every 3 days. 

GOSAT is a sun-synchronous orbit with a local overpass time of 13:00 (Parker et al., 2011). It is a joint project of 

the Japan Aerospace Exploration Agency (JAXA), the Ministry of the Environment (MOE) and the National 

Institute for Environmental Studies (NIES). 

As we know, molecules of CO2 and CH4 in the atmosphere absorb light of particular wavelengths. GOSAT used 

this theory to measure the concentrations of CO2 and CH4 in the atmosphere. The primary purpose of the GOSAT 

project is to accurately estimate the emissions and absorptions of GHG on a subcontinental scale, to assist 

environmental administrations in evaluating the carbon balance of land-based ecosystems, and to provide 

assessments of regional emissions and absorptions (GOSAT Project homepage: 

http://www.gosat.nies.go.jp/eng/gosat/info.htm). 

The GOSAT project has released FST (Fourier Transform Spectrometer) global GHG concentration data (L3 

data), but because their coarse resolution (2.5°×2.5°) omits a great deal of information, GOSAT FTS SWIR L2 

(store column abundances of CO2 and CH4 retrieved from the radiance spectra in bands 1 through 3 of FTS) data 

from 2010 and 2011 were used in this study. The data of GOSAT FTS SWIR L2 are point data; thus, we obtained 

http://www.gosat.nies.go.jp/eng/gosat/info.htm
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the GHG concentration distribution map using the method of interpolation described below. At last, the seasonal 

distributions of CO2 and CH4 concentrations with spatial resolution of 0.05° were obtained. 

2.2.3. MODIS NDVI data 

In arid conditions, vegetation provides protection against degradation such as wind/water erosion. Vegetation 

reflects the hydrological and climate variations of the dry ecology. Decreasing vegetation cover and changes in the 

species composition of vegetation are sensitive indicators of land degradation (Haboudane et al., 2002). Elhadi and 

Zomrawi (2010) argued that vegetation index is a primary indicator of land cover changes in arid and semi-arid 

regions. The index of vegetation includes many different methods of expression; among them, NDVI has been 

considered as one of the most important indices used to assess and monitor desertification, land degradation and 

rangeland changes in arid or semi-arid regions (Wessels et al., 2004). 

The NDVI data used in this study are the MODIS products of MOD13A1. They are 16-day grid data with a 

horizontal resolution of 500 m by 500 m, produced by the Earth Observation System (EOS) NASA. The MOD13A 

NDVI accuracy is within ± 0.025 and the accuracy for a good quality day (high quality without the nadir view 

requirement) would be within ± 0.020. Errors in the red band associated with residual atmospheric effects are the 

main source of the NDVI errors (Gao et al., 2003). The study area is located in the high latitudes with snowy 

winters. In this study, we used the maximum value (Fensholt and Proud, 2012) composite of all the NDVI data of 

the Julian calendar days 161 to 257 (Fig. 2).  

2.2.4. MODIS LST data 

The LST is retrieved from MODIS thermal bands data (band 31 and 32) over the entire land surface of the earth. 

The required surface emissivity in bands 31 and 32 are estimated from land cover types (Langer et al., 2010). The 

LST is derived from the energy balance at the soil-atmosphere interface and is therefore a crucial parameter for the 

environmental energy budget (Langer et al., 2010; Wan, 2008). It is a good indicator of the ground surface energy 

balance and the so-called greenhouse effect, as it is one of the key parameters in the physics of land-surface 

processes at regional and global scales (Wan, 1999). The LST is the result of the surface-atmosphere interactions 

and energy fluxes between the atmosphere and ground surface; therefore, it is widely used in climate, hydrologic, 

ecological and biogeochemical studies (Hengl et al., 2012). MODIS Terra LST Monthly L3 Version 041 with a 

resolution of 0.05° (MOD11C3) was used in this study (Fig. 3). The MODIS LST accuracy is within 1 K in the 

range from 263 to 322 K under clear-sky conditions (Momeni and Saradjian, 2007).  

2.2.5. Meteorological data 

The precipitation data of China and Mongolia used in present study were downloaded from the website of the 

China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn) and Weather History and Data Achieve 

(http://www.wunderground.com/history), respectively. In total, 188 ground stations in China and 26 in Mongolia 

http://cdc.cma.gov.cn/
http://www.wunderground.com/history
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were used to calculate the annual precipitation from 2003 to 2011. The annual precipitations were used to analyze 

how climatic factors affect the NDVI in arid and semi-arid regions and how annual precipitations affect GHG 

concentrations. We also used these data to map the spatial distribution of precipitation in 2010 (Fig.4).  

