<table>
<thead>
<tr>
<th>Title</th>
<th>Efficient Preparation of γ,δ-Unsaturated Esters through Copper-Catalyzed Allylic Alkylation of Ketene Silyl Acetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, Dong; Ohmiya, Hirohisa; Sawamura, Masaya</td>
</tr>
<tr>
<td>Citation</td>
<td>Synthesis, 44(9): 1304-1307</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-05</td>
</tr>
<tr>
<td>Doc URL</td>
<td><a href="http://hdl.handle.net/2115/52716">http://hdl.handle.net/2115/52716</a></td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 Georg Thieme Verlag</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>Syn44-9_1304-1307.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Efficient Preparation of β-Branched γ,δ-Unsaturated Esters through Copper-Catalyzed Allylic Alkylation of Ketene Silyl Acetal

Dong Li, Hirohisa Ohmiya,* Masaya Sawamura*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Fax: +81(11)7063749; E-mail: ohmiya@sci.hokudai.ac.jp; sawamura@sci.hokudai.ac.jp

Received: The date will be inserted once the manuscript is accepted.

Abstract: Copper-catalyzed allylic alkylation of ketene silyl acetals proceeded with excellent γ-E-selectivity. Efficient α-to-γ chirality transfer with anti-selectivity occurred in the reaction of enantioenriched secondary allylic phosphates, affording enantioenriched β-branched γ,δ-unsaturated esters. The reaction was readily scalable and highly reliable in terms of product yield and stereoselectivities.

Key words: γ,δ-unaturated esters, copper, allylic alkylation, ketene silyl acetal, regioselectivity

Scheme 1 Copper-catalyzed γ-E-selective allylic alkylation of allylic phosphates with an acetate-derived ketene silyl acetal

Transition-metal catalyzed allylic alkylations of enolates are useful carbon–carbon bond formation methods in organic synthesis due to the versatility of the carbonyl and alkene functionalities for stereoselective derivatization.1–3 However, the control of regioselectivity on the reaction with unsymmetrically substituted secondary allylic substrates is still difficult.4–9 Most studies focused on cases in which an allylic system is located at a terminal of a molecule or is highly asymmetricized by electronic and/or steric substituent effects. Among those, the Rh-catalyzed allylic alkylation of a copper enolate developed by Evans and co-workers would be most relevant to the present issue.4 Nevertheless, the regioselective enolate alkylation with internal allylic systems is yet to be explored.5

Earlier, we reported a copper-catalyzed allylic alkylation of allylic phosphates with acetate-derived ketene silyl acetal that proceeds with excellent γ- and E-selectivities.10–12 The reactions of enantioenriched allylic phosphates having an α-stereogenic center occurred with excellent α-to-γ chirality transfer with anti-stereochimistry, and gave the corresponding enantioenriched β-branched γ,δ-unsaturated esters with an allylic stereogenic center at the β-position of the ester carbonyl group. In view of the applicability in organic synthesis, the protocol offers an alternative to Claisen rearrangement routes to γ,δ-unsaturated esters from allylic alcohols.13 Mild reaction conditions and the resulting broad functional group compatibility would be benefits of using the present copper-catalyzed method.14,15 Herein, we report that the copper-catalyzed enolate allylic alkylation is readily scalable. Thus, the protocol allows a practical synthetic access to functionalized, enantioenriched, β-branched γ,δ-unsaturated esters.

The allylic phosphate substrates are readily accessible in large scale from corresponding allylic alcohols without elaborate purification.16 (E)-Allylic phosphate 1a (3.2 mmol) and ketene silyl acetal 2 (6.4 mmol) were subjected to the standard conditions; CuBr (5 mol %), electron-deficient benzoylacetone L117 (10 mol %) as a ligand and Cs2CO3 (3.2 mmol) in THF for 12 h at rt. The gram-scale reaction proceeded smoothly to afford the corresponding γ,δ-unsaturated ester with the excellent regio- (γ/α 96:4) and E/Z-(>99:1) selectivities (Scheme 1). Moreover, 1-(2-naphthoxy)-3,3,3-trifluoracetone (L2) can be used instead of L1 without any influence to the product yield and, regio- and stereoselectivities. It is noteworthy that L2 is commercially available with a reasonable price, which should be more appealing as a practical synthetic procedure.

Various substrates were subjected in the 2 mmol-scale reaction (> 500 mg), and the reactions proceeded in good to excellent yields, and with high level of γ/α- (96:4–99:1) and E/Z-selectivities (>99:1).
Table 1  Copper-catalyzed allylic alkylation with ketene silyl acetal 2 of allylic phosphates 1

