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A class of d-dimensional Dirac operators with a variable mass is introduced (𝑑 ≥ 2), which includes, as a special case, the 3-
dimensional Dirac operator describing the chiral quark soliton model in nuclear physics, and some aspects of it are investigated.

1. Introduction

In the chiral quark soliton (CQS) model in nuclear physics
(see, e.g., [1] and references therein), a Dirac operator of
the following form appears (we use the physical unit system
where the speed of light 𝑐 and ℏ, the Planck constant divided
by 2𝜋, are equal to 1):

𝐻CQS := −𝑖

3

∑

𝑗=1

𝛼
𝑗
𝐷

𝑗
⊗ 1

2
+ 𝑚𝛽 ⊗ 1

2
𝑒

𝑖 ∑
3

𝑗=1
𝐹𝛾5⊗𝜏𝑗𝑛𝑗 , (1)

acting in the tensor product Hilbert space 𝐿
2
(R3

;C4
) ⊗

C2 of 𝐿
2
(R3

;C4
) (the Hilbert space of C4-valued square

integrable functions on R3) and C2. Here 𝑖 is the imaginary
unit, 𝛼

1
, 𝛼

2
, and 𝛼

3
are 4 × 4Hermitian matrices obeying the

anticommutation relations

{𝛼
𝑗
, 𝛼

𝑘
} = 2𝛿

𝑗𝑘
1

4
(𝑗, 𝑘 = 1, 2, 3) (2)

({𝐴, 𝐵} := 𝐴𝐵+𝐵𝐴, 𝛿
𝑗𝑘
is the Kronecker delta and 1

𝑛
denotes

the 𝑛 × 𝑛 unit matrix), 𝐷
𝑗
(𝑗 = 1, 2, 3) is the generalized

partial differential operator in the space variable 𝑥
𝑗
(x =

(𝑥
1
, 𝑥

2
, 𝑥

3
) ∈ R3), 𝑚 > 0 denotes the mass of a quark, 𝛽 is

a 4 × 4Hermitian matrix satisfying

{𝛼
𝑗
, 𝛽} = 0 (𝑗 = 1, 2, 3) , 𝛽

2
= 1

4
,

𝛾
5
:= −𝑖𝛼

1
𝛼

2
𝛼

3
,

(3)

𝐹 : R3
→ R is a function called a profile function, 𝜏

1
, 𝜏

2
, and

𝜏
3
are the Pauli matrices, and 𝑛

𝑗
: R3

→ R (𝑗 = 1, 2, 3) is

a Borel measurable function on R3 such that ∑3

𝑗=1
𝑛

𝑗
(x)2

= 1

for a.e. (almost everywhere) x ∈ R3.
Comparing 𝐻CQS with the usual free Dirac operator with

mass, one notes that the term

𝑚(x) := 𝑚𝑒
𝑖 ∑
3

𝑗=1
𝐹(x)𝛾5⊗𝜏𝑗𝑛𝑗(x) (4)

corresponds to a mass, although it may depend on the space
variable x in general. Hence, the CQSmodel may be regarded
as a model of a Dirac particle with a variable mass. We also
note that 𝑚(x) is not a scalar multiple of a constant matrix
in general but may be a nontrivial matrix-valued function on
R3.This is one of the interesting features of theDirac operator
𝐻CQS. From a general point of view, 𝑚(x) is a special case of
the mass deformation of the form 𝑚

𝐿
(x) := 𝑚𝐿(x) with 𝐿

being amapping fromR3 to the set of linear operators onC4
⊗

C2. To our best knowledge, mathematically rigorous analysis
on Dirac operators with such amass deformation seems to be
few, although a Dirac operator with a mass given by a scalar
function has been studied (e.g., [2]).

In a paper [3], Arai et al. investigated spectral properties
of the Dirac operator𝐻CQS.These results have been extended
to the case of a generalized CQS (GCQS) model in [4].
Miyao [5] proposed an abstract version of theCQSmodel and
investigated a nonrelativistic limit of it; as an application of
the abstract result to the CQS model, a Schrödinger operator
with a binding potential was derived.

As is pointed out in [3], under a condition for 𝑛
𝑗
(x) (𝑗 =

1, 2, 3), the CQSmodel has supersymmetry; that is, the Dirac
operator 𝐻CQS may be a supercharge of a supersymmetric
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quantum mechanics (e.g., [6, Chapter 5]). This structure is
carried over to the GCQS model [4].

In this paper, for each natural number 𝑑 ≥ 2, we propose
a 𝑑-dimensional version of the GCQS model and analyze
some mathematical aspects of it including supersymmetric
ones.

The present paper is organized as follows. We first
recall some basic facts in operator theory in Section 2. In
Section 3 we introduce a Dirac operator𝐻 which may be the
Hamiltonian of a 𝑑-dimensional version of the GCQSmodel,
as mentioned previously. A simple condition for 𝐻 to be
self-adjoint is given. In Section 4 we discuss supersymmetric
aspects of 𝐻. We give a condition for 𝐻 to be a supercharge
of a supersymmetric quantum mechanical model. In that
case, ker 𝐻, the kernel of 𝐻, describes the supersymmetric
states. Hence, it is interesting and important to analyze ker
𝐻. In Section 5, we prove that, under a condition, ker 𝐻 is
trivial: ker 𝐻 = {0}. In the case where 𝐻 is a supercharge,
this means that there is no supersymmetric states; namely,
the supersymmetry is spontaneously broken. Section 6 is
concerned with a unitary equivalence of 𝐻 to a gauge
theoretic Dirac operator. This may be physically interesting.
Using this structure, we find another condition for the kernel
of 𝐻 to be trivial. In Section 7, we identify the essential
spectrum of 𝐻 under a suitable condition. In the last section,
we discuss the number of eigenvalues of 𝐻 in the interval
(−𝑚,𝑚) with𝑚 > 0 being a constant.

2. Preliminaries

Let X be a complex Hilbert space with inner product ⟨⋅, ⋅⟩X
(linear in the second variable) and norm ‖ ⋅ ‖X (we sometimes
omit the subscriptX if there is no danger of confusion). For
a linear operator 𝐴 on X, we denote its domain by 𝐷(𝐴). If
𝐴 is densely defined, its adjoint is denoted by 𝐴∗. For linear
operators 𝐴 and 𝐵 onX, 𝐴 ⊂ 𝐵means that 𝐵 is an extension
of 𝐴, that is,𝐷(𝐴) ⊂ 𝐷(𝐵) and 𝐴𝜓 = 𝐵𝜓, for all 𝜓 ∈ 𝐷(𝐴).

We denote by B(X) the set of everywhere defined
bounded linear operators on X. For 𝑇 ∈ B(X), we denote
the operator norm of 𝑇 by ‖𝑇‖.

Definition 1. Let 𝐴 and 𝐵 be self-adjoint operators onX.

(i) 𝐴 and 𝐵 are said to strongly commute if their spectral
measures commute.

(ii) 𝐴 and 𝐵 are said to strongly anticommute [7, 8] if,
for all 𝑡 ∈ R, 𝑒𝑖𝑡𝐵

𝐴 ⊂ 𝐴𝑒
−𝑖𝑡𝐵 (it is shown that this

definition is in fact symmetric in 𝐴 and 𝐵).

The next lemma summarizes some basic facts on strongly
commuting (resp., anticommuting) self-adjoint operators.

Lemma 2. Let 𝐴 and 𝐵 be self-adjoint operators onX.

(i) 𝐴 and𝐵 strongly commute if and only if, for all 𝑡, 𝑠 ∈ R,
𝑒

𝑖𝑡𝐵
𝑒

𝑖𝑠𝐴
= 𝑒

𝑖𝑠𝐴
𝑒

𝑖𝑡𝐵.

(ii) 𝐴 and 𝐵 strongly commute if and only if, for all 𝑡 ∈ R,
𝑒

𝑖𝑡𝐵
𝐴 = 𝐴𝑒

𝑖𝑡𝐵.

(iii) Let 𝐴 be bounded. Then 𝐴 and 𝐵 strongly commute if
and only if 𝐴𝐵 ⊂ 𝐵𝐴.

(iv) Let𝐴 be bounded.Then𝐴 and 𝐵 strongly anticommute
if and only if 𝐴𝐵 ⊂ −𝐵𝐴.