2.3. Methods 

The Kriging interpolation is an important geostatistics methods based on the variogram. A variogram is a 

geostatistical technique which can be used to examine the spatial continuity of a regionalized variable and how this 

continuity changes as a function of distance and direction. For a detailed description of Kriging interpolation, 

please see the paper by Schneider et al. (2008). 

As outliers create artifacts during interpolation, in order to get better results of interpolation surface we should 

remove the outlier values of each season. The outliers contain global outliers and local outliers: we can use normal 

QQPlot tool in ArcGIS 10 to check whether the data conform to the normal distribution or not and find out the 

global outliers. Semivariograms were constructed and fitted to curve types. Outliers are the sample points that with 

small distance but large variation, the outliers are distribute in the upper left corner of the Semivariograms cloud 

map (http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html). Each season, we selected different 

semivariogram models and different parameters, determined the best-fit model and parameters through multiple 

calculations and comparative analyses. 

There are 1902 points of CO2 and 1871 points of CH4 from March 2010 to February 2011 covered the study area. 

Because some points overlap, several points must be deleted to ensure that there was no overlap point and that the 

point distribution was regular. To this end, we created a fishnet of squares measuring 0.5°× 0.5° to cover the study 

area using ArcGIS. We used the mean value of all the points in one square as the value for that square; because the 

fishnet is a polygon file, to use the Ordinary Kriging method, we covert the fishnet into points using the Data 

Management Tools of ArcGIS 10. After this process, there remained 578 points of XCO2 and 574 points of XCH4, 

and these points were distributed evenly across the study area.  

3. Results and discussion 

3.1. Annual changes of GHG concentrations in East Asia 

We calculated the annual value of GHG concentrations using SCIAMACHY and TANSO from 2003 to 2011. 

Fig. 5 demonstrates that XCO2 and XCH4 increased from 2003 to 2009 and then clearly decreased until 2010. 

XCH4 continued to decrease but XCO2 exhibited a small increase between 2010 and 2011. The significant turning 

point appears in 2010; this is primarily due to the different levels of precision of SCIAMACHY and TANSO. The 

evaluated precisions of the retrieved column abundances for the single observations of GOSAT are less than 1.00% 

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html
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in most cases (Yoshida et al., 2011). To check the accuracy of the SCIAMACHY WFM-DOAS data set, we 

selected two ground stations named Mt. Waliguan in China and Ulaan Uul in Mongolia from WDCGG. Mt. 

Waliguan (36.28°N, 100.90°E, 3810 m), situated in remote western China (Fig. 1), is one of the 26 World 

Meteorological Organization (WMO)/Global Atmosphere Watch (GAW) global baseline stations. It is located at 

the edge of the northeastern part of the Tibetan Plateau. The area surrounding the station is pristine with sparse 

vegetation, mostly arid and semiarid grassland. Ulaan Uul (44.45°N, 111.08°E, 914 m) located in the east south 

side of Mongolia (Mongolian dessert-steppe region) far from any anthropogenic sources. 

Table 1 shows that the accuracies of XCO2 are 0.30% and 0.74% in Mt. Waliguan and Ulaan Uul, respectively, 

but the accuracies of XCH4 are -3.29% and -4.12% in Mt. Waliguan and Ulaan Uul, respectively. We also found 

that the ground-measured values of XCO2 are lower than those of the data set of SCIAMACHY, and the opposite 

situation is observed for XCH4. 

To understand the monthly changes in GHG concentrations, we calculated the monthly average concentrations of 

CO2 and CH4 in 2010 from TANSO FST L2 data collected within the study region (the area that covered by land 

cover image in Fig. 1). Fig. 6 shows that the CO2 concentration varied significantly between months, with the 

highest concentration of CO2 in March and its lowest concentration in July. The difference between the maximum 

and minimum concentration is 10.72 ppm. From March onward, the temperature increased gradually, the heating 

from burning fossil fuels lessened and the rate of photosynthesis increased. In addition, plant photosynthesis 

absorbs CO2 during this period, leading to decreases in the XCO2 levels between March and July. From July to 

October, plant photosynthesis decreased, the soil emission CO2 increased with the increasing temperature and soil 

moisture, and the concentration of CO2 in the atmosphere increased (Oechel et al., 1995). Starting in October, 

decreasing temperatures led to weaker soil respiration. Moreover, plant photosynthesis disappears in Mongolia and 

northern China, causing increases in CO2 concentration. The increased burning of fossil fuels in winter is also an 

important factor contributing to increases in the CO2 concentration. 

