HOKKAIDO UNIVERSITY

Title	A symptotic analysis of the Fourier transform of a probability measure with application to the quantum Zeno effect
Author(s)	A rai, A sao
Citation	Journal of Mathematical Analysis and A pplications, 403(1), 193-199 https://doi.org/10.1016/.jma.2013.02.020
Issue Date	2013
Doc URL	http:/hdl. handle.net/2115/52668
Type	article (author version)
File Information	asymtotic.pdf

Instructions for use

Asymptotic Analysis of the Fourier Transform of a Probability Measure with Application to Quantum Zeno Effect

Asao Arai*
Department of Mathematics
Hokkaido University
Sapporo 060-0810
Japan

Abstract

Let μ be a probability measure on the set \mathbb{R} of real numbers and $\hat{\mu}(t):=$ $\int_{\mathbb{R}} e^{-i t \lambda} d \mu(\lambda)(t \in \mathbb{R})$ be the Fourier transform of μ (i is the imaginary unit). Then, under suitable conditions, asymptotic formulae of $|\hat{\mu}(t / x)|^{2 x}$ in $1 / x$ as $x \rightarrow \infty$ are derived. These results are applied to the so-called quantum Zeno effect to establish asymptotic formulae of its occurrence probability in the inverse of the number N of measurements made in a time interval as $N \rightarrow \infty$.

Keywords: quantum Zeno effect, Hamiltonian, probability measure, asymptotic analysis
Mathematics Subject Classification 2010: 47N50, 81Q10

1 Introduction

A series of measurements on a quantum system may hinder or inhibit transitions from the initial state to other different states. If such a phenomenon occurs, then it is called quantum Zeno effect (QZE) (see, e.g., [1, 3, 4, 5, 6]). Recently Arai and Fuda [2] reconsidered QZE from mathematical physics points of view and clarified some general mathematical features of it. But, in [2], a problem was left open, which is concerned with asymptotic behaviors of the occurrence probability of QZE in $1 / N$ as $N \rightarrow \infty$ with N being the number of the measurements made on a quantum system in a time interval. In this paper, we concentrate our attention on this problem and give a complete solution to it.

To explain the problem concretely, let \mathcal{H} be a complex Hilbert space with inner product $\langle\cdot, \cdot\rangle$ (linear in the second variable) and norm $\|\cdot\|$, and H be a self-adjoint operator on \mathcal{H} with domain $D(H)$. In the context of QZE, \mathcal{H} and H are respectively the Hilbert space

[^0]of state vectors and the Hamiltonian of the quantum system under consideration. By an axiom of quantum mechanics, the strongly continuous one-parameter unitary group $\left\{e^{-i t H}\right\}_{t \in \mathbb{R}}$ describes the time development of the quantum system ${ }^{1}$: if the state at time $t=t_{0} \in \mathbb{R}$ is a unit vector $\Psi \in \mathcal{H}$, then the state at time $t \in \mathbb{R}$ is $\Psi(t):=e^{-i\left(t-t_{0}\right)} \Psi$, provided that no measurement is made during the time interval $\left(t_{0}, t\right]$. Moreover, the probability of finding by measurement a state $\Phi \in \mathcal{H}$ with $\|\Phi\|=1$ at time t is equal to $|\langle\Phi, \Psi(t)\rangle|^{2}$.

Suppose that, in a time interval $[0, t](t>0), N$ measurements on the quantum system are made successively at times $t_{1}=t / N, t_{2}=2 t / N, \cdots, t_{j}=j t / N, \cdots, t_{N}=t$ $(j=1, \cdots, N)$ with intial state $\Psi \in \mathcal{H}$, the state at time $t_{0}=0$, satisfying $\|\Psi\|=1$. Then the probability of finding the state Ψ at each time $t_{j}(j=1, \cdots, N)$ is given by

$$
\begin{equation*}
P_{N}(\Psi, t):=\prod_{j=1}^{N}\left|\left\langle\Psi, e^{-i\left(t_{j}-t_{j-1}\right) H} \Psi\right\rangle\right|^{2}=\left|\left\langle\Psi, e^{-i t H / N} \Psi\right\rangle\right|^{2 N} . \tag{1.1}
\end{equation*}
$$

It is proved [2, Theorem 2.1] that, if Ψ is in $D(H)$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P_{N}(\Psi, t)=1 \tag{1.2}
\end{equation*}
$$

This corresponds to the occurrence of QZE in the present context. In this sense, we call $P_{N}(\Psi, t)$ the occurrence probability of QZE with respect to the initial state Ψ and the time interval $[0, t]$.

