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Abstract

Mathematical investigations on quantum Zeno effect (QZE) are presented, in-
cluding the following aspects: (i) QZE by frequent measurements made by an arbi-
trary partition of a time interval [0, t] (t > 0); (ii) non-occurrence of QZE for vector
states which are not in the domain of the Hamiltonian of the quantum system
under consideration; (iii) asymptotic behavior of the survival probability charac-
terizing QZE in the number N of divisions of [0, t]; (iv) QZE along a curve in the
Hilbert space of state vectors.
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1 Introduction

The quantum phenomenon in which, by a series of measurements, transitions to states dif-
ferent from the initial state (the state at time zero) are hindered or inhibited, is called the
quantum Zeno effect (QZE) [5]. It has been reported that the QZE can be experimentally
realized (e.g., [1, 2, 3]).

In this paper, we are interested in investigating general mathematical aspects asso-
ciated with the QZE. To explain new features in the present work, we first review the
QZE briefly. So let us consider a quantum system S whose Hamiltonian is given by a
self-adjoint operator H on a complex Hilbert space H (so that H is a Hilbert space of
state vectors of S). We denote the inner product and the norm of H by 〈 · , · 〉 (anti-linear
in the first variable and linear in the second) and ‖ · ‖, respectively. The domain of H
is denoted as D(H). In what follows, we deal with vector states only. Hence we call a
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non-zero vector in H a state simply. As is well-known, by an axiom of quantum mechan-
ics, for an initial state Ψ ∈ H with ‖Ψ‖ = 1, the state at time t ∈ R is given by the
vector e−itHΨ, provided that no measurement is made in the time interval [0, t], where i
is the imaginary unit and we use the physical unit system such that ~ := h/2π (h is the
Planck constant) is equal to 1. Hence the probability of finding the initial state Ψ by a
measurement at time t is given by |

〈
Ψ, e−itHΨ

〉
|2. This quantity is called the survival

probability of the initial state Ψ at time t.
Now, consider a time interval [0, t] with t > 0 arbitrarily fixed and suppose that N

measurements, spaced equally in time by t/N , are made, where N is an arbitrary natural
number. If the state at time jt/N (j = 1, · · · , N) is Φ ∈ H, then the state at time
(j + 1)t/N is e−i{(j+1)t/N−jt/N}HΦ = e−itH/NΦ, provided that no measurement is made in
the time interval [jt/N, (j + 1)t/N ]. Hence the probability that, for all j = 1, · · · , N , the
measurement at time jt/N finds the initial state Ψ is given by

PN(Ψ, t) :=
∣∣〈Ψ, e−itH/NΨ

〉∣∣2N
. (1.1)

We call this quantity the multi-time survival probability of the initial state Ψ in the time
interval [0, t].

We say that the QZE occurs with respect to the pair (Ψ, [0, t]) consisting of the initial
state Ψ and the time interval [0, t] in the sense of equally spaced measurement in time if
limN→∞ PN(Ψ, t) = 1. The occurrence of the QZE of this type physically means that,
for all sufficiently large N , the successive measurements for the quantum system S at the
times t/N, 2t/N, 3t/N, · · · , Nt/N tend to maintain the initial state Ψ with probability
≈ 1, in other words, they tend to hinder transitions to states different from the initial
state Ψ with probability ≈ 1.

Heuristically the occurrence of the QZE can be shown as follows (see, e.g., [4]). Using
the formal expansion

e−itH = I − itH − t2

2
H2 + O(t3) (t → 0),

one infers that, for all Ψ ∈ ∩∞
n=1D(Hn),∣∣〈Ψ, e−isHΨ

〉∣∣2 = 1 − (∆H)2
Ψs2 + O(s4) (s → 0), (1.2)

where

(∆H)Ψ := ‖(H − 〈Ψ, HΨ〉)Ψ‖ =

√
‖HΨ‖2 − 〈Ψ, HΨ〉2

is the uncertainty of H in the state Ψ (formula (1.2) can be easily made mathematically
rigorous if Ψ is an analytic vector of H). Hence, for all sufficiently large N ,

PN(Ψ, t) ≈

[
1 − (∆H)2

Ψ

(
t

N

)2
]N

≈ e−(∆H)2Ψt2/N ≈ 1.