Proof. Part (i) is well known (e.g., [9, Theorem VIII.13]).
Using (i), functional calculus, and strong differential calculus,
one can easily prove (ii) and (iii). A proof of (iv) is similar to
the proof of (iii).

3. Description of the Model

Let 𝑑 ≥ 2 be a natural number, and

𝑁
𝑑
:= {

2
𝑑/2 for 𝑑 even,
2

(𝑑+1)/2 for 𝑑 odd.
(5)

LetK be a separable complex Hilbert space, and

H := 𝐿
2
(R

𝑑
;C

𝑁𝑑) ⊗K ≅ 𝐿
2
(R

𝑑
;C

𝑁𝑑 ⊗K)

≅ ∫

⊕

R𝑑
C

𝑁𝑑 ⊗K 𝑑𝑥,

(6)

where each ≅ means the natural Hilbert space isomorphism
and ∫⊕

R𝑑
C𝑁𝑑 ⊗K 𝑑𝑥 denotes the constant fibre direct integral

with fiber C𝑁𝑑 ⊗K (e.g., [10, section XIII.16]).
We denote by 𝐷

𝑗
the generalized partial differential ope-

rator in the variable 𝑥
𝑗
(𝑥 = (𝑥

1
, . . . , 𝑥

𝑑
) ∈ R𝑑), acting in

𝐿
2
(R𝑑

). The 𝑑-dimensional generalized Laplacian

Δ :=

𝑑

∑

𝑗=1

𝐷
2

𝑗
(7)

on 𝐿
2
(R𝑑

) is a nonpositive self-adjoint operator. Each linear
operator 𝐴 on 𝐿

2
(R𝑑

) is extended as the direct sum ⊕
𝑁𝑑𝐴

on 𝐿
2
(R𝑑

;C𝑁𝑑) = ⊕
𝑁𝑑𝐿

2
(R𝑑

). For notational simplicity, we
denote it by 𝐴 again.

Every densely defined closable linear operator 𝑇 on
𝐿

2
(R𝑑

,C𝑁𝑑) (resp., K) has a tensor product extension 𝑇 ⊗

𝐼 (resp., 𝐼 ⊗ 𝑇) to H (𝐼 denotes identity). But we write
it 𝑇 simply if there is no danger of confusion.

We denote by Fs.a.
the set of mappings Φ(⋅) from R𝑑 to

the set of self-adjoint operators on C𝑁𝑑 ⊗ K such that the
mapping: R𝑑

∋ 𝑥 → (Φ(𝑥) + 𝑖)
−1 is measurable. By a general

theorem (e.g., [10,TheoremXIII.85(i)]), for eachΦ(⋅) ∈ Fs.a.
,

the direct integral

Φ := ∫

⊕

R𝑑
Φ (𝑥) 𝑑𝑥 (8)

is self-adjoint.
Let {𝛼

𝑗
}

𝑑+1

𝑗=1
be𝑁

𝑑
× 𝑁

𝑑
Hermitian matrices satisfying

{𝛼
𝑗
, 𝛼

𝑘
} = 2𝛿

𝑗𝑘
1

𝑁𝑑
, 𝑗, 𝑘 = 1, . . . , 𝑑 + 1. (9)
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Then the free massless Dirac operator on 𝐿
2
(R𝑑

;C𝑁𝑑) is
defined by

𝐻
0
:= −𝑖

𝑑

∑

𝑗=1

𝛼
𝑗
𝐷

𝑗
. (10)

The operator𝐻
0
is self-adjoint with𝐷(𝐻

0
) := ∩

𝑑

𝑗=1
𝐷(𝐷

𝑗
) and

𝐻
2

0
= −Δ. (11)

To introduce a mass operator, let 𝑀(⋅) ∈ Fs.a.
such that,

for a.e. 𝑥 ∈ R𝑑,𝑀(𝑥) is a bounded operator onC𝑁𝑑 ⊗K, and
set

𝑀 := ∫

⊕

R𝑑
𝑀(𝑥) 𝑑𝑥. (12)

We use this self-adjoint operator as an extended mass (vari-
able in the spaceR𝑑) of the quantum particle of our model (a
Dirac particle). Note that𝑀 is not necessarily bounded.

The Hamiltonian 𝐻 of our model, a 𝑑-dimensional
version of the GCQS model, is defined as follows:

𝐻 := 𝐻
0
+ 𝑈, (13)

with

𝑈 := 𝛼
𝑑+1

𝑒
𝑖Φ
𝑀. (14)

As remarked previously, the mass operator 𝑀 in 𝑈 can be
variable spatially. This is a point different from the GCQS
model.

In this work, we do not intend to discuss essential self-
adjointness of 𝐻 in full generality. In the present paper, we
assume the following.

(A.1) 𝛼
𝑑+1

Φ ⊂ −Φ𝛼
𝑑+1

.
(A.2) 𝛼

𝑑+1
𝑀 ⊂ 𝑀𝛼

𝑑+1
.

(A.3) Φ and𝑀 strongly commute.

(A.4) The operator 𝑀 is (−Δ)
1/2-bounded: 𝐷((−Δ)

1/2
) ⊂

𝐷(𝑀) and

𝑀𝜓


2
≤ 𝑎

2
(−Δ)

1/2
𝜓


2

+ 𝑏
2𝜓


2
, ∀𝜓 ∈ 𝐷 ((−Δ)

1/2
)

(15)

with constants 0 ≤ 𝑎 < 1 and 𝑏 ≥ 0.

Remark 3. In the abstract CQS model [5], the strong com-
mutativity of 𝑀 and 𝐻

0
as well as the boundedness and the

strict positivity of𝑀 is assumed. But, in our model, they are
not assumed.

Lemma 4. (i) Condition (A.1) holds if and only if 𝛼
𝑑+1

and Φ strongly anticommute.
(ii) Condition (A.1) is equivalent to the operator equality

𝛼
𝑑+1

Φ = −Φ𝛼
𝑑+1

.
(iii) Condition (A.2) holds if and only if 𝛼

𝑑+1
and 𝑀

strongly commute.

(iv) Condition (A.2) is equivalent to the operator equality
𝛼

𝑑+1
𝑀 = 𝑀𝛼

𝑑+1
.

Proof. (i) This follows from Lemma 2(iv).

(ii) Assume (A.1). Let 𝜓 ∈ 𝐷(Φ𝛼
𝑑+1

). Then 𝜂 := 𝛼
𝑑+1

𝜓 ∈

𝐷(Φ). Hence, by (A.1), 𝛼
𝑑+1

𝜂 ∈ 𝐷(Φ). But, since
𝛼

2

𝑑+1
= 𝐼, we have 𝛼

𝑑+1
𝜂 = 𝜓. Hence 𝜓 ∈ 𝐷(Φ).

Thereore 𝐷(Φ𝛼
𝑑+1

) ⊂ 𝐷(𝛼
𝑑+1

Φ). Thus 𝐷(Φ𝛼
𝑑+1

) =

𝐷(𝛼
𝑑+1

Φ). Hence the desired operator equality holds.

(iii) This follows from Lemma 2(iii).

(iv) Simillar to the proof of part (ii).

We define

𝐻
𝑀

:= 𝐻
0
+ 𝛼

𝑑+1
𝑀. (16)

If 𝑀 is a constant operator 𝑚 > 0, then 𝐻
𝑚
represents the

free Dirac operator with a constant mass 𝑚. It is well known
(e.g., [6, Theorem 1.1]) that𝐻

𝑚
is self-adjoint with𝐷(𝐻

𝑚
) =

𝐷(𝐻
0
) = ∩

𝑑

𝑗=1
𝐷(𝐷

𝑗
) and bijective with ‖𝐻

−1

𝑚
‖ = 1/𝑚.