It may be interesting to investigate an asymptotic behavior of $P_{N}(\Psi, t)$ in $1 / N$, i.e.,

$$
\begin{equation*}
P_{N}(\Psi, t)=1+c_{1}(\Psi, t) \frac{1}{N}+c_{2}(\Psi, t)\left(\frac{1}{N}\right)^{2}+\cdots+c_{p}(\Psi, t)\left(\frac{1}{N}\right)^{p}+o\left(\frac{1}{N^{p}}\right) \quad(N \rightarrow \infty), \tag{1.3}
\end{equation*}
$$

with some $p \in \mathbb{N}$ (the set of natural numbers), where $c_{j}(\Psi, t)(j=1, \cdots, p)$ are real numbers to be determined. In [2, Theorem 3.1], it is shown that (1.3) for $p=1$ holds with

$$
\begin{equation*}
c_{1}(\Psi, t)=-t^{2}(\Delta H)_{\Psi}^{2}, \tag{1.4}
\end{equation*}
$$

where

$$
(\Delta H)_{\Psi}:=\|(H-\langle\Psi, H \Psi\rangle) \Psi\|=\sqrt{\|H \Psi\|^{2}-\langle\Psi, H \Psi\rangle^{2}}
$$

is the uncertainty of H in the state Ψ. But, to find higher order asymptotics of $P_{N}(\Psi, t)$ was left open. It is the goal of the present paper to derive an asymptotic formula of $P_{N}(\Psi, t)$ up to an arbitrary order of $1 / N$.

The method used in [2], which is operator-theoretical, seems to be difficult to extend for higher order asymptotics of $P_{N}(\Psi, t)$ in $1 / N$. This suggests that one has to seek another method. In this paper, we present a new and simple method. The idea of it is as follows.

We first note that the quantity $\left\langle\Psi, e^{-i s H} \Psi\right\rangle(s \in \mathbb{R})$ is written as follows:

$$
\begin{equation*}
\left\langle\Psi, e^{-i s H} \Psi\right\rangle=\int_{\mathbb{R}} e^{-i s \lambda} d\left\|E_{H}(\lambda) \Psi\right\|^{2} \tag{1.5}
\end{equation*}
$$

[^1]where $E_{H}(\cdot)$ is the spectral measure of H. The measure
\[

$$
\begin{equation*}
\mu_{\Psi}(\cdot):=\left\|E_{H}(\cdot) \Psi\right\|^{2} \tag{1.6}
\end{equation*}
$$

\]

on \mathbb{R} is a probability measure. Putting

$$
\begin{equation*}
\hat{\mu}_{\Psi}(s):=\int_{\mathbb{R}} e^{-i s \lambda} d \mu_{\Psi}(\lambda), \quad s \in \mathbb{R} \tag{1.7}
\end{equation*}
$$

the Fourier transform of the probability measure μ_{Ψ}, one has

$$
\begin{equation*}
\left\langle\Psi, e^{-i s H} \Psi\right\rangle=\hat{\mu}_{\Psi}(s), \quad s \in \mathbb{R} \tag{1.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left.P_{N}(\Psi, t)=\mid \hat{\mu}_{\Psi}(t / N)\right)\left.\right|^{2 N} . \tag{1.9}
\end{equation*}
$$