In this way the occurrence of the QZE is inferred.
In the present paper, we begin with re-examining the QZE of the type described above

in a mathematically rigorous and non-perturbative way in Section 2. We focus our atten-
tion on two aspects. One of them is to consider the situation where the N measurements
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are made in a way not necessarily spaced equally in time. This generalization is mathe-
matically natural. It may be physically meaningful too, because any measurement of the
time inevitably has an error. We prove that, under such a situation too, a phenomenon
regarded as a generalization of the QZE occurs, provided that the initial state is in D(H)
(Theorem 2.1). The other aspect is the possibility of non-occurrence of QZE for initial
states not in D(H), as suggested by the heuristic derivation of the QZE given above or
the proof of Theorem 2.1 below. Indeed, there is an example in which the QZE does not
occur for an initial state not in D(H) (Example 2.4).

In the case of the QZE which occurs through frequent measurements spaced equally
in time, it may be interesting to investigate the asymptotic expansion of the multi-time
survival probability PN(Ψ, t) (see (1.1)) in the powers of 1/N as N → ∞. This is done in
Section 3. For all Ψ ∈ D(H) and t > 0, we derive the asymptotic expansion of PN(Ψ, t)
up to order 1/N .

In Section 4, we consider measurements of states along a curve Ψ(·) : [0, t] → H, a
strongly continuous mapping from [0, t] to H. This is a generalization of the situation
considered in Section 2, because the constant mapping : [0, t] 3 λ 7→ Ψ(λ) := Ψ can be
regarded as a special case of the curve. We prove that, for every partition {t0, t1, · · · , tN}
of [0, t] with 0 = t0 < t1 < · · · < tN = t, the probability of finding the state Ψ(tk) at the
time tk (k = 1, · · · , N) in the successive measurements at the times t1, · · · , tN tends to 1
as N → ∞ (Theorem 4.2). Physically this means that very frequent measurements made
successively along a curve prescribed in advance change the initial state Ψ(0) to the final
state Ψ(t) with probability ≈ 1.

In the last section, as an application of Theorem 4.2, we show that, for every pair
(Ψ, Φ) of states in H with ‖Ψ‖ = ‖Φ‖ = 1, there exists a curve in H connecting Ψ and Φ
such that, through very frequent measurements at successive times given by a partition of
the curve, Ψ can be transformed to Φ with probability ≈ 1. This is a refined version (in
a sense) of von Neumann’s discussion on a possible transformation, induced by frequent
measurements, between arbitrary two states [6, Chapter 5], although the present case is
restricted to vector states.

2 QZE for an Arbitrary Partition of Time Interval

Let ∆ : t0, t1, · · · , tN (tj ∈ [0, t], j = 0, · · · , N) be an arbitrary partition of the interval
[0, t]:

0 = t0 < t1 < · · · < tN−1 < tN = t.

We set
∆k := tk − tk−1, (k = 1, · · · , N), |∆| := max

1≤k≤N
∆k.

Let H be a self-adjoint operator on H. Then, for each unit vector Ψ ∈ H, we define
a number

P∆(Ψ, t) :=
N∏

k=1

∣∣〈Ψ, e−i∆kHΨ
〉∣∣2 .

In the context of quantum mechanics where H represents the Hamiltonian of a quantum
system, P∆(Ψ, t) is interpreted as the probability that, in the successive measurements at
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time t1, · · · , tN (measurements not necessarily spaced equally in time), the initial state Ψ
is found.

Theorem 2.1 For all Ψ ∈ D(H) with ‖Ψ‖ = 1,

lim
|∆|→0

P∆(Ψ, t) = 1. (2.1)

To prove this theorem, we need two lemmas.