Lemma 5. Assume (A.4). Let 𝑚 > 0 be a constant. Then
𝑀𝐻

−1

𝑚
is bounded with


𝑀𝐻

−1

𝑚


≤ max{𝑎, 𝑏

𝑚
} . (17)

Proof. It is well known or easy to see that, for all𝜓 ∈ 𝐷(𝐻
𝑚
) =

𝐷(𝐻
0
),

𝐻𝑚
𝜓


2
=

(−Δ)

1/2
𝜓


2

+ 𝑚
2𝜓


2
. (18)

Hence, by (A.4), we have

𝑀𝜓


2
≤ 𝑎

2 𝐻𝑚
𝜓
 + (𝑏

2
− 𝑎

2
𝑚

2
)
𝜓

 . (19)

This implies the following: (i) if 𝑎𝑚 ≤ 𝑏, then ‖𝑀𝐻
−1

𝑚
‖

2

≤

𝑎
2
+(𝑏

2
−𝑎

2
𝑚

2
)/𝑚

2
= 𝑏

2
/𝑚

2; (ii) if 𝑎𝑚 ≥ 𝑏, then ‖𝑀𝐻
−1

𝑚
‖ ≤ 𝑎.

Thus (17) follows.

Lemma 6. Assume (A.1)–(A.4). Then

(i) 𝑈 is self-adjoint with𝐷(𝑈) = 𝐷(𝑀);

(ii) 𝐻 is self-adjoint with𝐷(𝐻) = 𝐷(𝐻
0
) and the subspace

D
0
:= 𝐶

∞

0
(R

𝑑
;C

𝑁𝑑) ⊗̂K, (20)

(⊗̂ means algebraic tensor product) is a core of𝐻.

Proof. (i) Since 𝐷(𝑈) = 𝐷(𝑀) and 𝐷(𝑀) is dense, 𝑈 is
densely defined. Since 𝛼

𝑑+1
𝑒

𝑖Φ is bounded, it follows that
𝑈

∗
= 𝑀𝑒

−𝑖Φ
𝛼

𝑑+1
. By (A.1) and Lemma 2(iv), we have

𝑒
−𝑖Φ

𝛼
𝑑+1

= 𝛼
𝑑+1

𝑒
𝑖Φ
. (21)
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By (A.2), (A.3), Lemma 2(ii), and Lemma 4(iv), we have

𝑈
∗
= 𝑀𝛼

𝑑+1
𝑒

𝑖Φ
= 𝛼

𝑑+1
𝑀𝑒

𝑖Φ
= 𝛼

𝑑+1
𝑒

𝑖Φ
𝑀 = 𝑈. (22)

Hence 𝑈 is self-adjoint.
(ii) By (A.4), we have for all 𝜓 ∈ 𝐷((−Δ)

1/2
)

𝑈𝜓
 =

𝑀𝜓
 ≤ 𝑎


(−Δ)

1/2
𝜓

+ 𝑏

𝜓
 . (23)

Note that

(−Δ)

1/2
𝜓

=
𝐻0

𝜓
 . (24)

Hence ‖𝑈𝜓‖ ≤ 𝑎‖𝐻
0
𝜓‖ + 𝑏‖𝜓‖. Here 0 ≤ 𝑎 < 1. Thus, by the

Kato-Rellich theorem (e.g., [11, Theorem X.12]), 𝐻 is self-
adjoint with 𝐷(𝐻) = 𝐷(𝐻

0
) and every core of𝐻

0
is a core of

𝐻. It is well known that the subspace𝐶∞

0
(R𝑑

;C𝑁𝑑) is a core of
𝐻

0
as a linear operator on 𝐿

2
(R𝑑

;C𝑁𝑑). Hence the subspace
D

0
defined by (20) is a core of𝐻

0
as a linear operator onH.

Thus it is a core of𝐻 too.

Remark 7. One of the other sufficient conditions for 𝐻 to
be essentially self-adjoint is as follows: assume (A.1)–(A.3)
and ess sup

|𝑥|<𝑅
‖𝑀(𝑥)‖ < ∞ for all 𝑅 > 0. Then 𝐻 is

essentially self-adjoint on D
0
. The proof is similar to that of

[6, Theorem 4.3].

4. Supersymmetric Aspects

As is well known, the standard free Dirac operator −𝑖∑3

𝑗=1

𝛼
𝑗
𝐷

𝑗
+ 𝑚𝛽 on 𝐿

2
(R3

;C4
) with constant mass 𝑚 ≥ 0 and

its suitably perturbed ones have supersymmetry; that is, they
are, respectively, a supercharge with the grading operator
𝑖𝛽𝛾

5
[6, Section 5.5]. From this point of view, it would be

interesting to investigate if the Hamiltonian𝐻 of the present
model has supersymmetry. Indeed, it was shown that the
Hamiltonian of the CQS model as well as that of the GCQS
model has supersymmetry [3, 4]. In this section we see that a
supersymmetric structure similar to that of the CQS (GCQS)
model exists in our model.

In this section, we consider only the case where 𝑑 is odd.The
matrix

𝛾
(𝑑)

5
:= 𝑖

𝑑(𝑑−1)/2
𝛼

1
⋅ ⋅ ⋅ 𝛼

𝑑
(25)

is self-adjoint with

(𝛾
(𝑑)

5
)

2

= 1
𝑁𝑑
. (26)

Since 𝑑 is odd, we have

𝛼
𝑗
𝛾

(𝑑)

5
= 𝛾

(𝑑)

5
𝛼

𝑗
(𝑗 = 1, . . . , 𝑑) , {𝛼

𝑑+1
, 𝛾

(𝑑)

5
} = 0.

(27)

Let 𝜉 : R𝑑
→ B(K) be Borel measurable such that, for

a.e. 𝑥 ∈ R𝑑, 𝜉(𝑥) is self-adjoint with

𝜉(𝑥)
2
= 𝐼. (28)

Then
𝜉 (𝑥)

 = 1, a.e. 𝑥 ∈ R
𝑑
. (29)

We define Γ(⋅) : R𝑑
→ B(C𝑁𝑑 ⊗K) by

Γ (𝑥) := 𝑖𝛾
(𝑑)

5
𝛼

𝑑+1
⊗ 𝜉 (𝑥) , a.e. 𝑥 ∈ R

𝑑
. (30)

Then

Γ := ∫

⊕

R𝑑
Γ (𝑥) 𝑑𝑥 (31)

is self-adjoint with

Γ
2
= 𝐼. (32)

Hence Γ is a grading operator on H. The following proposi-
tion shows that, under some additional condition for 𝜉(𝑥),𝐻
has supersymmetry with respect to Γ.

Proposition 8. Let 𝑑 be odd. Assume (A.1)–(A.4). Suppose
that 𝜉 is strongly differentiable on R𝑑 with

𝐶
𝑗
:= sup

𝑥∈R𝑑


𝐷

𝑗
𝜉 (𝑥)


< ∞, 𝑗 = 1, . . . , 𝑑. (33)

Then

Γ𝐻 ⊂ −𝐻Γ (34)

if and only if

𝑑

∑

𝑗=1

𝛾
(𝑑)

5
𝛼

𝑑+1
𝛼

𝑗
𝐷

𝑗
𝜉 (𝑥)

= 𝑖 (𝛾
(𝑑)

5
⊗ 𝜉 (𝑥) 𝑒

𝑖Φ(𝑥)
𝑀(𝑥)

−𝑀 (𝑥) 𝑒
−𝑖Φ(𝑥)

𝛾
(𝑑)

5
⊗ 𝜉 (𝑥)) , a.e. 𝑥 ∈ R

𝑑
.

(35)

In that case, the spectrum 𝜎(𝐻) and the point spectrum 𝜎p(𝐻)

of 𝐻 are, respectively, symmetric with respect to the origin 0 ∈

R.

Proof. Since the subspaceD
0
given by (20) is a core of 𝐻 by

Lemma 6(ii), (34) is equivalent to that, for all 𝜓 ∈ D
0
, Γ𝜓 ∈

𝐷(𝐻) and

Γ𝐻𝜓 = −𝐻Γ𝜓. (36)

Let 𝜓 ∈ D
0
. Then

(Γ𝜓) (𝑥) = 𝑖𝛾
(𝑑)

5
𝛼

𝑑+1
⊗ 𝜉 (𝑥) 𝜓 (𝑥) , a.e. 𝑥 ∈ R

𝑑
. (37)

It follows that the C𝑁𝑑 ⊗K-valued function: 𝑥 → (Γ𝜓)(𝑥) is
strongly differentiable onR𝑑 with

𝐷
𝑗
(Γ𝜓) (𝑥) = 𝑖𝛾

(𝑑)

5
𝛼

𝑑+1
⊗ (𝐷

𝑗
𝜉 (𝑥)) 𝜓 (𝑥)

+ 𝑖𝛾
(𝑑)

5
𝛼

𝑑+1
⊗ 𝜉 (𝑥)𝐷

𝑗
𝜓 (𝑥) ,

𝑗 = 1, . . . , 𝑑.