Thus the problem may be stated in a general form as follows:
Problem: Let μ be a probability measure on \mathbb{R} and

$$
\begin{equation*}
\hat{\mu}(s):=\int_{\mathbb{R}} e^{-i s \lambda} d \mu(\lambda), \quad s \in \mathbb{R} \tag{1.10}
\end{equation*}
$$

Then, for each $t \in \mathbb{R}$, find asymptotic formulae of $|\hat{\mu}(t / x)|^{2 x}$ in $1 / x$ as $x \rightarrow \infty$.
In our method, we first derive asymptotic formulae of $\log |\hat{\mu}(t / x)|^{2 x}$ in $1 / x$ as $x \rightarrow \infty$, instead of $|\hat{\mu}(t / x)|^{2 x}$ itself. This is done in Section 2. Then we derive in Section 3 asymptotic formulae of $|\hat{\mu}(t / x)|^{2 x}$ in $1 / x$ as $x \rightarrow \infty$. In the last section we apply the results in Sections 2 and 3 to $P_{N}(\Psi, t)$ to obtain asymptotic formulae of $\log P_{N}(\Psi, t)$ and $P_{N}(\Psi, t)$ in $1 / N$ as $N \rightarrow \infty$.

2 Asymptotic Formulae of $\log |\hat{\mu}(t / x)|^{2 x}$

Let μ be a probability measure on \mathbb{R}. For each $k \in \mathbb{N}$, we define

$$
\begin{equation*}
M_{k}:=\int_{\mathbb{R}} \lambda^{k} d \mu(\lambda) \tag{2.1}
\end{equation*}
$$

the k-th moment of the random variable λ, provided that $\int_{\mathbb{R}}|\lambda|^{k} d \mu(\lambda)<\infty$. With these constants, for each $n \in \mathbb{N}$, we introduce a number a_{n} by

$$
\begin{equation*}
a_{n}:=\sum_{r=1}^{n} \frac{(-1)^{r-1}}{r} \sum_{\substack{k_{1}+\ldots+k_{r}=n \\ k_{1}, \cdots, k_{r} \geq 1}} \frac{M_{k_{1}} \cdots M_{k_{r}}}{k_{1}!\cdots k_{r}!}, \tag{2.2}
\end{equation*}
$$

provided that $\int_{\mathbb{R}}|\lambda|^{n} d \mu(\lambda)<\infty$.

Theorem 2.1 Assume that, for some $c>0$,

$$
\begin{equation*}
\int_{\mathbb{R}} e^{c|\lambda|} d \mu(\lambda)<\infty \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
K:=\left\{y \in \mathbb{R} \mid \int_{\mathbb{R}} e^{|y| \lambda \mid} d \mu(\lambda)<2\right\} \tag{2.4}
\end{equation*}
$$

Then, for all $x \in \mathbb{R} \backslash\{0\}$ and $t \in \mathbb{R}$ satisfying $t / x \in K$,

$$
\begin{equation*}
\log |\hat{\mu}(t / x)|^{2 x}=2 \sum_{n=1}^{\infty}(-1)^{n} a_{2 n} t^{2 n}\left(\frac{1}{x}\right)^{2 n-1} \tag{2.5}
\end{equation*}
$$

converging absolutely.

Remark 2.2 Under assumption (2.3), for all $k \in \mathbb{N}, \int_{\mathbb{R}}|\lambda|^{k} d \mu(\lambda)<\infty$ and there exists a constant $\varepsilon_{0}>0$ such that $\left(-\varepsilon_{0}, \varepsilon_{0}\right) \subset K$.

Remark 2.3 In the right hand side on (2.5), only even powers for t and only odd powers for $1 / x$ appear. This is natural, because $\log |\hat{\mu}(t / x)|^{2 x}$ is even in t and odd in $1 / x$.