Lemma 2.2

lim
|∆|→0

N∑
k=1

∆2
k = 0. (2.2)

Proof. By direct computations, we have

N∑
k=1

∆2
k = t2 − 2S∆

with
S∆ := t1(t2 − t1) + t2(t3 − t2) + · · · + tN−1(tN − tN−1).

Note that

lim
|∆|→0

S∆ =

∫ t

0

xdx =
t2

2
.

Hence (2.2) follows.

Lemma 2.3 For each s ∈ R and all Ψ ∈ D(H) with ‖Ψ‖ = 1,∣∣〈Ψ, e−isHΨ
〉∣∣2 ≥ 1 − s2‖HΨ‖2. (2.3)

Proof. Putting
α :=

〈
Ψ, (e−isH − 1)Ψ

〉
,

we have 〈
Ψ, e−isHΨ

〉
= 1 + α.

Hence ∣∣〈Ψ, e−isHΨ
〉∣∣2 ≥ 1 + α + α∗

= 1 +
〈
Ψ, (e−isH + eisH − 2)Ψ

〉
= 1 − 2β

with

β := 〈Ψ, (1 − cos(sH))Ψ〉 =

∫
R
(1 − cos(sλ))d‖EH(λ)Ψ‖2, (2.4)

where EH(·) is the spectral measure of H. One has

0 ≤ 1 − cos x ≤ x2

2
, ∀x ∈ R. (2.5)

Hence

0 ≤ β ≤ s2

2

∫
R

λ2d‖EH(λ)Ψ‖2 =
s2

2
‖HΨ‖2. (2.6)

Thus (2.3) follows.
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Proof of Theorem 2.1

By the Schwarz inequality and the unitarity of e−isH (∀s ∈ R), we have
∣∣〈Ψ, e−i∆kHΨ

〉∣∣ ≤
1. Hence P∆(Ψ, t) ≤ 1, which implies that

lim sup
|∆|→0

P∆(Ψ, t) ≤ 1. (2.7)

By Lemma 2.3, we have ∣∣〈Ψ, e−i∆kHΨ
〉∣∣2 ≥ 1 − ∆2

k‖HΨ‖2.

For each a > 1, we have

1 − x ≥ e−ax, ∀x ∈
[
0,

log a

a

]
. (2.8)

Hence, taking |∆| such that |∆|2‖HΨ‖2 ≤ log a/a, we have

P∆(Ψ, t) ≥ e−a
PN

k=1 ∆2
k‖HΨ‖2

.

By this estimate and Lemma 2.2, we obtain

lim inf
|∆|→0

P∆(Ψ, t) ≥ 1,

which, combined with (2.7), gives (2.1).

We remark that the condition Ψ ∈ D(H) in Theorem 2.1 is optimal. A counter
example is given as follows.

Example 2.4 We consider the case where H = L2(R) and H is the Hamiltonian H0 of
a free quantum particle with mass m > 0 moving in the one-dimensional space R, i.e.,
H0 := p2/2m, p := −iDx with Dx being the generalized differential operator on L2(R) (in
the variable x ∈ R). Let c > 0 be a constant and ψ0 ∈ L2(R) be such that its L2-Fourier
transform ψ̂0 takes the form

ψ̂0(k) =

√
2c

π

√
|k|

k4 + c2
, k ∈ R.

It is easy to see that ‖ψ0‖ = 1 and ψ0 6∈ D(H0). Moreover, we have for all s ∈ R

〈
ψ0, e

−isH0ψ0

〉
=

4c

π

∫ ∞

0

ke−isk2/2m

k4 + c2
dk = e−|s|c/2m.

Hence, for all t > 0
N∏

k=1

∣∣〈ψ0, e
−i∆kH0ψ0

〉∣∣2 = e−tc/m.

Therefore

lim
|∆|→0

N∏
k=1

∣∣〈ψ0, e
−i∆kH0ψ0

〉∣∣2 = e−tc/m < 1.
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Thus, in this case, Theorem 2.1 does not hold, physically meaning that the quantum Zeno
effect does not occur. We also note that, for every ε > 0,

lim
|∆|→0

N∏
k=1

∣∣〈ψ0, e
−i∆kH0ψ0

〉∣∣2 < ε

if c > −(m/t) log ε.

