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We investigate the effects of the timescale of motion on the shape of energy landscapes. The distinction
between the free-energy landscape and the potential of mean force is clarified. The former is related to a thermal
equilibrium distribution for chosen coordinates, whereas the latter is determined by the mean force exerted on the
coordinates in the equilibrium. It is found that the condition for these two energy landscapes to be the same is the
constancy of the mean square velocity with respect to the position coordinate. However, even when the condition
holds for the chosen coordinates, as the timescale of observation increases, the averaging effect causes a decrease
in the mean square velocity nonuniformly in the configuration space, resulting in a larger distinction between the
free-energy landscape and the potential of mean force. The results are expected to provide an important basis for
the study of long time scale phenomena in large systems.
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Energy landscape, the energy of a given system expressed
as a function of the coordinates, is one of the most versa-
tile concepts in the study of multidimensional systems. Its
application can be found in the studies of, for example, large
molecules, such as clusters [1,2] and proteins [3–10], diffusion
in oxide networks [11], fullerene materials [12], formation
process of gels and glasses [13], chemical and biological
separation through micro- and nanofluidic systems [14], and
epigenetics in developmental biology [15–17]. Two important
roles of the energy landscape can be pointed out. One is
that the gradients of the energy landscape with respect to
the coordinates give the forces in the directions of those
coordinates by which the motion of the system is driven on the
landscape. Thus, chemical reactions can be imagined as a point
mass moving on the energy surface drawn in the configuration
space, and their rate constants can also be calculated from the
information of the energy surface [8,18–21]. Also, phenotypic
diversification of cells can be modeled as the motion of marbles
on Waddington’s landscape [15–17].

The other role of the energy landscape is that the probability
distribution at the stationary state is given by the energy
landscape through the Boltzmann factor. Thus, the stable
structures of proteins can be predicted as minima of the
free-energy landscape, and it is possible to elucidate specific
interactions that give rise to the stable structures [7,22–24].
It is, in a sense, surprising that these two different concepts,
one being a dynamical concept of force and the other being
a statistical distribution, can be given by the same energy
function.

Large complex systems involve a huge number of degrees of
freedom and experience the underlying energy landscapes with
hierarchical time and space scales. When some, but not all,
degrees of freedom are considered to have reached a stationary
distribution, it is natural to represent the energy landscape
with a smaller set of degrees of freedom by averaging all
the others over the stationary distribution. Moreover, due to
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limited experimental time resolution or an interest in slow
motions, e.g., relevant to biological functions, rather than the
full details of motion over all the timescales, we are often
interested in investigating the behavior of physical quantities
over long timescales. What kinds of energy landscape are
seen at different timescales in such reduced systems is an
intriguing subject. It is even not clear whether the two different
roles mentioned above can still be played by a unique energy
surface. In this Rapid Communication, we discuss in what
circumstances these two different roles can or cannot be played
by a single energy landscape and investigate how the timescale
of observation affects energy landscapes to provide insights for
understanding the long-term dynamics of large systems.

Corresponding to the two roles, there exist two kinds of
energy landscapes: One is the potential of mean force [18,25],
and the other is the free-energy landscape [3–6]. Let us
now formulate the situation in mathematical terms. Suppose
X = (X1,X2, . . . ,XN ) is the collection of all the coordinates
required to describe the system. An example may be the set
of the position coordinates and conjugate momenta of all
the particles in a classical many-particle system. In thermal
equilibrium, the coordinate X is distributed according to the
equilibrium distribution ρeq(X). We can choose some function
Q(X) to represent the system (e.g., the number of native
contacts or the largest principal components in a protein) and
average out all the rest. ( Q can be a collection of functions, but,
for the sake of simplicity, we consider here only one function.)
Let us denote by the uppercase Q the function of X and its
particular value by the lowercase q. Then, the equilibrium
distribution for the value of Q is given by

P (q) =
∫

δ[Q(X) − q]ρeq(X)d X, (1)

where δ denotes the Dirac δ function. Then, the free-energy
landscape G(q) can be defined as such a function that gives
the equilibrium distribution as the Boltzmann factor,

exp

(
− G(q)

kBT

)
∝ P (q), (2)
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with some appropriately defined temperature. The free-energy
landscape is a coarse-grained description of the system since
its definition includes averaging over the bath modes (all the
degrees of freedom other than Q) as in Eq. (1). It is differ-
ent from the potential-energy surface V (X1,X2, . . . ,XN/2),
which is defined on each point in the configuration space
(if we take (X1, . . . ,XN/2) as the position coordinates and
(XN/2+1, . . . ,XN ) as their conjugate momenta).