After CO2, CH4 is the most important anthropogenic GHG. It also has an indirect effect on climate through 

chemical feedback. More than 50% of present-day global CH4 emissions are anthropogenic; the largest contributors 

are fossil fuel production, ruminant animals (e.g., cows or sheep), rice cultivation and waste handling (Frankenberg 

et al., 2005). Fig. 6 shows that the CH4 concentration in the atmosphere ranges from 1724.26 ppb in May to 

1775.05 ppb in September. Wetlands are among the primary sources of atmospheric CH4, while flooded rice fields 

and peatlands are also substantial sources (Ojanen et al., 2010). The CH4 concentration increased due to rice 

cultivation in May; after the rice harvest in September, the concentration reduced. Keppler et al. (2006) found that 

the emission of CH4 was temperature sensitive. Therefore, the increasing temperature between May and September 

is another reason for the increased concentration of CH4. When landscapes are flooded to create any kind of 

reservoir, terrestrial plants die and no longer assimilate CO2 by photosynthesis. Bacteria decompose the organic 

carbon that was stored in the plants and soils, converting it to CH4, which are then released into the atmosphere 
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(Louis et al., 2000). In East Asia, the rainfall is mainly focused in June, July and August, so CH4 concentrations are 

high in these months. Beginning in September, as the temperature began to decrease, the CH4 emissions decreased 

as well, and the overall CH4 concentration displayed a downward trend. 

3.2. NDVI changes in arid and semi-arid regions of East Asia 

NDVI is an ideal indicator of vegetation biomass activity and parameters such as temperature, precipitation and 

other climatic variables are necessary to explain the variance exhibited by the NDVI (Chen et al., 2012). Many 

scholars used NDVI to study desertification at a global and regional scale: Bai et al. (2008) combined NDVI trends 

with rain-use efficiency as a proxy for desertification at the global scale. Elmzoughi et al. (2008) demonstrated the 

possibility of using only long term, minimum NDVI time-series data, without precipitation data, to assess the level 

of desertification in southern Tunisia. 

In this study, we used NDVI from MODIS Terra to calculate the vegetation changes from 2003 to 2011 in East 

Asia. The maximum NDVI values of the Julian calendar days 161 to 257 for each year were used. An increase in 

NDVI indicates an increasing in vegetation cover, and vice versa. Fig. 7 shows that vegetation fluctuates. The 

difference between the maximum and minimum NDVI is 0.017 NDVI unites. Vegetative production in arid and 

semi-arid regions is closely related to the long-term average precipitation and inter-annual rainfall variability 

(Elhag, 2006; Rutherford, 1980). The NDVI has been empirically shown to relate strongly to green vegetation 

cover and biomass using ground-based studies involving spectral radiometers (Stellmes et al., 2010). We select 214 

ground stations over the study area to check the relationships between desertification and annual precipitation. 

From Fig. 7 we can found that the NDVI have the similar trend with precipitation from 2003 to 2010 but the slopes 

are different because of other factors effect. In 2011, the trends of NDVI and annual precipitation are opponent, 

which maybe because of uneven seasonal distribution of precipitation. 

3.3. Impact of NDVI on GHG concentrations 

Atmospheric XCO2 variations over the long term have been caused by several geochemical processes. CO2 is 

removed from the atmosphere primarily through green plants photosynthesis. In serious cases of land degradation, 

the CO2 concentration increases due to a lack of CO2 sink. Land degradation in arid and semi-arid regions that 

accompanied by the degradation of vegetation and organic soil can lead to drought and high temperature (Ci and 

Yang, 2010), which can also result in increases in CO2 concentrations. The sources of CH4 are primarily rice fields, 

wetlands and peatlands, and the amount of CH4 emission is also affected by temperature and soil moisture 

(Inubushi et al., 2003). To examine how land cover changes effect GHG concentrations in arid and semi-arid 

regions of East Asia, we calculated the relationships between NDVI and GHG concentrations. 
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Fig. 8 demonstrates that with the increases in NDVI, CO2 and CH4 concentrations decrease. The correlation 

coefficient between NDVI and XCO2 is R
2 

= 0.76 (P<0.01), the value between NDVI and XCH4 is R
2 

= 0.75 

(P<0.01). This means that land degradation can result in increases in GHG concentrations. Land degradation that 

accompanied with vegetation decreasing can decrease the photosynthesis of green plant which increasing the CO2 

concentration in atmosphere. In fact, GHG concentrations are also a result of climate changes because of the close 

relationships between NDVI and precipitation. 