To prove Theorem 2.1, we first present an elementary lemma. Let

$$
\begin{equation*}
u(x):=\int_{\mathbb{R}}\left(e^{-i x \lambda}-1\right) d \mu(\lambda)=\hat{\mu}(x)-1, \quad x \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

Lemma 2.4 Assume (2.3). Then, for all $x \in K$,

$$
\begin{equation*}
u(x)=\sum_{k=1}^{\infty} \frac{(-i x)^{k}}{k!} M_{k} . \tag{2.7}
\end{equation*}
$$

where the right hand side is absolutely convergent.
Proof. Let $x \in K$ be fixed. Then we have $u(x)=\int_{\mathbb{R}} \lim _{N \rightarrow \infty} g_{N}(\lambda) d \mu(\lambda)$ with $g_{N}(\lambda):=$ $\sum_{k=1}^{N}(-i x)^{k} \lambda^{k} / k!, \lambda \in \mathbb{R}$. It is easy to see that $\left|g_{N}(\lambda)\right| \leq e^{|x||\lambda|}$. Since x is in K, the right hand side is integrable independent of N. Hence, by the Lebesgue dominated convergence theorem, we obtain $u(x)=\lim _{N \rightarrow \infty} \int_{\mathbb{R}} g_{N}(\lambda) d \mu(\lambda)$, which gives (2.7). Moreover

$$
\sum_{k=1}^{\infty} \frac{|x|^{k}}{k!}\left|M_{k}\right| \leq \sum_{k=1}^{\infty} \int_{\mathbb{R}} \frac{(|x||\lambda|)^{k}}{k!} d \mu(\lambda)=\int_{\mathbb{R}} e^{|x||\lambda|} d \mu(\lambda)-1<\infty .
$$

Hence the infinite series on the right hand side of (2.7) is absolutely convergent.

Proof of Theorem 2.1

By replacing t / x in $|\hat{\mu}(t / x)|^{2 x}$ by x, we need only to consider the behavior of the function

$$
\begin{equation*}
F(x):=|\hat{\mu}(x)|^{2 t / x} \tag{2.8}
\end{equation*}
$$

as $x \downarrow 0$. Since $\hat{\mu}(x)-1=\int_{\mathbb{R}}\left(e^{-i x \lambda}-1\right) d \mu(\lambda)$ and $\left|e^{-i x \lambda}-1\right| \leq e^{|x| \lambda \mid}-1, \forall x \in \mathbb{R}$, it follows that, for all $x \in K$,

$$
\begin{equation*}
|\hat{\mu}(x)-1|<1 . \tag{2.9}
\end{equation*}
$$

Hence we can define

$$
\begin{equation*}
f(x):=\log \hat{\mu}(x), \quad x \in K . \tag{2.10}
\end{equation*}
$$

We note that $|\hat{\mu}(x)|^{2}=\hat{\mu}(x) \hat{\mu}(-x)$. Hence we have

$$
\begin{equation*}
\log F(x)=\frac{t}{x}(f(x)+f(-x)), \quad x \in K \backslash\{0\} \tag{2.11}
\end{equation*}
$$

Assumption (2.3) implies that, for all $k \in \mathbb{N}, \hat{\mu}$ is k times continuously differentiable on \mathbb{R} with the k-th derivative equal to

$$
\begin{equation*}
\hat{\mu}^{(k)}(x)=(-i)^{k} \int_{\mathbb{R}} \lambda^{k} e^{-i \lambda x} d \mu(\lambda), \quad x \in \mathbb{R} . \tag{2.12}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\hat{\mu}^{(k)}(0)=(-i)^{k} M_{k} . \tag{2.13}
\end{equation*}
$$

Hence f also is infinitely differentiable on K.
With u defined by (2.6), we can write

$$
f(x)=\log (1+u(x)) .
$$

By (2.9), for all $x \in K,|u(x)|<1$. Hence we have

$$
f(x)=\sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{r} u(x)^{r}, \quad x \in K,
$$

where the infinite series is absolutely convergent. By Lemma 2.4, we have for all $x \in K$

$$
u(x)^{r}=\sum_{k_{1}, \cdots, k_{r}=1}^{\infty} \frac{(-i x)^{k_{1}+\cdots+k_{r}}}{k_{1}!\cdots k_{r}!} M_{k_{1}} \cdots M_{k_{r}}=\sum_{n=r}^{\infty}(-i x)^{n} \sum_{\substack{k_{1}+\cdots+k_{r}=n \\ k_{1}, \cdots, k_{r} \geq 1}} \frac{M_{k_{1}} \cdots M_{k_{r}}}{k_{1}!\cdots k_{r}!} .
$$