3 Asymptotics of the Multi-time Survival Probabil-

ity PN(Ψ, t) as N → ∞
In the case of the QZE caused by frequent measurements spaced equally in time, the
asymptotic behavior (in 1/N) of the multi-time survival probability PN(Ψ, t) as N → ∞
is interesting. It may be natural to infer that the asymptotic expansion of PN(Ψ, t) in
1/N has the following form:

PN(Ψ, t) = 1 + c1(Ψ, t)
1

N
+ c2(Ψ, t)

1

N2
+ · · · (N → ∞) (3.1)

with cn(Ψ, t) ∈ R (n = 1, 2, · · ·) being constants independent of N , expecting that each
cn(Ψ, t) may have a physical meaning. In this section, we are concerned with this aspect
and prove the following result:

Theorem 3.1 Let t > 0. Then, for all Ψ ∈ D(H) with ‖Ψ‖ = 1,

PN(Ψ, t) = 1 − t2(∆H)2
Ψ

1

N
+ o

(
1

N

)
, (N → ∞) . (3.2)

Remark 3.2 The asymptotic formula (3.2) is only up to the first order 1/N . But we
conjecture that it is possible to find higher order asymptotics in 1/N . We consider this
aspect in a separate paper.

To prove Theorem 3.1, we need two lemmas:

Lemma 3.3 For all s ∈ R and Ψ ∈ D(H),

lim
N→∞

N2

〈
Ψ,

(
1 − cos

sH

N

)
Ψ

〉
=

1

2
s2‖HΨ‖2, (3.3)

lim
N→∞

N

〈
Ψ, sin

sH

N
Ψ

〉
= s 〈Ψ, HΨ〉 . (3.4)

Proof. We have

N2

〈
Ψ,

(
1 − cos

sH

N

)
Ψ

〉
=

∫
R

N2

(
1 − cos

sλ

N

)
d 〈Ψ, EH(λ)Ψ〉 .
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It is easy to see that

lim
N→∞

N2

(
1 − cos

sλ

N

)
=

1

2
s2λ2.

By (2.5), we have

0 ≤ N2

(
1 − cos

sλ

N

)
≤ 1

2
s2λ2.

By functional calculus, we have∫
R

1

2
s2λ2d 〈Ψ, EH(λ)Ψ〉 =

1

2
s2‖HΨ‖2 < ∞.

Hence, by the Lebesgue dominated convergence theorem, we obtain (3.3).
We next prove (3.4). We have

N

〈
Ψ, sin

sH

N
Ψ

〉
=

∫
R

N sin
sλ

N
d 〈Ψ, EH(λ)Ψ〉 .

By the elementary inequality | sin x| ≤ |x|,∀x ∈ R, we obtain∣∣∣∣N sin
sλ

N

∣∣∣∣ ≤ |sλ|.

By the Schwarz inequality, we have∫
R
|λ|d 〈Ψ, EH(λ)Ψ〉 ≤ ‖Ψ‖

(∫
R

λ2d 〈Ψ, EH(λ)Ψ〉
) 1

2

= ‖Ψ‖ · ‖HΨ‖ < ∞.

Moreover,

lim
n→∞

N sin
sλ

N
= sλ.

Thus, by the Lebesgue dominated convergence theorem, we obtain (3.4).

Lemma 3.4 For all n ∈ N,

(1 − x)n ≥ 1 − nx, 0 ≤ ∀x ≤ 1, (3.5)

(1 − x)n ≤ 1 − nx + (nx)2enx, ∀x ≥ 0. (3.6)

Proof. Inequality (3.5) is elementary. As for (3.6), we proceed as follows: For all x ≥ 0
and n ≥ 2,

(1 − x)n = 1 − nx +
n∑

k=2

n(n − 1) · · · (n − k + 1)

k!
(−1)kxk

≤ 1 − nx +
n∑

k=2

nk

k!
xk ≤ 1 − nx + (nx)2

n−2∑
k=0

(nx)k

k!