Some researchers have found that CH4 can be offset by oxidation, which largely takes place in the atmosphere 

through reactions with the free radical (OH) (Cicerone and Oremland, 1988; Crutzen and Gidel, 1983; WMO 

Greenhouse Gas Bulletin, 2010). OH in the atmosphere is generated photochemically through short-wavelength 

radiation, such as the reaction of electronically excited O atoms with H2O and organic molecules. The drought and 

high temperatures that result from land degradation in arid and semi-arid regions can decrease H2O in the 

atmosphere, which affects the formation of OH, increasing the CH4 concentration (Guo et al., 2012). 

3.4. Spatial distribution of GHG concentration in East Asia 

3.4.1. Seasonal distribution of CO2 concentration 

Fig. 9 shows that the spatial distribution of CO2 concentrations differs between the seasons. The seasonal cycles 

of the atmospheric GHG concentrations have been shown to be associated with surface air temperatures, which is 

consistent with the hypothesis that warmer temperatures have promoted increases in biosphere activity outside of 

the tropics (Myneni et al., 1997). 

In spring, higher values occur primarily in northwest China and east of Heilongjiang province. Lower 

concentrations appear in east Mongolia, west Inner Mongolia and the southwest Xinjiang province. During the 

spring in China and Mongolia, the CO2 concentration is not affected by the respiration of plants due to a lack of 

green vegetation but by soil emissions. Soil respiration emits CO2 into the atmosphere when the temperature 

increases (Oechel et al., 1995). Higher CO2 concentration appears in Qinghai, Tibet and Sichuan province because 

of higher elevation and lower temperature postpone the vegetation greenup. Higher CO2 concentration also appears 

in east of Heilongjiang province because of the soil in this region is rich in organic matters (Duan et al., 2001). The 

CO2 concentration in the south is higher than in the north of the study area due to its temperature sensitivity 

(Oechel et al., 1995). The CO2 concentrations of east Mongolia, west Inner Mongolia and the Xinjiang province 

have the lowest values. Comparing these locations with Fig. 1 shows that these regions consist of desert (including 

the Gobi desert) and sandy land. The amount of CO2 reserved by desert soil is less than that of other soils (Duan et 

al., 2001); therefore, CO2 emissions from desert areas are lower than from other regions. With increases in 

temperature (Fig. 3), soil respiration also increases, which can emit CO2 (Sun, 2001). And the increases in 
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temperature in the south of China occur more rapidly than in the north of China, causing higher CO2 concentrations 

in the south of China. 

In the summer, CO2 concentrations are affected by two primary factors: respiration from green plants and soil 

emission. The photosynthesis of plants can convert CO2 into organic compounds, especially sugars, using energy 

from sunlight. The CO2 concentration in soil is much higher than that of the atmosphere (Chong et al., 2003); 

therefore, soil is a significant source of CO2. Soil respiration has a clear relationship with temperature and soil 

moisture; under elevated temperatures and appropriate soil moisture, much of the soil carbon stored in the active 

layer and entombed in permafrost could be released to the atmosphere, resulting in higher CO2 emissions (Oechel 

et al., 1995; Schuur et al., 2009). Mielnick et al. (2005) measured the CO2 emission above the Chihuahuan desert 

grassland from 1996 through 2001 and found that the ecosystem produced a significant amount of CO2 every 

month. Fig. 9 demonstrates that in the summer, the highest concentrations of CO2 appear in Mongolia, west China 

and northeast China. In Mongolia and west China, CO2 cannot be absorbed by plants because of the low vegetation 

cover (Fig. 1) and low precipitation (Fig. 4). In northeastern China, the higher CO2 concentration is mainly because 

of relatively high LST (Fig. 3) and precipitation (Fig. 4). The amount of CO2 emitted by soil is also affected by the 

soil type. In northeast China, the soil type is mainly black soil, which is rich in organic matter. Due to the high 

temperatures in summer, microbial decomposition of the organic matter causes the soil to emit more CO2 (Sun, 

2001). The lowest CO2 concentration occurs in central China, primarily due to the high vegetation cover (Fig. 2) 

absorb CO2 in the atmosphere. 