Hence, for all $x \in K$

$$
\begin{equation*}
f(x)=\sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{r} \sum_{n=r}^{\infty}(-i x)^{n} \sum_{\substack{k_{1}+\cdots+k_{r}=n \\ k_{1}, \cdots, k_{r} \geq 1}} \frac{M_{k_{1}} \cdots M_{k_{r}}}{k_{1}!\cdots k_{r}!} . \tag{2.14}
\end{equation*}
$$

It is easy to see that, for all $x \in K$,

$$
\sum_{r=1}^{\infty} \frac{1}{r} \sum_{n=r}^{\infty}|x|^{n} \sum_{\substack{k_{1}+\cdots+k_{r}=n \\ k_{1}, \cdots, k_{r} \geq 1}} \frac{\left|M_{k_{1}}\right| \cdots\left|M_{k_{r}}\right|}{k_{1}!\cdots k_{r}!}
$$

conveges. Hence, in (2.14), we can interchange the sums on r and n to obtain

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty}(-i)^{n} a_{n} x^{n} \tag{2.15}
\end{equation*}
$$

where a_{n} is given by (2.2). Therefore

$$
\begin{equation*}
\log F(x)=2 t \sum_{n=1}^{\infty}(-1)^{n} a_{2 n} x^{2 n-1}, \quad x \in K \tag{2.16}
\end{equation*}
$$

converging absolutely. Replacing x by t / x, we obtain (2.5).
We next consider the case where (2.3) does not necessarily hold. In this case, we have the following result:

Theorem 2.5 Let $n \in \mathbb{N}$ and suppose that

$$
\begin{equation*}
\int_{\mathbb{R}}|\lambda|^{n} d \mu(\lambda)<\infty \tag{2.17}
\end{equation*}
$$

Let

$$
p_{n}:= \begin{cases}\frac{n}{2} & \text { for } n \geq 2 \text { even } \tag{2.18}\\ \frac{n-1}{2} & \text { for } n \geq 2 \text { odd }\end{cases}
$$

Then

$$
\begin{equation*}
\log |\hat{\mu}(t / x)|^{2 x}=2 \sum_{k=1}^{p_{n}}(-1)^{k} a_{2 k} t^{2 k}\left(\frac{1}{x}\right)^{2 k-1}+o\left(\frac{1}{x^{2 p_{n}-1}}\right) \quad(x \rightarrow \infty) \tag{2.19}
\end{equation*}
$$

Proof. Since $\hat{\mu}(0)=1$ and $\hat{\mu}$ is continuous on \mathbb{R}, there exists a constant $\delta>0$ such that, for all $x \in I_{\delta}:=(-\delta, \delta)$, inequality (2.9) holds. Hence we can define $g: I_{\delta} \rightarrow \mathbb{R}$ by

$$
g(x):=\log \hat{\mu}(x), \quad x \in I_{\delta} .
$$

Then we have

$$
\begin{equation*}
F(x)=\frac{t}{x}(g(x)+g(-x)), \quad x \in I_{\delta} \backslash\{0\} . \tag{2.20}
\end{equation*}
$$

Under the present assumption, $\hat{\mu}$ is n times continuously differentiable on \mathbb{R}. Hence so is g on I_{δ} with derivative g^{\prime} satisfying

$$
\begin{equation*}
g^{\prime} \hat{\mu}=\hat{\mu}^{\prime} . \tag{2.21}
\end{equation*}
$$

By Taylor's theorem, we have

$$
g(x)=\sum_{k=1}^{n} \frac{g^{(k)}(0)}{k!} x^{k}+o\left(x^{n}\right) \quad(x \rightarrow 0) .
$$