<table>
<thead>
<tr>
<th>entry</th>
<th>allylic phosphate (1)</th>
<th>product (3)</th>
<th>yield (%)&lt;sup&gt;a,b&lt;/sup&gt;</th>
<th>γ/α&lt;sup&gt;c&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(EtO)&lt;sub&gt;2&lt;/sub&gt;(O)PO Ph (Z)-1a</td>
<td>3a</td>
<td>89</td>
<td>98:2</td>
</tr>
<tr>
<td>2</td>
<td>TIPSO</td>
<td>3b</td>
<td>91</td>
<td>99:1</td>
</tr>
<tr>
<td>3</td>
<td>OPO(OEt)&lt;sub&gt;2&lt;/sub&gt;</td>
<td>3c</td>
<td>90</td>
<td>98:2</td>
</tr>
<tr>
<td>4</td>
<td>Br</td>
<td>3d</td>
<td>86</td>
<td>96:4</td>
</tr>
<tr>
<td>5</td>
<td>OPO(OEt)&lt;sub&gt;2&lt;/sub&gt;</td>
<td>3e</td>
<td>78</td>
<td>99:1</td>
</tr>
<tr>
<td>6</td>
<td>OPO(OEt)&lt;sub&gt;2&lt;/sub&gt;</td>
<td>3f</td>
<td>85</td>
<td>96:4</td>
</tr>
<tr>
<td>7</td>
<td>OPO(OEt)&lt;sub&gt;2&lt;/sub&gt;</td>
<td>3g</td>
<td>80</td>
<td>99:1</td>
</tr>
<tr>
<td>8</td>
<td>OPO(OEt)&lt;sub&gt;2&lt;/sub&gt;</td>
<td>3h</td>
<td>78</td>
<td>98:2</td>
</tr>
</tbody>
</table>

<sup>a</sup> Isolated yield.
<sup>b</sup> Isomeric ratio E/Z >99:1.
<sup>c</sup> Determined by 1H NMR and/or GC analysis.

The reaction was not significantly influenced by the alkene geometry of the allylic substrate. The reaction of the allylic phosphate (Z)-1a with the Z-configuration proceeded with somewhat higher regioselectivity with the excellent E stereoselectivity retained (90% yield; γ/α 98:2; E/Z >99:1) (entry 1). Functional groups such as silyl ether, ester, arylbromide, and acetal were compatible in the allylic substrates (entries 2–5).

Steric demand was tolerated in the allylic substrate. The 2-phenylethyl group at the α-position of 1a could be replaced by a Bu group (1f) without a significant change in the product yield and regioselectivity (entry 6). When a much bulkier isopropyl group was on the α-position (1g), the product yield slightly decreased while the regioselectivity was much higher (entry 7). The γ-Me substituent of 1g could be replaced with a Bu group with virtually no deviation in the product yield and selectivity (entry 8). No reaction occurred under the identical conditions with a substrate bearing a cyclohexyl group at the γ-position, a cinnamyl-type substrate, and cyclic substrates such as 2-cyclopentenyl, 2-cyclohexenyl, and 2-cycloheptenyl phosphates (data not shown).

The reaction of enantioenriched allylic phosphates was also scalable, and proceeded with excellent α-to-γ chirality transfer with 1,3-anti stereochemistry to afford enantioenriched, β-branched γ,δ-unsaturated esters (Scheme 2). The reaction of (S)-(E)-1f (96% ee), which has α-Bu and γ-Me substituents, with 2 gave (R)-(E)-3f (95% ee) with virtually no reduction of enantiomeric purity. The allylic phosphate [(R)-(E)-1b] with a silylo group in the β-substituent also reacted with 2 to afford (S)-(E)-3b in 92% yield with excellent 1,3-chirality transfer.
In summary, we have demonstrated that a copper-catalyzed \( \gamma \)-selective and stereospecific allylic alkylation of a ketene silyl acetal was readily scalable and highly reliable in terms of product yield and stereoselectivities.

All reactions were carried out under nitrogen or argon atmosphere. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. CuBr was purchased from Wako Pure Chemicals. Cs2CO3 was purchased from Junsei Chemical Co. The ligand L2 was purchased from Tokyo Kasei Kogyo Co., Ltd. THF was purchased from Kanto Chemical Co., stored under argon. NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for \(^1\)H NMR and 75.4 MHz for \(^{13}\)C NMR. High-resolution mass spectra were recorded on a Thermo Scientific Exact TRMS-JEOL JMS-T100LP mass spectrometer at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. Elemental analysis was performed at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. HPLC analyses were conducted on a HITACHI ELITE LaChrom system with a HITACHI L-2455 diode array detector. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F254. Silica gel TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F254. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) and aluminum oxide (Nacalai Tesque, Alumina Activated 200) were used for column chromatography.

**Scheme 2** Synthesis of enantiopure 

\( \beta \)-branched \( \gamma, \delta \)-unsaturated esters

(E)-Ethyl 3-Methyl-7-phenyl-4-heptenoate (3a): Typical Procedure for Copper-Catalyzed Allylic Alkylation of Ketene Silyl Acetal

CuBr (23.0 mg, 0.16 mmol), L2 (85.2 mg, 0.32 mmol) and Cs2CO3 (1.04 g, 3.20 mmol) were placed in a round bottom flask which was sealed with a rubber plug. The flask was evacuated and then refilled with argon (3 times). THF (5 mL) was introduced and the mixture was stirred at room temperature for 5 min. After (1-ethoxyvinyl)trimethylsilane (2, 320 mg, 2.0 mmol) was added to the mixture, the resulting mixture was stirred for 5 min. Then, allylic phosphate (R)-(E)-1b (408.6 mg, 1.0 mmol) was added. After 12 h stirring at room temperature, the mixture was filtered through a short plug of alumina and washed with Et2O. The solvent was removed under reduced pressure. Flash silica gel chromatography (5% EtOAc/hexane) of the crude product provided 3a as a colorless liquid (694 mg, 2.81 mmol) in 88% yield.