In autumn, which occurs from September to November, the highest CO2 concentrations appear in central China, 

west of Tibet and the south of northeastern China. The lowest concentrations appear in east Mongolia, Xinjiang 

province and the Qinghai province. As the photosynthesis of plants disappears in autumn, and the CO2 

concentration is mainly affected by soil emission, regions covered by desert and sandy land have low CO2 

concentrations, and regions covered by fertile soil have high concentrations of CO2. Precipitation and temperature 

are also important reasons for the spatial distribution of CO2 concentration in autumn. With the decreasing of 

temperature, plant photosynthesis decreases. The regions with appropriate soil moisture and higher LST (Fig. 3) 

emit lots of CO2 to the atmosphere. 

In winter, the highest concentration of CO2 is primarily found in central China, and the lowest CO2 concentration 

appears in the west and northeast of China and the east of Mongolia. Due to a lack of plant photosynthesis, there is 

no plant photosynthesis, and the soil is frozen in high-latitude regions. The high CO2 concentration is mainly the 

results of soil respiration in south China. 

3.4.2. Seasonal distribution of CH4 concentration 

http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Sugar
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Regarding the CH4 concentration in the atmosphere, Fig. 10 shows that the concentration of CH4 ranged from 

1704.32 ppb to 1824.77 ppb from March 2010 to February 2011. We found that the highest CH4 concentrations 

were primarily distributed in southeast and northeast China. In the spring, the lowest concentrations were 

distributed in Mongolia, Xinjiang and Tibet. In the summer, the lowest concentrations were found in areas of in 

low vegetation (Fig. 2). In the autumn, the low-concentration areas included Mongolia, Inner Mongolia and 

western China. In winter, the lowest values were found in the Qinghai province and Tibet, while Mongolia and 

Inner Mongolia also had low concentrations of CH4. 

Wetlands are a significant source of atmospheric CH4. Biogenic CH4 emissions from wetlands are determined by 

two different microbial processes: CH4 production and CH4 oxidation. CH4 production is mainly controlled by the 

quality of the soil’s organic matter and vegetation, while CH4 oxidation depends strongly on the availability of 

oxygen. Both processes are influenced by soil temperature and pH (Schneider et al., 2009). Flooded rice fields and 

peatlands are also significant sources of CH4 (Jackel et al., 2001; Ojanen et al., 2010). Vegetation roots emit CH4 

under aerobic conditions (Frankenberg et al., 2005). Of all the land cover types, drylands emit the smallest amount 

of CH4 (Jiang et al., 2009). The emission of CH4 from forest, cultivated land, grasslands and other vegetation 

covers in China accounted for 43.0%, 28.3%, 19.0%, and 9.7% of all CH4 emissions, respectively (Xie et al., 2008). 

The largest wetland regions and the main rice production regions of China can be found in the northeast and 

southeast (Fig. 1). The Sanjiang plain located in northeast Heilongjiang province is the most famous commodity 

grain base of China and the main crop is rice. Fig. 10 demonstrates that in these areas, the CH4 concentration is 

typically high.  

The CH4 emissions are related to the soil moisture, temperature and soil organic matter quality (Andersen and 

White, 2006). Keppler et al. (2006) found that the release of CH4 was highly temperature sensitive, and the 

concentrations approximately doubled with every 10°C increase across the range of 30–70°C. The high 

precipitation and LST in southeast and northeast China (Fig. 3 and Fig. 4) are other causes for the spatial 

distribution of high CH4 concentration.  

Fig. 10 also shows that the lowest CH4 concentrations are located mainly over desert (e.g., Gobi) and sandy 

terrain (Fig. 1). Due to its lack of a significant CH4 source, the CH4 concentration in these areas is very low.  

4. Conclusions 

The reduction of GHG emissions arising from land cover change and land degradation–that is, the reduction of 

emissions from the conversion and degradation of vegetation–is an issue of crucial significance to the future. 

Therefore, it is important to understand the monthly trends of GHG concentrations and the spatial distribution of 

these concentrations at a regional scale. This study selected northern China and Mongolia as its study regions. 