Differentiating the both sides of $(2.21)(k-1)$ times and applying the Leibniz formula, we obtain the following recursion relation on $g^{(j)}(0)$:

$$
\begin{equation*}
g^{\prime}(0)=-i M_{1}, \quad g^{(k)}(0)=(-i)^{k}\left(M_{k}-\sum_{j=1}^{k-1}{ }_{k-1} C_{j-1} i^{j} M_{k-j} g^{(j)}(0)\right) \quad(k=2, \cdots, n) \tag{2.22}
\end{equation*}
$$

where ${ }_{m} C_{l}:=m!/[(m-l)!l!](m, l \in\{0\} \cup \mathbb{N}, m \geq l)$.
It is obvious that the function f in the proof of Theorem 2.1 also satisfies (2.21) with g replaced by f. Hence (2.22) holds with g replaced by f. Therefore $g^{(k)}(0)=$ $f^{(k)}(0), k=1, \cdots, n$. From the proof of Theorem 3.2, we see that $f^{(k)}(0)=(-i)^{k} a_{k} k!$. Hence $g^{(k)}(0)=(-i)^{k} a_{k} k$!. Thus

$$
g(x)=\sum_{k=1}^{n}(-i)^{k} a_{k} x^{k}+o\left(x^{n}\right) \quad(x \rightarrow 0)
$$

which implies that

$$
F(x)=2 t \sum_{k=1}^{p_{n}}(-1)^{k} a_{2 k} x^{2 k-1}+o\left(x^{2 p_{n}-1}\right) .
$$

Thus (2.19) holds.

3 Asymptotic Formulae of $|\hat{\mu}(t / x)|^{2 x}$

To derive from (2.5) an asymptotic formula of $|\mu(t / x)|^{2 x}$ itself in $1 / x$, we need only to note an elementary fact:

Lemma 3.1 Let $\left\{c_{m}\right\}_{m=1}^{\infty}$ be a sequence of complex numbers such that the infinite series $S:=\sum_{m=1}^{\infty} c_{m}$ converges absolutely. Let

$$
\begin{equation*}
\gamma_{n}:=\sum_{k=1}^{n} \frac{1}{k!} \sum_{\substack{m_{1}+\cdots+m_{k}=n \\ m_{1}, \cdots, m_{k} \geq 1}} c_{m_{1}} \cdots c_{m_{k}} . \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
e^{S}=1+\sum_{n=1}^{\infty} \gamma_{n}, \tag{3.2}
\end{equation*}
$$

converging absolutely.
Proof. An easy exercise.
For each $t \in \mathbb{R}$, we define a sequence $\left\{\alpha_{n}(t)\right\}_{n=1}^{\infty}$ as follows:

$$
\begin{equation*}
\alpha_{2 n-1}(t):=2(-1)^{n} a_{2 n} t^{2 n}, \quad \alpha_{2 n}(t):=0 . \tag{3.3}
\end{equation*}
$$

Theorem 3.2 Assume (2.3) and let

$$
\begin{equation*}
A_{n}(t):=\sum_{k=1}^{n} \frac{1}{k!} \sum_{\substack{m_{1}+\cdots+m_{k}=n \\ m_{1}, \cdots, m_{k} \geq 1}} \alpha_{m_{1}}(t) \cdots \alpha_{m_{k}}(t), \quad n \in \mathbb{N} . \tag{3.4}
\end{equation*}
$$

Then, for all $x \in \mathbb{R} \backslash\{0\}$ and $t \in \mathbb{R}$ satisfying $t / x \in K$,

$$
\begin{equation*}
|\hat{\mu}(t / x)|^{2 x}=1+\sum_{n=1}^{\infty} A_{n}(t)\left(\frac{1}{x}\right)^{n} \tag{3.5}
\end{equation*}
$$

converging absolutely.
Proof. By Theorem 2.1, we have

$$
|\hat{\mu}(t / x)|^{2 x}=\exp \left(\sum_{m=1}^{\infty} \alpha_{m}(t) x^{-m}\right) .
$$