(38)

Hence

𝐷

𝑗
(Γ𝜓) (𝑥)



2

≤ 2 (𝐶
2

𝑗

𝜓 (𝑥)


2
+

𝐷

𝑗
𝜓 (𝑥)



2

) , (39)
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which implies that 𝐷
𝑗
Γ𝜓 ∈ H and hence Γ𝜓 ∈ 𝐷(𝐻

0
) =

𝐷(𝐻). Moreover, we have

(𝐻
0
Γ𝜓) (𝑥)

= −𝛾
(𝑑)

5
𝛼

𝑑+1
(

𝑑

∑

𝑗=1

𝛼
𝑗
𝐷

𝑗
𝜉 (𝑥))𝜓 (𝑥) − (Γ𝐻

0
𝜓) (𝑥) ,

(𝑈Γ𝜓) (𝑥) = − (Γ𝑈𝜓) (𝑥)

+ 𝑖 (𝛾
(𝑑)

5
⊗ 𝜉 (𝑥) 𝑒

𝑖Φ(𝑥)
𝑀(𝑥)

−𝑀 (𝑥) 𝑒
−𝑖Φ(𝑥)

𝛾
(𝑑)

5
⊗ 𝜉 (𝑥)) 𝜓 (𝑥) .

(40)

Hence

(𝐻Γ𝜓) (𝑥) = − (Γ𝐻𝜓) (𝑥) −

𝑑

∑

𝑗=1

𝛾
(𝑑)

5
𝛼

𝑑+1
𝛼

𝑗
⊗ (𝐷

𝑗
𝜉 (𝑥)) 𝜓 (𝑥)

+ 𝑖 (𝛾
(𝑑)

5
⊗ 𝜉 (𝑥) 𝑒

𝑖Φ(𝑥)
𝑀(𝑥)

−𝑀 (𝑥) 𝑒
−𝑖Φ(𝑥)

𝛾
(𝑑)

5
⊗ 𝜉 (𝑥)) 𝜓 (𝑥) .

(41)

Therefore,𝐻Γ𝜓 = −Γ𝐻𝜓 for all 𝜓 ∈ D
0
if and only if

𝑑

∑

𝑗=1

𝛾
(𝑑)

5
𝛼

𝑑+1
𝛼

𝑗
⊗ (𝐷

𝑗
𝜉 (𝑥)) 𝜓 (𝑥)

= 𝑖 (𝛾
(𝑑)

5
⊗ 𝜉 (𝑥) 𝑒

𝑖Φ(𝑥)
𝑀(𝑥)

−𝑀 (𝑥) 𝑒
−𝑖Φ(𝑥)

𝛾
(𝑑)

5
⊗ 𝜉 (𝑥)) 𝜓 (𝑥) , ∀𝜓 ∈ D

0
.

(42)

By the original assumption for𝑀(⋅),𝑀(𝑥) ∈ B(C𝑁𝑑 ⊗K) for
a.e. 𝑥 ∈ R𝑑. Therefore (42) is equivalent to (35).

By (32) and Γ
∗

= Γ, one easily sees that (34) is in fact
equivalent to operator equality Γ

∗
𝐻Γ = −𝐻. Hence 𝐻 is

unitarily equivalent to −𝐻. This implies the symmetry of
𝜎(𝐻) and 𝜎

𝑝
(𝐻) with respect to the origin.

Remark 9. Proposition 8 gives a generalization of [4,
Theorem 1] and clarifies a condition for 𝐻 to have
supersymmetry.

It may be difficult in general to show the existence of self-
adjoint, unitary solutions 𝜉(𝑥) to operator equation (35). Here
we only note the following fact.

Lemma 10. Let 𝑑 be odd. Assume (A.1)–(A.3). Suppose that

𝛾
(𝑑)

5
Φ (𝑥) ⊂ Φ (𝑥) 𝛾

(𝑑)

5
, a.e. 𝑥 ∈ R

𝑑
, 𝑗 = 1, . . . , 𝑑, (43)

𝜉 = 𝜉(𝑥) is independent of 𝑥 ∈ R𝑑 and

(𝐼 ⊗ 𝜉)Φ (𝑥) ⊂ −Φ (𝑥) (𝐼 ⊗ 𝜉) , (44)

(𝛾
(𝑑)

5
⊗ 𝜉)𝑀 (𝑥) ⊂ 𝑀 (𝑥) (𝛾

(𝑑)

5
⊗ 𝜉) , a.e. 𝑥 ∈ R

𝑑
. (45)

Then 𝜉 is a solution to (35).

Proof. Since 𝜉 is a constant operator, 𝐷
𝑗
𝜉 = 0. By

Lemma 2(iii), (43) implies the strong commutativity of 𝛾(𝑑)

5

and Φ. Hence 𝛾(𝑑)

5
𝑒

𝑖Φ(𝑥)
= 𝑒

𝑖Φ(𝑥)
𝛾

(𝑑)

5
for a.e. 𝑥 ∈ R𝑑. By (44)

and Lemma 2(iv), (𝐼 ⊗ 𝜉)𝑒
𝑖Φ(𝑥)

= 𝑒
−𝑖Φ(𝑥)

(𝐼 ⊗ 𝜉). We also have
(45) and the strong commutativity of Φ and𝑀. Hence

(𝛾
(𝑑)

5
⊗ 𝜉) 𝑒

𝑖Φ(𝑥)
𝑀(𝑥) = 𝑀 (𝑥) (𝛾

(𝑑)

5
⊗ 𝜉) 𝑒

𝑖Φ(𝑥)

= 𝑀(𝑥) 𝑒
−𝑖Φ

(𝛾
(𝑑)

5
⊗ 𝜉) .

(46)

Thus (35) holds with both sides being zero.

Additionally we make a remark on the converse of
Lemma 10. For this purpose, we need a lemma.

Lemma 11. Let 𝑇
𝑗
(𝑗 = 1, . . . , 𝑑) be a densely defined closed

linear operator onK. Suppose that

𝑑

∑

𝑗=1

𝛼
𝑗
⊗ 𝑇

𝑗
= 0 on ∩

𝑑

𝑗=1
𝐷(𝛼

𝑗
⊗ 𝑇

𝑗
) . (47)

Then, for all 𝑗 = 1, . . . , 𝑑, 𝑇
𝑗
= 0 on ∩

𝑑

𝑗=1
𝐷(𝑇

𝑗
).

Proof. Equation (47) implies that, for all 𝑢 ∈ ∩
𝑑

𝑗=1
𝐷(𝑇

𝑗
)

and V ∈ K, ∑𝑑

𝑗=1
⟨V, 𝑇

𝑗
𝑢⟩𝛼

𝑗
= 0. Since {𝛼

𝑗
}

𝑑

𝑗=1
is linearly

independent, it follows that ⟨V, 𝑇
𝑗
𝑢⟩ = 0, 𝑗 = 1, . . . , 𝑑. Hence

𝑇
𝑗
𝑢 = 0, 𝑗 = 1, . . . , 𝑑.

The following lemma gives a sufficient condition for a
solution to (35) to be a constant operator.

Lemma 12. Let 𝑑 be odd. Assume (A.1)–(A.3). Let 𝜉(𝑥) be
strongly differentiable onR𝑑 with (33) and be a solution to (35).
Suppose that (43)–(45) hold. Then 𝜉 is independent of 𝑥 ∈ R𝑑.

Proof. As in the proof of Lemma 10, (43)–(45) imply
(46). Hence the right-hand side of (35) vanishes, so that
∑

𝑑

𝑗=1
𝛾

(𝑑)

5
𝛼

𝑑+1
𝛼

𝑗
⊗ 𝐷

𝑗
𝜉(𝑥) = 0, which implies that ∑𝑑

𝑗=1
𝛼

𝑗
⊗

𝐷
𝑗
𝜉(𝑥) = 0. By Lemma 11, 𝐷

𝑗
𝜉(𝑥) = 0, 𝑗 = 1, . . . , 𝑑, which

implies that 𝜉 is independent of 𝑥.