On the other hand, the mean force fM(q) can be defined as
the average of the acceleration for each fixed value q [25],

fM(q) = 〈Q̈; q〉 = 1

P (q)

∫
Q̈(X)δ[Q(X) − q]ρeq(X)d X,

(3)

where Q̈(X) is the second-order time derivative of Q(X),
which is also a function of X , and the notation 〈Q̈; q〉 stands
for the equilibrium average of Q̈ with Q fixed at the value q.
Then, the potential of mean force VMF(q) is defined as such a
function that the mean force is given by its gradient,

VMF(q) = −
∫ q

fM(q)dq. (4)

As terminology, we note that the definitions stated here are
not unequivocal ones. In the literature, these terms, free-
energy landscape and potential of mean force, have sometimes
been used with the same meaning. Efforts to rationalize
the free-energy landscape of proteins at the single molecule
level [26,27] and in the context of Anfinsen’s dogma [28]
have been carried out. However, to avoid confusion, we
tentatively adopt the definitions of Eqs. (2) and (4) in this
Rapid Communication. It is far from trivial whether these two
landscapes, G(q) and VMF(q), are equal to each other or not.

Pope and Ching [29], Ching [30], and Stolovitzky and
Ching [31] found the following expression for the stationary
distribution of general stochastic systems:

P (q) = 〈δ[Q(X) − q]〉 ∝ 1

〈Q̇2; q〉 exp

(∫ q 〈Q̈; q ′〉
〈Q̇2; q ′〉dq ′

)
,

(5)

where 〈·〉 is the ensemble average taken over the stationary
distribution. This equation can be proved generally for any
stationary stochastic process where the stochastic variable is
twice differentiable and P (q) decreases rapidly as |q| goes to
infinity.

By comparing Eq. (5) with Eqs. (2)–(4), one can see that
the free-energy landscape G(q) and the potential of mean force
VMF(q) become the same if

〈Q̇2; q〉 = kBT (∀ q), (6)

in other words, if the mean square of the velocity does not
depend on q and is interpreted as “temperature.”

Let us now look into the effect of timescale of observation
on these energy landscapes. The issue of the timescale and
the energy landscape has been stated by several authors
[26,32,33]. It was pointed out that large molecules, such
as proteins, explore different morphologies of the energy
landscape for different timescales of motion. In the present
Rapid Communication, we investigate the change in the
energy landscapes defined above with coarse graining of the

observation time. It will be found that, even when the condition
Eq. (6) holds for the original coordinate q, these landscapes
become different as the observation timescale is increased and
local averaging is performed.

Suppose our “observable” is a local time average of the
original variable Q, and let us denote it by Q̄,

Q̄(t) = 1

τ

∫ t+τ/2

t−τ/2
Q(t ′)dt ′, (7)

with a specified time window τ . Then, we can think of the
energy landscapes for the new variable Q̄, which are not
necessarily the same as those for Q.

We demonstrate the change in the energy landscape with
the change in τ by a simple one-dimensional system given by
a Langevin equation,

Q̈ = − ∂

∂Q
V0(Q) − γ Q̇ + ξ (t), (8)

where the Morse potential is adopted as the potential V0,

V0(Q) = De{1 − exp[−α(Q − Qe)]}2, (9)

with De = 1, α = 1, and Qe = 0. The friction constant is
taken as γ = 0.1. The random force ξ (t) is a Gaussian
white noise whose autocorrelation is given by the fluctuation-
dissipation relation,

〈ξ (t)ξ (t ′)〉 = 2kBT γ δ(t − t ′), (10)

with kBT = 0.2. The Morse potential is depicted in Fig. 1(a).
The Morse potential is steeper in the region q < 0 and is flatter
in q > 0. Consequently, the motion is expected to typically
take place more rapidly in q < 0 and more slowly in q > 0.

Figure 1 shows the results of calculations of the free-energy
landscape, the potential of mean force, and the mean square
velocity for the original coordinate Q and the locally averaged
quantity Q̄ with the time window τ = 1 and 2. For averaging,
the numerical simulation of Eq. (8) was performed for 4000
sample trajectories of the time length of 1000. The simulation
has been performed by the method of Ref. [34] with a time step
of 10−4. The free-energy landscape is then calculated from the
distribution according to Eq. (2) with the effective temperature
defined by kBTeff = 〈(dQ̄/dt)2〉. The potential of mean force
is calculated by Eq. (4) with the mean force Eq. (3).

Figure 1(a) shows the potential energy V0(q) and the mean
square velocity 〈Q̇2; q〉 as functions of q before taking the
local average. In this case, the mean square velocity does not
depend on q and is always equal to kBT = 0.2. Consequently,
as Eqs. (5) and (6) tell us, the free energy and the potential of
the mean force are the same and are the same as the original
potential V0 as shown in Fig. 1(a).