≤ 1 − nx + (nx)2enx.

Thus (3.6) holds.
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Proof of Theorem 3.1

Let

aN :=

〈
Ψ,

(
1 − cos

tH

N

)
Ψ

〉
, bN :=

〈
Ψ, sin

tH

N
Ψ

〉
.

Then aN , bN ∈ R and
〈
Ψ, e−i t

N
HΨ

〉
= 1 − aN − ibN . Hence

∣∣∣〈Ψ, e−i t
N

HΨ
〉∣∣∣2 = (1 − aN)2 + b2

N = 1 − qN

N2
,

where

qN := 2N2aN − (NbN)2 − (N2aN)2

N2
.

Therefore we have

PN(Ψ, t) =
(
1 − qN

N2

)N

.

By Lemma 3.3, we have

lim
N→∞

N2aN =
1

2
t2‖HΨ‖2, lim

N→∞
NbN = t 〈Ψ, HΨ〉 .

Hence
lim

N→∞
qN = t2‖HΨ‖2 − t2| 〈Ψ, HΨ〉 |2 = t2(∆H)2

Ψ.

Moreover, it follows from Lemma 3.4 that, if qN ≤ N , then

1 − qN

N
≤

(
1 − qN

N2

)N

≤ 1 − qN

N
+

(qN

N

)2

e
qN
N ,

which implies that

qN − q2
N

N
e

qN
N ≤ N (1 − PN(Ψ, t)) ≤ qN .

Hence
lim

N→∞
N (1 − PN(Ψ, t)) = lim

N→∞
qN = t2(∆H)2

Ψ. (3.7)

Putting

cN := t2(∆H)2
Ψ

1

N
− (1 − PN(Ψ, t)) ,

we have

PN(Ψ, t) = 1 − t2(∆H)2
Ψ

1

N
+ cN .

By (3.7), we have limN→∞ NcN = 0, which means that cN = o(1/N) (N → ∞). Thus
(3.2) holds.
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4 General Mathematical Structure Behind QZE

In this section, as a generalization of the QZE considered in Section 2, we consider the
physical situation where measurements for states are made along a curve in the Hilbert
space H.

Let Ψ(·) : [0, t] → H (a mapping from [0, t] to H) such that ‖Ψ(λ)‖ = 1, ∀λ ∈ [0, t]
and consider

P∆(Ψ(·), t) :=
N∏

k=1

∣∣〈Ψ(tk), e
−i∆kHΨ(tk−1)

〉∣∣2 . (4.1)

This quantity is physically interpreted as the probability that, in the successive measure-
ment at time t1, · · · , tN , the state Ψ(tk) is found at time tk (k = 1, · · · , N).

Remark 4.1 For a unit vector Ψ ∈ H, one can consider a constant mapping Ψconst(·) :
[0, t] → H defined by Ψconst(λ) := Ψ, ∀λ ∈ [0, t]. In this case, we have P∆(Ψconst(·), t) =
P∆(Ψ, t), i.e., the case considered in Section 2. Thus P∆(Ψ(·), t) is a generalization of
P∆(Ψ, t).

Theorem 4.2 Let Ψ(·) : [0, t] → H such that, for all λ ∈ [0, t], Ψ(λ) ∈ D(H) and
‖Ψ(λ)‖ = 1. Assume the following:

ξ := sup
0≤λ≤t

‖HΨ(λ)‖ < ∞, (4.2)

η := sup
λ,ν∈[0,t]

λ6=ν

‖Ψ(λ) − Ψ(ν)‖
|λ − ν|

< ∞, (4.3)

lim
|∆|→0

N∑
k=1

Re 〈Ψ(tk) − Ψ(tk−1), Ψ(tk−1)〉 = 0, (4.4)

where, for a complex number z, Re z denotes its real part. Then

lim
|∆|→0

P∆(Ψ(·), t) = 1 (4.5)

Remark 4.3 Condition (4.3) implies that ‖Ψ(λ) − Ψ(ν)‖ ≤ η|λ − µ|, ∀λ, µ ∈ [0, t]
(Lipschitz continuity). In particular, Ψ(·) is strongly continuous, so that the mapping
Ψ(·) : [0, t] → H is a curve in H.