We have from Proposition 8 and Lemma 10 the following
result.

Corollary 13. Let 𝑑 be odd. Assume (A.1)–(A.4). Suppose that
𝜉 = 𝜉(𝑥) is independent of 𝑥 ∈ R𝑑 and that (43)–(45) hold.
Then𝐻 has supersymmetry with respect to Γ.

5. Vanishing Theorems of the Kernel of 𝐻

In supersymmetric quantum mechanics with a supercharge
𝑄, a nonzero vector in ker𝑄 is called a supersymmetric states.
If the kernel of 𝑄 vanishes, that is, ker𝑄 = {0}, then the
supersymmetry is said to be spontaneously broken. It turns out
that, in supersymmetric quantummechanics, it is importanat
to investigate ker𝑄.Thus we are led to consider ker𝐻 in view
of Proposition 8.This would be interesting even if𝐻 does not
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have supersymmetry (note that 𝐻 does not necessarily have
supersymmetry).

To investigate ker 𝐻, we also need an additional condi-
tion.

(A.5) (i) For each 𝑓 ∈ C𝑁𝑑 ⊗K, the function: 𝑥 → 𝑀(𝑥)𝑓

is strongly differentiable on R𝑑 and, for all 𝑥 ∈ R𝑑,
𝑀(𝑥) commutes with 𝛼

𝑗
(𝑗 = 1, . . . , 𝑑). (ii) There

exists a constant 𝜇
0
> 0 such that

𝑀(𝑥)
2
− 𝑖

𝑑

∑

𝑗=1

𝛼
𝑗
𝛼

𝑑+1
𝐷

𝑗
𝑀(𝑥) ≥ 𝜇

2

0
, ∀𝑥 ∈ R

𝑑 (48)

as an operator inequality onC𝑁𝑑⊗K (note that, by the
principle of uniform boundedness, the strong partial
derivative𝐷

𝑗
𝑀(𝑥) is a bounded operator onC𝑁𝑑 ⊗K

for each 𝑥 ∈ R𝑑 and hence, under (A.2) and condition
(A.5)(i), the operator 𝑀(𝑥)

2
− 𝑖∑

𝑑

𝑗=1
𝛼

𝑗
𝛼

𝑑+1
𝐷

𝑗
𝑀(𝑥)

on C𝑁𝑑 ⊗K is a bounded self-adjoint operator).

For a linear operator 𝐿 on a Hilbert space, we denote the
resolvent set of 𝐿 by 𝜌(𝐿).

Lemma 14. Assume (A.2), (A.4), and (A.5). Then𝐻
𝑀
defined

by (16) is self-adjoint with𝐷(𝐻
𝑀
) = 𝐷(𝐻

0
) and

𝐻0
𝜓


2
+ 𝜇

2

0

𝜓


2
≤
𝐻𝑀

𝜓


2
, 𝜓 ∈ 𝐷 (𝐻

0
) . (49)

In particular, 0 ∈ 𝜌(𝐻
𝑀
) with operator-norm bound


𝐻

−1

𝑀


≤

1

𝜇
0

(50)

and𝐻
0
𝐻

−1

𝑀
is bounded with


𝐻

0
𝐻

−1

𝑀


≤ 1. (51)

Moreover,𝑀𝐻
−1

𝑀
is bounded with


𝑀𝐻

−1

𝑀


≤ 𝑎 +

𝑏

𝜇
0

. (52)

Proof. The self-adjointness of𝐻
𝑀
follows from that of𝐻with

Φ = 0. For all 𝜓 ∈ D
0
, using the anticommutativity of 𝛼

𝑗

with 𝛼
𝑑+1

and the commutativity of 𝑀(𝑥) with 𝛼
𝑑+1

and 𝛼
𝑗

(𝑗 = 1, . . . , 𝑑), we have

𝐻𝑀
𝜓


2

=
𝐻0

𝜓


2
+
𝑀𝜓


2

+

𝑑

∑

𝑗=1

⟨𝜓, (−𝑖𝐷
𝑗
𝑀)𝛼

𝑗
𝛼

𝑑+1
𝜓⟩

≥
𝐻0

𝜓


2

+ ∫
R𝑑

⟨𝜓(𝑥) ,(𝑀(𝑥)
2

−𝑖

𝑑

∑

𝑗=1

𝛼
𝑗
𝛼

𝑑+1
𝐷

𝑗
𝑀(𝑥))𝜓 (𝑥)⟩𝑑𝑥

≥
𝐻0

𝜓


2
+ 𝜇

2

0

𝜓


2
.

(53)

Hence (49) holds for all𝜓 ∈ D
0
. SinceD

0
is a core of𝐻

𝑀
, this

inequality extends to all 𝜓 ∈ 𝐷(𝐻
0
). In particular, we have

𝜇
0

𝜓
 ≤

𝐻𝑀
𝜓
 , 𝜓 ∈ 𝐷 (𝐻

0
) . (54)

This implies that the self-adjoint operator𝐻
𝑀
is bijectivewith

(50).
Inequality (49) implies also that, for all 𝜓 ∈ 𝐷(𝐻

0
),

‖𝐻
0
𝜓‖ ≤ ‖𝐻

𝑀
𝜓‖. Hence𝐻

0
𝐻

−1

𝑀
is bounded with (51).

By (A.4) and ‖(−Δ)
1/2

𝜓‖ = ‖𝐻
0
𝜓‖ for all 𝜓 ∈ 𝐷

((−Δ)
1/2

) = 𝐷(𝐻
0
), we have ‖𝑀𝜓‖ ≤ 𝑎‖𝐻

0
𝜓‖ + 𝑏‖𝜓‖. Hence,

for all 𝜙 ∈ H,

𝑀𝐻

−1

𝑀
𝜙

≤ 𝑎


𝐻

0
𝐻

−1

𝑀
𝜙

+ 𝑏


𝐻

−1

𝑀
𝜙


≤ (𝑎

𝐻

0
𝐻

−1

𝑀


+ 𝑏


𝐻

−1

𝑀


)
𝜙



≤ (𝑎 +
𝑏

𝜇
0

)
𝜙

 .

(55)

Thus (52) holds.

Lemma 15. Let 𝐴 be a self-adjoint operator on a complex
Hilbert spaceX. Then


𝑒

𝑖𝐴
− 1


= 2


sin 𝐴

2


. (56)

Proof. By the functional calculus, one has 𝑒
𝑖𝐴

− 1 =

2𝑖𝑒
𝑖𝐴/2 sin(𝐴/2). Hence ‖𝑒𝑖𝐴

− 1‖ = 2‖𝑒
𝑖𝐴/2 sin(𝐴/2)‖. Since

𝑒
𝑖𝐴/2 is unitary, one has ‖𝑒𝑖𝐴/2 sin(𝐴/2)‖ = ‖ sin(𝐴/2)‖. Thus
(56) holds.

Theorem 16. Assume (A.1)–(A.5) and

ess sup
𝑥∈R𝑑


sin Φ (𝑥)

2


<

1

2 (𝑎 + 𝑏𝜇
−1

0
)
. (57)

Then ker𝐻 = {0} and 0 ∈ 𝜌(𝐻).
Moreover, the constant

𝛾 (𝐻) := inf
𝜓∈𝐷(𝐻),‖𝜓‖=1

𝐻𝜓
 (58)

is strictly positive, 𝛾(𝐻) ∈ 𝜎(𝐻) or −𝛾(𝐻) ∈ 𝜎(𝐻), and

𝜎 (𝐻) ⊂ (−∞, −𝛾 (𝐻)] ∪ [𝛾 (𝐻) ,∞) . (59)

Proof. The operator𝐻 is written as

𝐻 = 𝐻
𝑀

+ 𝛼
𝑑+1

(𝑒
𝑖Φ

− 1)𝑀 = 𝐾𝐻
𝑀

(60)
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with

𝐾 := 𝐼 + 𝛼
𝑑+1

(𝑒
𝑖Φ

− 1)𝑀𝐻
−1

𝑀
. (61)

By applying Lemma 15 with 𝐴 = Φ(𝑥), we have


𝑒

𝑖Φ(𝑥)
− 1


= 2


sin Φ (𝑥)

2


. (62)

Therefore, for all 𝜓 ∈ H,

𝛼

𝑑+1
(𝑒

𝑖Φ
− 1)𝑀𝐻

−1

𝑀
𝜓


≤ 2 ess sup
𝑥∈R𝑑


sin(Φ (𝑥)

2
)




𝑀𝐻

−1

𝑀



𝜓
 .