Hence, by Lemma 3.1, we obtain (3.5).
A finite sum version of Lemma 3.1 is given as follows, which also is easy to prove:
Lemma 3.3 Let $c_{m}, m=1, \cdots, p$, be complex numbers, $p \in \mathbb{N}$, and

$$
S_{p}:=\sum_{m=1}^{p} c_{m} x^{m}+o\left(x^{p}\right) \quad(x \rightarrow 0) .
$$

Then

$$
\begin{equation*}
e^{S_{p}}=1+\sum_{n=1}^{p} \gamma_{n} x^{n}+o\left(x^{p}\right) \quad(x \rightarrow 0) \tag{3.6}
\end{equation*}
$$

where γ_{n} is defined by (3.1).
Theorem 3.4 Assume (2.17). Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
|\hat{\mu}(t / x)|^{2 x}=1+\sum_{n=1}^{2 p_{n}-1} A_{n}(t)\left(\frac{1}{x}\right)^{n}+o\left(\frac{1}{x^{2 p_{n}-1}}\right) \quad(x \rightarrow \infty) . \tag{3.7}
\end{equation*}
$$

Proof. Similar to the proof of Theorem 3.2.

4 Applications to QZE

To apply the results in Sections 2 and 3 to QZE, for each $k \in \mathbb{N}$ and a unit vector $\Psi \in D\left(|H|^{k / 2}\right)$, we introduce

$$
\begin{equation*}
\left\langle H^{k}\right\rangle:=\int_{\mathbb{R}} \lambda^{k} d\left\|E_{H}(\lambda) \Psi\right\|^{2} \tag{4.1}
\end{equation*}
$$

the k-th expectation value of the Hamiltonian H in the state Ψ, and, for each $n \in \mathbb{N}$ and a unit vector $\Psi \in D\left(|H|^{n / 2}\right)$, we define

$$
\begin{equation*}
b_{n}(\Psi):=\sum_{r=1}^{n} \frac{(-1)^{r-1}}{r} \sum_{\substack{k_{1}+\cdots+k_{r}=n \\ k_{1}, \cdots, k_{r} \geq 1}} \frac{\left\langle H^{k_{1}}\right\rangle \cdots\left\langle H^{k_{r}}\right\rangle}{k_{1}!\cdots k_{r}!} . \tag{4.2}
\end{equation*}
$$

Theorem 4.1 Let $t \in \mathbb{R}$ be fixed. Suppose that, for some $c>0, \Psi \in D\left(e^{c|H|}\right)$ with $\|\Psi\|=1$ and that N obeys the following condition:

$$
\begin{equation*}
\int_{\mathbb{R}} e^{|t||\lambda| / N} d\left\|E_{H}(\lambda) \Psi\right\|^{2}<2 \tag{4.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\log P_{N}(\Psi, t)=2 \sum_{k=1}^{\infty}(-1)^{k} b_{2 k}(\Psi) t^{2 k}\left(\frac{1}{N}\right)^{2 k-1} \tag{4.4}
\end{equation*}
$$

conveging absolutely.
Proof. Let μ_{Ψ} be given by (1.6). Then we need only to show that $\mu=\mu_{\Psi}$ satisfies the assumption of Theorem 2.1. The assumption $\Psi \in D\left(e^{c|H|}\right)$ is equivalent to that

$$
\int_{\mathbb{R}} e^{2 c|\lambda|} d \mu_{\Psi}(\lambda)<\infty
$$

Hence (2.3) holds with $\mu=\mu_{\Psi}$. In the present case, we have $M_{k}=\left\langle H^{k}\right\rangle$. Thus (2.5) gives (4.4).