Proof. By the Schwarz inequality and the unitarity of e−isH (∀s ∈ R), we have

|
〈
Ψ(tk), e

−i∆kHΨ(tk−1)
〉
|2 ≤ 1. (4.6)

Hence
P∆(Ψ(·), t) ≤ 1. (4.7)

For k = 1, · · · , N , we set

ak :=
〈
Ψ(tk−1), (e

−i∆kH − 1)Ψ(tk−1)
〉
,

bk :=
〈
Ψ(tk) − Ψ(tk−1), (e

−i∆kH − 1)Ψ(tk−1)
〉
,

ck := 〈Ψ(tk) − Ψ(tk−1), Ψ(tk−1)〉 .
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Then we have

|
〈
Ψ(tk), e

−i∆kHΨ(tk−1)
〉
|2 = |1 + ak + bk + ck|2

≥ 1 + 2Re ak + 2Re bk + 2Re ck. (4.8)

By (2.4), (2.6) and (4.2), we have

1 + 2Re ak ≥ 1 − ∆2
k‖HΨ(tk−1)‖2 ≥ 1 − ∆2

kξ
2 (4.9)

By the Schwarz inequality, we have

|Re bk| ≤ |bk| ≤ ‖Ψ(tk) − Ψ(tk−1)‖ · ‖(e−i∆kH − 1)Ψ(tk−1)‖.

Assumption (4.3) implies that

‖Ψ(tk) − Ψ(tk−1)‖ ≤ ∆kη.

On the other hand, we have

‖(e−i∆kH − 1)Ψ(tk−1)‖2 =

∫
R
|e−i∆kλ − 1|2d‖EH(λ)Ψ(tk−1)‖2.

Using the elementary inequality

|e−ix − 1|2 ≤ x2, ∀x ∈ R,

we obtain ∫
R
|e−i∆kλ − 1|2d‖EH(λ)Ψ(tk−1)‖2 ≤

∫
R

∆2
kλ

2d‖EH(λ)Ψ(tk−1)‖2

= ∆2
k‖HΨ(tk−1)‖2.

Hence
‖(e−i∆kH − 1)Ψ(tk−1)‖ ≤ ∆k‖HΨ(tk−1)‖ ≤ ∆kξ

Therefore
|Re bk| ≤ ξη∆2

k.

Thus we obtain
2Re bk ≥ −2ξη∆2

k (4.10)

By estimates (4.9) and (4.10), we have

1 + 2Re ak + 2Re bk + 2Re ck ≥ 1 −
{
(ξ2 + 2ξη)∆2

k − 2Re ck

}
.

Note that, by (4.6) and (4.8), 1 ≥ 1 + 2Re ak + 2Re bk + 2Re ck. Hence (ξ2 + 2ξη)∆2
k −

2Re ck ≥ 0. We also have

|Re ck| ≤ |ck| ≤ ‖Ψ(tk) − Ψ(tk−1)‖ ≤ η∆k
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Hence

0 ≤ (ξ2 + 2ξη)∆2
k − 2Re ck ≤ (ξ2 + 2ξη)∆2

k + 2η∆k ≤ (ξ2 + 2ξη)|∆|2 + 2η|∆|. (4.11)

Let a > 1 be a constant and take |∆| such that

(ξ2 + 2ξη)|∆|2 + 2η|∆| ≤ log a

a
.

Then, by (4.11), we have for k = 1, · · · , N

0 ≤ (ξ2 + 2ξη)∆2
k − 2Re ck ≤ log a

a

Hence, by (2.8), we obtain

1 −
{
(ξ2 + 2ξη)∆2

k − 2Re ck

}
≥ exp[−a

{
(ξ2 + 2ξη)∆2

k − 2Re ck

}
].