(63)

By this estimate and (52), we obtain

𝛼

𝑑+1
(𝑒

𝑖Φ
− 1)𝑀𝐻

−1

𝑀



≤ 2(ess sup
𝑥∈R𝑑


sin(Φ (𝑥)

2
)


) (𝑎 + 𝑏𝜇

−1

0
) .

(64)

Hence, by (57), we obtain ‖𝛼
𝑑+1

(𝑒
𝑖Φ

− 1)𝑀𝐻
−1

𝑀
‖ < 1. This

implies that 𝐾 is bijective with bounded inverse 𝐾
−1. Thus

𝐻 is bijective with 𝐻
−1

= 𝐻
−1

𝑀
𝐾

−1 being bounded. Hence
ker𝐻 = {0} and 0 ∈ 𝜌(𝐻).

We set 𝑏
𝐻

:= ‖𝐻
−1
‖. If |𝜆| < 1/𝑏

𝐻
, then 𝜆 is in 𝜌(𝐻).

Therefore

𝜎 (𝐻) ⊂ (−∞, −𝑏
−1

𝐻
] ∪ [𝑏

−1

𝐻
,∞) . (65)

It is obvious that, for all 𝜓 ∈ 𝐷(𝐻) with ‖𝜓‖ = 1, 1 ≤

𝑏
𝐻
‖𝐻𝜓‖. This implies that 𝑏

𝐻
𝛾(𝐻) ≥ 1. On the other hand,

we have from (58) ‖𝜓‖ ≥ 𝛾(𝐻)‖𝐻
−1
𝜓‖, for all 𝜓 ∈ H. Hence

𝑏
𝐻
𝛾(𝐻) ≤ 1. Therefore 𝑏

−1

𝐻
= 𝛾(𝐻). Thus (59) holds and

𝛾(𝐻) > 0. Since 𝑏
𝐻

∈ 𝜎(𝐻
−1
) or −𝑏

𝐻
∈ 𝜎(𝐻

−1
), it follows

that 𝛾(𝐻) = 𝑏
−1

𝐻
∈ 𝜎(𝐻) or −𝛾(𝐻) ∈ 𝜎(𝐻).

Remark 17. Under the same assumption as inTheorem 16,𝐻
is Fredholm (the proof is easy).

We next consider a perturbation of Φ(⋅). Let 𝜂(⋅) ∈

Fs.a.
such that, for a.e. 𝑥 ∈ R𝑑, 𝜂(𝑥) is bounded and strongly

commutes with Φ(𝑥) and𝑀(𝑥). Then, for a.e. 𝑥 ∈ R𝑑,

Φ
𝜂
(𝑥) := Φ (𝑥) + 𝜂 (𝑥) (66)

is self-adjoint on C𝑁𝑑 ⊗K and

Φ
𝜂
:= ∫

⊕

R𝑑
Φ

𝜂
(𝑥) 𝑑𝑥 (67)

is a self-adjoint operator onH.
The quantity

𝜅 (𝐻) := sup
𝜓∈𝐷(𝐻),‖𝜓‖=1

𝑀𝜓


𝐻𝜓


, (68)

may be infinite. But we have the following.

Lemma 18. Under the assumption ofTheorem 16, 0 < 𝜅(𝐻) <

∞.

Proof. Since 𝐻 is closed with 𝐷(𝐻) = 𝐷(𝐻
0
) ∩ 𝐷(𝑈)(=

𝐷(𝐻
0
)) and ‖𝑈𝜓‖ = ‖𝑀𝜓‖, 𝜓 ∈ 𝐷(𝐻), it follows from the

closed graph theorem that there exists a constant 𝑐 > 0 such
that

𝑀𝜓
 ≤ 𝑐 (

𝐻𝜓
 +

𝜓
) , 𝜓 ∈ 𝐷 (𝐻) . (69)

Let 𝜓 ∈ 𝐷(𝐻) with ‖𝜓‖ = 1. Then, by Theorem 16, we have
‖𝐻𝜓‖ ≥ 𝛾(𝐻) > 0. Hence

𝑀𝜓


𝐻𝜓


≤ 𝑐 +
𝑐

𝛾 (𝐻)
. (70)

Therefore 𝜅(𝐻) ≤ 𝑐 + 𝑐/𝛾(𝐻) < ∞. If 𝜅(𝐻) = 0, then
‖𝑀𝜓‖ = 0 for all 𝜓 ∈ 𝐷(𝑀) = 𝐷(𝐻

0
). Hence 𝑀 = 0. But

this contradicts condition (A.5).

Theorem 19. Assume (A.1)–(A.5) and (57). Suppose that

ess sup
𝑥∈R𝑑


sin

𝜂 (𝑥)

2


<

1

2𝜅 (𝐻)
. (71)

Let
𝐻

𝜂
:= 𝐻

0
+ 𝛼

𝑑+1
𝑒

𝑖Φ𝜂𝑀. (72)
Then ker 𝐻

𝜂
= {0} and 0 ∈ 𝜌(𝐻

𝜂
).Moreover, the last statement

on 𝛾(𝐻) and 𝜎(𝐻) in Theorem 16 holds with𝐻 being replaced
by𝐻

𝜂
.

Proof. We write

𝐻
𝜂
= 𝐻 +𝑊, 𝑊 := 𝛼

𝑑+1
(𝑒

𝑖Φ𝜂 − 𝑒
𝑖Φ
)𝑀. (73)

By the strong commutativity of Φ(𝑥) and 𝜂(𝑥), we have for
a.e. 𝑥 ∈ R𝑑

𝑒
𝑖Φ𝜂(𝑥) − 𝑒

𝑖Φ(𝑥)
= 𝑒

𝑖Φ(𝑥)
(𝑒

𝑖𝜂(𝑥)
− 1)

= 2𝑖𝑒
𝑖Φ(𝑥)

𝑒
𝑖𝜂(𝑥)/2 sin(

𝜂 (𝑥)

2
) .

(74)

Hence, for all 𝜓 ∈ 𝐷(𝐻
0
)

𝑊𝜓
 ≤ 2ess sup

𝑥∈R𝑑


sin

𝜂 (𝑥)

2



𝑀𝜓
 . (75)

We have ‖𝑀𝜓‖ ≤ 𝜅(𝐻)‖𝐻𝜓‖. Hence
𝑊𝜓

 ≤ 𝐶
𝜂

𝐻𝜓
 (76)

with

𝐶
𝜂
:= 2𝜅 (𝐻) ess sup

𝑥∈R𝑑


sin

𝜂 (𝑥)

2


. (77)

Hence 𝑊 is 𝐻-bounded. By Remark 17, 𝐻 is Fredholm.
Condition (71) is equivalent to 𝐶

𝜂
< 1. Hence, by a

stability theorem (e.g., [12, Chapter IV, Theorem 5.22]), 𝐻
𝜂

is Fredholm and dim ker𝐻
𝜂
≤ dim ker𝐻 = 0. Therefore ker

𝐻
𝜂
= {0}. It follows from this fact and the self-adjointness

of 𝐻
𝜂
that Ran (𝐻

𝜂
) = H. Hence 0 ∈ 𝜌(𝐻

𝜂
). Then

the last statement of the present theorem can be proved in
the same way as in the proof of the corresponding part in
Theorem 16.
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6. Unitary Equivalence to a Gauge Theoretic
Dirac Operator and a Vanishing Theorem
for ker𝐻

In the papers [3, 4], it was shown that, under a suitable
condition, the Hamiltonian of the CQS (GCQS) model is
unitarily transformed to a Dirac operator which is simpler
in a sense. In this section, we show that those structures are
unified into a simple general structure.