Spaceborne GHG monitoring data were employed to analyze the concentrations of CO2 and CH4 over time from 
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2003 to 2011. Moreover, we seasonally mapped the spatial distribution of GHG concentrations in 2010 and 

quantified the relationships between NDVI and GHG concentration changes. Following these analyses, we present 

the following conclusions: 

(1) In our study area, the concentrations of CO2 and CH4 increased from 2003 to 2009 and then decreased. NDVI 

changes fluctuate, but have the similar trends with annual precipitation from 2003 to 2010. 

(2) The concentrations of CO2 and CH4 in the atmosphere exhibited a monthly trend. The CO2 concentration 

decreased from March to its minimum value in July and then increased in autumn and winter. The CH4 

concentration increased from May to its peak value in September and then decreased.  

(3) Land degradation can increase the GHG concentrations. The correlation coefficient between NDVI and 

XCO2 is R
2 
= 0.76 (P<0.01); the value between NDVI and XCH4 is R

2 
= 0.75 (P<0.01). 

(4) We also analyzed the spatial distributions of CO2 and CH4 concentrations and found that the CO2 

concentration exhibits evident seasonal changes. Green plant photosynthesis and the respiration of soil emission are 

the two primary factors affecting CO2 concentrations in the atmosphere. Our analyses also revealed that the highest 

concentrations of CH4 were found in northeast China and central China. The rice production and wetland regions 

are the most important factors in determining the concentration of CH4 in northeast China. Due to the lack of a 

significant CH4 source, the lowest CH4 concentrations are located mainly in the desert (e.g., Gobi) and sandy 

terrain. Precipitation and LST are also important factors affecting the spatial distributions of GHG concentrations. 
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Table 1. The accuracy of SCIAMACHY WFM-DOAS data set from 2003 to 2009 

 

 

 

 

  

 

 

Ulaan Uul SCIAMACHY Error Mt. Waliguan SCIAMACHY Error 

 

 

 

XCO2 

2003 377.67 378.28 0.16% 375.58 379.60 1.07% 

2004 378.71 383.17 1.18% 377.16 374.53 -0.70% 

2005 380.24 382.63 0.63% 379.66 381.91 0.59% 

2006 383.70 384.87 0.31% 382.99 381.02 -0.51% 

2007 384.74 391.04 1.64% 385.04 391.02 1.55% 

2008 386.92 391.84 1.27% 385.89 385.15 -0.19% 

2009 388.40 388.38 0.00% 388.55 389.75 0.31% 

Ave. error    0.74%   0.30% 

 

 

 

XCH4 

2003 1859.53 1780.07 -4.27% 1834.57 1742.01 -5.05% 

2004 1859.39 1767.60 -4.94% 1832.22 1743.14 -4.86% 

2005 1855.98 1771.39 -4.56% 1830.63 1760.21 -3.85% 

2006 1855.87 1787.86 -3.66% 1828.14 1784.78 -2.37% 

2007 1858.69 1787.69 -3.82% 1829.77 1793.48 -1.98% 

2008 1867.31 1809.27 -3.11% 1855.57 1804.68 -2.74% 

2009 1872.92 1788.50 -4.51% 1843.05 1802.82 -2.18% 

Ave. error    -4.12%   -3.29% 
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Fig. 1. Study region location. The areas that covered by land cover image are the study region. The land 

cover data were downloaded from website of ESA (http://ionia1.esrin.esa.int/). Here, we have not list all 

the land cover legends. 
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Fig. 2. NDVI data of growing season in 2010. In present study we defined Julian calendar days 161 to 257 as the growing season. 
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Fig. 3. LST data from MODIS in 2010. Average value of the monthly LST data (MOD11C3) was used in present study. 
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Fig. 4. Precipitation interpolation map based on 214 ground stations data in China and Mongolia and employed Ordinary Kriging 

methods. 
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Fig. 5. XCO2 and XCH4 changes from 2003 to 2011, data from SCIAMACHY (2003-2009) and GOSAT 

(2010-2011) that covered the study area (regions that covered by the land cover image). 

 

 

 

Fig. 6. The monthly CO2 and CH4 concentrations from March 2010 to March 2011. 
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Fig. 7. Annual MODIS Terra NDVI and annual precipitation from 2003 to 2011. 
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Fig. 8. The correlation coefficient between NDVI and GHG concentrations. 
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Fig. 9. Spatial distribution of CO2 concentration in spring, summer, autumn and winter. 
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Fig. 10. Spatial distribution of CH4 concentration in spring, summer, autumn and winter. 