Therefore

P∆(Ψ(·), t) ≥
N∏

k=1

exp[−a
{
(ξ2 + 2ξη)∆2

k − 2Re ck

}
]

= exp

[
−a

{
(ξ2 + 2ξη)

N∑
k=1

∆2
k − 2

N∑
k=1

Re ck

}]

By Lemma 2.2 and (4.4),

lim
|∆|→0

{
(ξ2 + 2ξη)

N∑
k=1

∆2
k − 2

N∑
k=1

Re ck

}
= 0

Thus lim inf |∆|→0 P∆(Ψ(·), t) ≥ 1, which, combined with (4.7), yields (4.5).

Corollary 4.4 Let Ψ(·) : [0, t] → H be a strongly differentiable mapping from [0, t] to H

such that the following conditions hold:

(i) For all λ ∈ [0, t], Ψ(λ) ∈ D(H) and ‖Ψ(λ)‖ = 1.

(ii) (4.2) holds and
δ := sup

0≤λ≤t
‖Ψ′(λ)‖ < ∞, (4.12)

where Ψ′(·) denotes the strong derivative of Ψ(·).

Then (4.5) holds.

Proof. By Theorem 4.2, it is sufficient to prove that (4.3) and (4.4) hold. By the
strong differentiability, we have for all λ, ν ∈ [0, t]

Ψ(λ) − Ψ(ν) =

∫ λ

ν

Ψ′(s)ds, (4.13)
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where the integral is taken in the sense of Bochner integral. Hence

‖Ψ(λ) − Ψ(ν)‖ ≤
∣∣∣∣∫ λ

ν

‖Ψ′(s)‖ds

∣∣∣∣ ≤ δ|λ − ν|.

Thus (4.3) holds.
By (4.13), we have

Ψ(tk) − Ψ(tk−1) =

∫ tk

tk−1

Ψ′(λ)dλ, k = 1, · · · , N.

Let χ(tk−1,tk] be the characteristic function of the interval (tk−1, tk]. Then

N∑
k=1

Re 〈Ψ(tk) − Ψ(tk−1), Ψ(tk−1)〉 = Re
N∑

k=1

〈∫ tk

tk−1

Ψ′(λ)dλ, Ψ(tk−1)

〉

= Re
N∑

k=1

∫ tk

tk−1

〈Ψ′(λ), Ψ(tk−1)〉 dλ

= Re
N∑

k=1

∫ t

0

χ(tk−1,tk](λ) 〈Ψ′(λ), Ψ(tk−1)〉 dλ

= Re

∫ t

0

〈
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

〉
dλ

For all λ ∈ (0, t], we have∣∣∣∣∣
〈

Ψ′(λ),
N∑

k=1

χ(tk−1,tk](λ)Ψ(tk−1)

〉∣∣∣∣∣ ≤ δ

N∑
k=1

χ(tk−1,tk](λ) = δ,

lim
|∆|→0

〈
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

〉
= 〈Ψ′(λ), Ψ(λ)〉 .

Hence, by the Lebesgue dominated convergence theorem, we obtain

lim
|∆|→0

Re

∫ t

0

〈
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

〉
dλ

= Re

∫ t

0

〈Ψ′(λ), Ψ(λ)〉 dλ =
1

2

∫ t

0

d

dλ
‖Ψ(λ)‖2dλ

=
1

2
(‖Ψ(t)‖2 − ‖Ψ(0)‖2) = 0.

Thus (4.4) holds.

Example 4.5 Let A be a self-adjoint operator on H and Ψ0 be a vector in H satisfying
the following conditions:

Ψ0 ∈ D(A) ∩
⋂

0≤λ≤t

D(He−iλA), sup
0≤λ≤t

‖He−iλAΨ0‖ < ∞, ‖Ψ0‖ = 1.
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Then one can define a mapping Ψ(·) : [0, t] → H by

Ψ(λ) := e−iλAΨ0, λ ∈ [0, t].