We introduce a class ofΦ(⋅):

F := {Φ (⋅) ∈ Fs.a.
| 𝑒

± 𝑖Φ(⋅)/2 is strongly differentiable

and sup
𝑥∈R𝑑


𝐸

𝑗
(𝑥)


< ∞, 𝑗 = 1, . . . , 𝑑 } ,

(78)

where

𝐸
𝑗
(𝑥) := 𝐷

𝑗
𝑒

−𝑖Φ(𝑥)/2 (79)

denotes the strong partial derivative of 𝑒−𝑖Φ(𝑥)/2 in 𝑥
𝑗
. For

Φ(⋅) ∈ F, one can define a bounded linear operator

𝐴
𝑗
:= 𝑖 ∫

⊕

R𝑑
𝑒

𝑖Φ(𝑥)/2
𝐸

𝑗
(𝑥) 𝑑𝑥 (80)

onH.

Remark 20. IfΦ(⋅) ∈ F sucht thatΦ(𝑥) andΦ(𝑥

) commute

for a.e. 𝑥, 𝑥
∈ R𝑑, then 𝐸

𝑗
(𝑥) = −𝑖𝑒

−𝑖Φ(𝑥)/2
𝐷

𝑗
Φ(𝑥)/2 and

hence

𝐴
𝑗
=

1

2
∫

⊕

R𝑑
𝐷

𝑗
Φ (𝑥) 𝑑𝑥. (81)

Lemma 21. For each 𝑗 = 1, . . . , 𝑑,𝐴
𝑗
is a bounded self-adjoint

operator onH.

Proof. Since ess sup
𝑥∈R𝑑‖𝑒

𝑖Φ(𝑥)/2
𝐸

𝑗
(𝑥)‖ = ess sup

𝑥∈R𝑑

‖𝐸
𝑗
(𝑥)‖ < ∞,𝐴

𝑗
is bounded. We have

𝐴
∗

𝑗
=

(−𝑖)

2
∫

⊕

R𝑑
(𝐷

𝑗
𝑒

𝑖Φ(𝑥)/2
) 𝑒

−𝑖Φ(𝑥)/2
𝑑𝑥. (82)

Differentiating the identity 𝑒𝑖Φ(𝑥)/2
𝑒

−𝑖Φ(𝑥)/2
= 𝐼 in 𝑥

𝑗
, we have

𝑒
𝑖Φ(𝑥)/2

𝐸
𝑗 (𝑥) = − (𝐷

𝑗
𝑒

Φ(𝑥)/2
) 𝑒

−𝑖Φ(𝑥)/2
. (83)

Hence 𝐴∗

𝑗
= 𝐴

𝑗
.

ForΦ(⋅) ∈ F, we define an operator:

𝐻

:=

𝑑

∑

𝑗=1

𝛼
𝑗
(−𝑖𝐷

𝑗
− 𝐴

𝑗
) + 𝛼

𝑑+1
𝑀 = 𝐻

𝑀
−

𝑑

∑

𝑗=1

𝛼
𝑗
𝐴

𝑗
. (84)

Lemma 22. Assume (A.4). Let Φ(⋅) ∈ F. Suppose that

𝛼
𝑗
Φ ⊂ Φ𝛼

𝑗
, 𝑗 = 1, . . . , 𝑑. (85)

Then𝐻
 is self-adjoint and every core of𝐻

0
is a core of𝐻.

Proof. Under condition (A.4),𝐻
𝑀
is self-adjoint. By (85), we

have 𝛼
𝑗
𝐴

𝑗
= 𝐴

𝑗
𝛼

𝑗
(𝑗 = 1, . . . , 𝑑). Hence, by Lemma 21,

−∑
𝑑

𝑗=1
𝛼

𝑗
𝐴

𝑗
is a bounded self-adjoint operator. Hence the

Kato-Rellich theorem yields the desired result.

We note that, if one regards A := (𝐴
1
, . . . , 𝐴

𝑑
) as a (non-

commutative) gauge potential, then 𝐻
 is a gauge theoretic

Dirac operator with gauge potential A.
Let

𝑈 := 𝑒
𝑖Φ/2

, (86)

which is unitary. The following theorem shows that, under
a suitable condition, 𝐻 is unitarily equivalent to a gauge
theoretic Dirac operator𝐻.

Theorem 23. Assume (A.1)–(A.4) and (85). Let Φ(⋅) ∈ F.
Then

𝑈𝐻𝑈
−1

= 𝐻

. (87)

Proof. We have

𝑈𝐻𝑈
−1

= − 𝑖

𝑑

∑

𝑗=1

(𝑈𝛼
𝑗
𝑈

−1
)𝑈𝐷

𝑗
𝑈

−1

+ 𝑈𝛼
𝑑+1

𝑒
𝑖Φ
𝑈

−1
(𝑈𝑀𝑈

−1
) .

(88)

By (85) and Lemma 2, 𝑈𝛼
𝑗
𝑈

−1
= 𝛼

𝑗
. By (A.3) and Lemma 2,

𝑈𝑀𝑈
−1

= 𝑀. By (A.1) and Lemma 2(iv), 𝑈𝛼
𝑑+1

𝑒
𝑖Φ
𝑈

−1
=

𝛼
𝑑+1

𝑒
−𝑖Φ/2

𝑒
𝑖Φ
𝑒

𝑖Φ/2
= 𝛼

𝑑+1
. Moreover,

𝑈𝐷
𝑗
𝑈

−1
= 𝐷

𝑗
− 𝑖𝐴

𝑗
. (89)

Hence (87) holds.

The following theorem gives another sufficient condition
for ker𝐻 to be trivial.

Theorem24. Assume (A.1)–(A.4) and (85). LetΦ(⋅) ∈ F and

𝑑

∑

𝑗=1

ess sup
𝑥∈R𝑑


𝐸

𝑗
(𝑥)


< 𝜇

0
. (90)

Then ker𝐻 = {0} and 0 ∈ 𝜌(𝐻).

Proof. We write𝐻
= 𝐻

𝑀
+ 𝑋 with𝑋 := −∑

𝑑

𝑗=1
𝛼

𝑗
𝐴

𝑗
. Then

‖𝑋‖ ≤

𝑑

∑

𝑗=1


𝛼

𝑗
𝐴

𝑗


≤

𝑑

∑

𝑗=1

ess sup
𝑥∈R𝑑


𝐸

𝑗
(𝑥)


. (91)

By this estimate and (90), ‖𝑋𝐻
−1

𝑀
‖ < 1. Hence𝐻 is bijective

and 0 ∈ 𝜌(𝐻

). In particular, ker 𝐻

= {0}. On the other
hand, (87) implies that 𝜌(𝐻

) = 𝜌(𝐻) and ker 𝐻 = 𝑈
−1 ker

𝐻
. Thus 0 ∈ 𝜌(𝐻) and ker𝐻 = {0}.
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7. Essential Spectrum of 𝐻

In this section, we consider the essential spectrum of𝐻. For a
self-adjoint operator 𝑆 on aHilbert space, we denote by𝜎ess(𝑆)
the essential spectrum of 𝑆.

Lemma 25. Let dimK < ∞ and 𝑚 > 0 be a constant. Let
𝑉(⋅) : R𝑑

→ B(C𝑁𝑑 ⊗K) be Borel measurable satisfying the
following conditions.

(i) The operator 𝑉 := ∫
⊕

R𝑑
𝑉(𝑥)𝑑𝑥 is relatively bounded

with respect to 𝐻
0
.

(ii) lim
|𝑥| → ∞

‖𝑉(𝑥)‖ = 0.
(iii) The operator𝐻

𝑚
+ 𝑉 onH is self-adjoint.