In contrast, Fig. 1(b) shows the results for the locally
averaged quantity Q̄ as defined in Eq. (7) with the time window
of τ = 1. The mean square velocity 〈 ˙̄Q2; q̄〉 is now lower
than kBT = 0.2 since the local time averaging cancels out
fast changes in the velocity. This effect of averaging out the
velocity fluctuations is more pronounced at smaller values
of q. Figure 2 shows an example trajectory in this system to
observe the effect of local time averaging. When the coordinate
q takes large values (e.g., t ≈ 380–387 in Fig. 2), the motion
is relatively slow due to the mild slope of the potential. Then,

030803-2



RAPID COMMUNICATIONS

EFFECT OF TIMESCALE ON ENERGY LANDSCAPE: . . . PHYSICAL REVIEW E 87, 030803(R) (2013)

FIG. 1. (Color online) Dotted curve, left axis: The Morse po-
tential V0(q) used in the present calculation; circles, left axis: the
free-energy landscape G(q̄); squares, left axis: the potential of mean
force VMF(q̄); and diamonds, right axis: the mean square velocity
〈 ˙̄q2; q̄〉. (a) As functions of the original coordinate q. (b) For the local
time average q̄ of q with the time window of τ = 1. (c) With the time
window of τ = 2. Scaled units are used so that the two parameters of
the Morse potential and the mass of the system are scaled to one.

the time-averaged trajectory follows the original trajectory to
a good approximation, and therefore, its velocity is closer to
that of the original trajectory. On the other hand, when the

FIG. 2. (Color online) Thick solid curve: Example trajectory for
the Morse potential with friction and random force. The local-average
trajectory q̄ with a time window size of τ = 1 is shown by squares.
Scaled units are used so that the two parameters of the Morse potential
and the mass of the system are scaled to one.

coordinate q takes small values (e.g., t ≈ 364–366, 369–370,
373–375, 378–380, and so forth, in Fig. 2), the system is
strongly kicked back in a short time by the steep slope of
the potential. The averaged trajectory cannot trace this fast
bouncing-back motion, and its velocity becomes small due
to the averaging of the forward and backward movements
contained within one time window. This explains the fact that,
with the same window size τ , the effect of taking the time
average is more significant for the smaller q than for the larger
q region. The consideration made around Eq. (6) tells that the
free energy and the potential of mean force are not necessarily
the same if the mean square velocity is not uniform. Figure 1(b)
shows that this is indeed the case as there is a small discrepancy
between these two.

The nonuniformity of the mean square velocity is more
pronounced in Fig. 1(c) where we take a larger time window
of τ = 2. As a consequence, the discrepancy between the
free-energy landscape and the potential of mean force have
become larger. As a trend, the free-energy landscape rises more
steeply as q̄ decreases than the potential of mean force, whereas
an opposite behavior [G(q̄) flatter than VMF(q̄)] is observed
for positive q. We can physically interpret this behavior as
follows: For a given slope of VMF(q̄), it is “more difficult”
to climb up the potential surface if the system has smaller
velocity. As VMF increases with the change in q̄, therefore, the
population decreases more significantly for smaller 〈 ˙̄Q2; q̄〉
than for larger 〈 ˙̄Q2; q̄〉. Thus, the free-energy landscape G(q̄),
being calculated from the distribution, increases more sharply
than the potential of mean force VMF(q̄) when the mean square
velocity 〈 ˙̄Q2; q̄〉 is smaller than the average 〈 ˙̄Q2〉. It is noted
that such a discrepancy between the potential of mean force
and the free-energy landscape can happen in general, despite
the simplicity of the model system we have chosen here. The
discrepancy between these two landscapes arises from the
inherent property of the system concerning the comparison
between the timescale of the observation and that of the system
motion in each region of the potential, influenced by conditions
such as the morphology of the potential surface, friction, and
temperature.
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To summarize, we have shown that the two kinds of energy
landscape, the free-energy landscape and the potential of mean
force, can be significantly different. The condition for them
to coincide is the uniformity of the mean square velocity.
We also demonstrated the effect of time coarse graining on
the landscapes. As the time window becomes large, the mean
square velocity decreases by local averaging. When the system
has different timescales of motion in different regions of the
configuration space, the decrease in the mean square velocity
is not uniform, giving rise to the nonuniformity of the mean
square velocity, and therefore, the free-energy landscape and
the potential of mean force become different. Since interest in
studying large scale without being involved in the details of
fast motions is very common in physical research, the results
of this Rapid Communication, although demonstrated with a

simple model system, will provide an important basis for the
study of slow motions of large systems.
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