In the case where Ψ is not necessarily in $D\left(e^{c|H|}\right)$, we have the following result:
Theorem 4.2 Let $n \in \mathbb{N}$ and suppose that $\Psi \in D\left(|H|^{n}\right)$ with $\|\Psi\|=1$. Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
\log P_{N}(\Psi, t)=2 \sum_{k=1}^{p_{n}}(-1)^{k} b_{2 k}(\Psi) t^{2 k}\left(\frac{1}{N}\right)^{2 k-1}+o\left(1 / N^{2 p_{n}-1}\right) \quad(N \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

Proof. A simple application of Theorem 2.5.
Finally we derive asymptotic formulae of $P_{N}(\Psi, t)$ itself. For this purpose, we define a sequence $\left\{\beta_{n}(\Psi, t)\right\}_{n=1}^{\infty}(t \in \mathbb{R})$ as follows:

$$
\begin{align*}
& \beta_{2 n-1}(\Psi, t):=2(-1)^{n} b_{2 n}(\Psi) t^{2 n} \tag{4.6}\\
& \beta_{2 n}(\Psi, t):=0 . \tag{4.7}
\end{align*}
$$

Theorem 4.3 Suppose that the same assumption as in Theorem 4.1 holds. Let

$$
\begin{equation*}
\gamma_{n}(\Psi, t):=\sum_{k=1}^{n} \frac{1}{k!} \sum_{\substack{m_{1}+\ldots+m_{k}=n \\ m_{1}, \cdots, m_{k} \geq 1}} \beta_{m_{1}}(\Psi, t) \cdots \beta_{m_{k}}(\Psi, t), \quad n \in \mathbb{N} . \tag{4.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
P_{N}(\Psi, t)=1+\sum_{n=1}^{\infty} \gamma_{n}(\Psi, t)\left(\frac{1}{N}\right)^{n} \tag{4.9}
\end{equation*}
$$

converging absolutely.

Proof. A simple application of Theorem 3.2.
Theorem 4.4 Let $n \in \mathbb{N}$ and suppose that $\Psi \in D\left(|H|^{n}\right)$ with $\|\Psi\|=1$. Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
P_{N}(\Psi, t)=1+\sum_{n=1}^{2 p_{n}-1} \gamma_{n}(\Psi, t)\left(\frac{1}{N}\right)^{n}+o\left(\frac{1}{N^{2 p_{n}-1}}\right) \quad(N \rightarrow \infty) \tag{4.10}
\end{equation*}
$$

Proof. This follows from an application of Theorem 3.4.

Example 4.5 By direct computations, we have

$$
\gamma_{1}(\Psi, t)=-(\Delta H)_{\Psi} t^{2},
$$

which coincides with $c_{1}(\Psi, t)$ is given by (1.4), and

$$
\gamma_{2}(\Psi, t)=\frac{1}{2}(\Delta H)_{\Psi}^{4} t^{4}
$$

Acknowledgement

This work is supported by the Grant-In-Aid No. 24540154 from JSPS.

References

[1] O. Alter and Y. Yamamoto, Quantum Measurement of a Single System, John Wiley \& Sons, Inc., New York, 2001.
[2] A. Arai and T. Fuda, Some mathematical aspects of quantum Zeno effect, Lett. Math. Phys. 100 (2012), 245-260.
[3] D. Home and M. A. B. Whitaker, A conceptual analysis of quantum Zeno; paradox, measurement, and experiment, Ann. of Phys. 258 (1997), 237-285.
[4] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Quantum Zeno effect, Phys. Rev. A 41 (1990), 2295.
[5] R. Joos, Decoherence through interaction with the environment, Chapter 3, $\S 3.3$ in Decoherence and the Appearance of a Classical World in Quantum Theory (Editors: D. Giulini, E. Joos, C. Kiefer. J. Kupsch, I.-O. Stamatescu and H. D. Zeh), Springer, Berlin, Heidelberg, 1996.
[6] B. Misra and E. C. G. Sudarshan, The Zeno's paradox in quantum theory, J. Math. Phys. 18 (1977), 756-763.

[^0]: *E-mail: arai@math.sci.hokudai.ac.jp

[^1]: ${ }^{1}$ We use the physical unit system such that $\hbar=h / 2 \pi$ (h is the Planck constant) is equal to 1 .