It is obvious that the mapping Ψ(·) satisfies condition (i) in Corollary 4.4. Moreover, Ψ(·)
is strongly differentiable on [0, t] and

‖Ψ′(λ)‖2 = ‖Ae−iλAΨ0‖2 = ‖AΨ0‖2,

so that Ψ(·) satisfies condition (ii) in Corollary 4.4 too. Thus, for this Ψ(·), (4.5) holds.

5 Transition Between Arbitrary Two States by Mea-

surements

We fix two unit vectors Ψ and Φ in D(H) arbitrarily. Then one can define a strongly
differentiable mapping Ψ(·) : [0, t] → H connecting Ψ and Φ as follows.

(1) The case where Ψ and Φ are linearly dependent

In this case, there exists a constant α ∈ [0, 2π) such that Φ = eiαΨ. Then, defining
Ψ(·) : [0, t] → H by

Ψ(λ) := ei αλ
t Ψ, λ ∈ [0, t], (5.1)

we see that Ψ(·) is strongly differentiable on [0, t] with Ψ(0) = Ψ and Ψ(t) = Φ.

(2) The case where Ψ and Φ are linearly independent

In this case, let

Ξ :=
Φ − 〈Φ, Ψ〉Ψ

‖Φ − 〈Φ, Ψ〉Ψ‖
. (5.2)

Then {Ψ, Ξ} is an orthonormal system in H. It follows that there exist constants α, β, γ ∈
[0, 2π) such that

Φ = (cos α)eiβΨ + (sin α)eiγΞ.

Using this fact, we define Ψ(·) : [0, t] → H by

Ψ(λ) :=

(
cos

αλ

t

)
ei βλ

t Ψ +

(
sin

αλ

t

)
ei γλ

t Ξ, λ ∈ [0, t]. (5.3)

It is easy to see that the mapping Ψ(·) is strongly differentiable on [0, t] with Ψ(0) = Ψ
and Ψ(t) = Φ.

Proposition 5.1 Let Ψ(·) be defined by (5.1) or (5.3). Then Ψ(·) satisfies all the as-
sumptions of Corollary 4.4 with Ψ(0) = Ψ and Ψ(t) = Φ.
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Proof. We see from the definition of Ψ(·) that, for all λ ∈ [0, t], Ψ(λ) ∈ D(H) and
‖Ψ(λ)‖ = 1, and Ψ(·) is strongly differentiable on [0, t] with Ψ(0) = Ψ and Ψ(t) = Φ.

We first consider the case where Ψ and Φ are linearly dependent. In this case, we have

‖HΨ(λ)‖ = ‖HΨ‖,
‖Ψ′(λ)‖ =

α

t
.

Hence condition (ii) in Corollary 4.4 are satisfied.
Next, let Ψ and Φ be linearly independent. Then

‖HΨ(λ)‖ ≤ ‖HΨ‖ + ‖HΞ‖,

‖Ψ′(λ)‖ =

∥∥∥∥(
−α

t
sin

αλ

t
+ i

β

t
cos

αλ

t

)
ei βλ

t Ψ +

(
α

t
cos

αλ

t
+ i

γ

t
sin

αλ

t

)
ei γλ

t Ξ

∥∥∥∥
≤ 2α + β + γ

t
.

Hence condition (ii) in Corollary 4.4 are satisfied.

Corollary 4.4 and Proposition 5.1 immediately lead one to the following fact:

Corollary 5.2 For the mapping Ψ(·) defined by (5.1) or (5.3), lim|∆|→0 P∆(Ψ(·), t) = 1.

Corollary 5.2 may be interpreted as follows: For every pair (Ψ, Φ) of states in H with
‖Ψ‖ = ‖Φ‖ = 1, there exists a curve in H connecting Ψ and Φ such that, through very
frequent measurements at successive times given by a partition of this curve, the state Ψ
can be transformed to Φ with probability ≈ 1.
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