\[ R = 0.40 \text{ (5% EtOAc/hexane).} \]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \( \delta \) 1.01 (d, \( J = 6.9 \text{ Hz, 3H})\), 1.24 (t, \( J = 7.2 \text{ Hz, 3H})\), 2.17–2.32 (m, 4H), 2.58–2.68 (m, 3H), 4.12 (q, \( J = 7.2 \text{ Hz, 1H})\), 5.36 (dd, \( J = 15.3, 6.9 \text{ Hz, 1H})\), 5.48 (dt, \( J = 15.3, 6.3 \text{ Hz, 1H})\), 7.15–7.20 (m, 3H), 7.25–7.30 (m, 2H).

\(^{13}\)C NMR (75.4 MHz, CDCl\(_3\)) \( \delta \) 14.14, 20.19, 33.52, 34.22, 35.89, 41.82, 60.07, 125.78, 128.29, 128.51, 128.54, 134.88, 142.04, 172.79.

HRMS–EI (m/z): [M]+ calcd for C\(_{16}\)H\(_{22}\)O\(_2\), 246.16198; found, 246.16198.

(S)-(E)-Ethyl 3-Methyl-7-trisopropylsilyloxy-4-heptenoate (3b): Typical Procedure for the Copper-Catalyzed Allylic Alkylation of Enantiopure Allylic Phosphate

CuBr (7.20 mg, 0.05 mmol), L2 (26.6 mg, 0.10 mmol) and Cs2CO3 (325.8 mg, 1.0 mmol) were placed in a round bottom flask which was sealed with a rubber plug. The flask was evacuated and then refilled with argon (3 times). THF (5 mL) was introduced and the mixture was stirred at room temperature for 5 min. After (1-ethoxyvinyl)trimethylsilane (2, 320 mg, 2.0 mmol) was added to the mixture, the resulting mixture was stirred for 5 min. Then, allylic phosphate (R)-(E)-1b (408.6 mg, 1.0 mmol) was added. After 12 h stirring at room temperature, the mixture was filtered through a short plug of alumina and washed with Et2O. The solvent was removed under reduced pressure. Flash silica gel chromatography (5% EtOAc/hexane) of the crude product provided (S)-(E)-3b (316 mg, 0.92 mmol) in 92% yield. The ee value was determined by chiral HPLC analysis of the \( p \)-nitrobenzoate derivative obtained by the desilylation followed by benzoylation from 3b. HPLC analysis [CHIRALCEL OD-3 column, 4.6 mmx250 mm, hexane/2-propanol = 99:1, Daicel Chemical Industries, 0.5 mL/min, 40 °C, 254 nm UV detector, retention time = 41.1 min for S isomer and 42.5 min for R isomer] revealed that the enantiomeric excess of 3b was 96%.

\[ R = 0.45 \text{ (5% EtOAc/hexane). } 96 \text{% ee, } [\alpha]_D^{21} = +13.65 \text{ (c 1.03, CHCl}_3\text{).} \]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \( \delta \) 1.01–1.10 (m, 24H), 1.24 (t, \( J = 7.2 \text{ Hz, 3H})\), 2.18–2.34 (m, 4H), 2.59–2.68 (m, 1H), 3.67 (t, \( J = 6.9 \text{ Hz, 3H})\), 4.12 (q, \( J = 7.2 \text{ Hz, 1H})\), 5.47–5.52 (m, 2H).

\(^{13}\)C NMR (75.4 MHz, CDCl\(_3\)) \( \delta \) 11.85, 14.15, 17.89, 36.27, 41.81, 60.07, 63.37, 125.85, 136.11, 172.83.


Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research (B) and for Young Scientists (B), JSPS. We thank MEXT for financial support in the form of a Global COE grant (Project No. B01: Catalysis as the Basis for Innovation in Materials Science).
395. (d) Trost, B. M.; Crawley, M. L.


397. (3) The regioselectivity in palladium-catalyzed allylic substitutions that involve a (α-allyl)palladium intermediate is highly dependent on the substitution pattern of allylic substrates. See refs 1 and 2a–i.


(16) See supporting information of ref 6 for the procedures.

Please place the graphical abstract and short title of the article here. The short title will be used as a running header.

![Graphical Abstract](image)

**γ-Selective Allylic Alkylation of Ketene Silyl Acetal**

**Manuscript submission checklist**

- Statement of significance of work.
- Full mailing address, telephone, and fax numbers and e-mail address of the corresponding author.
- Graphical abstract.
- 5 key words.
- Original Word file.
- Word file saved as a PDF file.
- Original graphics files.

Send the PDF file, statement of significance of work, and full mailing address, telephone, and fax numbers and e-mail address of the corresponding author to the appropriate Regional Editor. Keep the original Word and graphics files for revisions and for final submission after acceptance.