Then

𝜎ess (𝐻𝑚
+ 𝑉) = (−∞, −𝑚] ∪ [𝑚,∞) . (92)

Proof. For each 𝑅 > 0, we denote by 𝜒
𝑅
the characteristic

function of the set {𝑥 ∈ R𝑑
| |𝑥| < 𝑅}. As in the case of the 3-

dimensional freeDirac operator (cf. [6, Lemma 4.6]), one can
show that |𝐻

𝑚
|
−𝑘
𝜒

𝑅
is compact for all 𝑘 > 0 as an operator on

𝐿
2
(R𝑑

;C𝑁𝑑). Since dimK < ∞, it follows that |𝐻
𝑚
|
−𝑘
𝜒

𝑅
is

compact as an operator on H. Hence, for all 𝑧 ∈ C\R, (𝐻
𝑚
−

𝑧)
−1
𝜒

𝑅
= ((𝐻

𝑚
−𝑧)

−1
|𝐻

𝑚
|)|𝐻

𝑚
|
−1
𝜒

𝑅
is compact. Since𝐻

𝑚
+𝑉

is self-adjoint with 𝐷(𝐻
𝑚
+ 𝑉) = 𝐷(𝐻

𝑚
) = 𝐷(𝐻

0
) and 𝑉 is

closed, it follows from the closed graph theorem that𝑉(𝐻
𝑚
+

𝑉 − 𝑧)
−1 is bounded (this can be shown by direct estimates

too). Therefore we have

(𝐻
𝑚
+ 𝑉 − 𝑧)

−1
− (𝐻

𝑚
− 𝑧)

−1

= −(𝐻
𝑚
− 𝑧)

−1
𝑉(𝐻

𝑚
+ 𝑉 − 𝑧)

−1
= −𝑊

𝑅
− 𝑋

𝑅
,

(93)

where 𝑊
𝑅
:= (𝐻

𝑚
− 𝑧)

−1
𝜒

𝑅
[𝑉(𝐻

𝑚
+ 𝑉 − 𝑧)

−1
], 𝑋

𝑅
= (𝐻

𝑚
−

𝑧)
−1
(1−𝜒

𝑅
)𝑉(𝐻

𝑚
+𝑉−𝑧)

−1. By the factmentioned previously,
𝑊

𝑅
is compact. We have

𝑋𝑅

 ≤
1

|Im 𝑧|
2

(1 − 𝜒
𝑅
) 𝑉

 . (94)

By condition (ii), for every 𝜀 > 0, there exists a constant𝑅 > 0

such that, for all a.e. 𝑥 ∈ R𝑑 with |𝑥| ≥ 𝑅, ‖𝑉(𝑥)‖ < 𝜀, that is,
ess sup

|𝑥|≥𝑅
‖𝑉(𝑥)‖ ≤ 𝜀, which implies that ‖(1 − 𝜒

𝑅
)𝑉‖ ≤ 𝜀.

Hence lim
𝑅 → ∞

‖𝑋
𝑅
‖ = 0. Therefore (𝐻

𝑚
+ 𝑉 − 𝑧)

−1
− (𝐻

𝑚
−

𝑧)
−1 is compact. Hence, byWeyl’s essential spectrum theorem

(e.g., [10, Theorem XIII.14]), 𝜎ess(𝐻𝑚
+ 𝑉) = 𝜎ess(𝐻𝑚

). On
the other hand, as in the case of the 3-dimensional free
Dirac operator [6,Theorem 1.1], one can show that 𝜎(𝐻

𝑚
) =

𝜎ess(𝐻𝑚
) = (−∞, −𝑚] ∪ [𝑚,∞). Thus (92) holds.

Theorem 26. Let dimK < ∞. Assume (A.1)–(A.4). Suppose
that there exists a constant𝑚 ∈ R satisfying

lim
|𝑥| → ∞

‖𝑀 (𝑥) − 𝑚‖ = 0, (95)

lim
|𝑥| → ∞


sin Φ (𝑥)

2


= 0. (96)

Then
𝜎 ess (𝐻) = (−∞, −𝑚] ∪ [𝑚,∞) . (97)

Proof. We write
𝐻 = 𝐻

𝑚
+ 𝑉

1
+ 𝑉

2 (98)
with

𝑉
1
:= 𝛼

𝑑+1
(𝑀 − 𝑚) , 𝑉

2
:= 𝛼

𝑑+1
(𝑒

𝑖Φ
− 1)𝑀. (99)

It is obvious that𝑉
1
and𝑉

2
are relatively boundedwith respect

to𝐻
0
and

lim
|𝑥| → ∞

𝑉1 (𝑥)
 = lim

|𝑥| → ∞

‖𝑀 (𝑥) − 𝑚‖ = 0. (100)

As for 𝑉
2
, we have

𝑉2
(𝑥)

 ≤ ‖𝑀 (𝑥)‖

𝑒

𝑖Φ(𝑥)
− 1


≤ 2 ‖𝑀 (𝑥)‖


sin Φ (𝑥)

2


.

(101)
Hence, by (95) and (96), we have lim

|𝑥| → ∞
‖𝑉

2
(𝑋)‖ = 0.

Therefore lim
|𝑥| → ∞

‖𝑉
1
(𝑥) + 𝑉

2
(𝑥)‖ = 0. Thus we can apply

Lemma 25 to obtain (97).

If Φ(⋅) is in the class F introduced in Section 6, then we
can obtain a sufficient condition for (97) to hold.

Theorem 27. Let dimK < ∞. Assume (A.1)–(A.4) (85) and
(95). Let Φ(⋅) ∈ F. Suppose that

lim
|𝑥| → ∞


𝐸

𝑗
(𝑥)


= 0. (102)

Then (97) holds.

Proof. By (87), we have 𝜎ess(𝐻) = 𝜎ess(𝐻

). Hence we need

only to prove

𝜎ess (𝐻

) = (−∞, −𝑚] ∪ [𝑚,∞) . (103)

We write

𝐻

= 𝐻

𝑚
+ 𝛼

𝑑+1 (𝑀 − 𝑚) −

𝑑

∑

𝑗=1

𝛼
𝑗
𝐴

𝑗
. (104)

We have lim
|𝑥| → ∞

‖𝛼
𝑑+1

(𝑀(𝑥) − 𝑚)‖ = 0. Moreover,
‖𝛼

𝑗
𝐴

𝑗
(𝑥)‖ ≤ ‖𝐸

𝑗
(𝑥)‖. Hence lim

|𝑥| → ∞
‖− ∑

𝑑

𝑗=1
𝛼

𝑗
𝐴

𝑗
(𝑥)‖ = 0.

Thus we can apply Lemma 25 to obtain (103).

8. Bounds on the Number of
Discrete Eigenvalues

In this section, in view of Theorem 26, we consider the
number of eigenvalues of 𝐻 in the interval (−𝑚,𝑚) and
establish upper bounds on it.This aspect has been considered
in the CQS model [3] as well as the GCQS model [4]. In
this paper, we take another method, which is an extension of
the method used in [13] where the number of eigenvalues of
the three-dimensional Dirac operator 𝐻

𝑚
+ 𝑉 with a scalar

potential 𝑉 : R3
→ R in (−𝑚,𝑚) is considered. This

extension is not difficult. But, for the sake of completeness, we
present some details of it. One easily notes that the problem
under consideration can be studied in a more general frame
work as in Lemma 25. Hence we first discuss the general case.
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8.1. A General Case. Let 𝑉 be as in Lemma 25 and

𝐻(𝑉) := 𝐻
𝑚
+ 𝑉. (105)

Then, by (92), an eigenvalue of𝐻(𝑉) in (−𝑚,𝑚) (if it exists)
is an isolated eigenvalue of𝐻(𝑉) with finite multiplicity. For
each 𝜆 ∈ (0,𝑚

2
), we denote by 𝑁(𝜆, 𝑉) the number of

eigenvalues in the interval (−√𝑚2 − 𝜆,√𝑚2 − 𝜆).
We first note an elementary fact:

Theorem 28. Suppose that the assumption of Lemma 25 holds
and that ‖𝑉(𝑥)‖ ≤ 𝜆/4𝑚 for a.e. 𝑥 ∈ R𝑑. Then𝑁(𝜆, 𝑉) = 0.

Proof. Suppose that 𝑁(𝜆, 𝑉) ≥ 1. Then, it follows from the
definition of 𝑁 := 𝑁(𝜆, 𝑉) that there exists an 𝑁-dime-
nsional subspace 𝐸 ofH such that

𝐻 (𝑉)𝜓
 ≤

√𝑚2 − 𝜆
𝜓

 , ∀𝜓 ∈ 𝐸. (106)

Hence

𝐻𝑚
𝜓
 ≤

𝐻 (𝑉)𝜓
 +

𝑉𝜓
 ≤ (√𝑚2 − 𝜆 +

𝜆

4𝑚
)
𝜓



≤ √𝑚2 −
𝜆

2

𝜓
 .

(107)

Hence ‖𝐻
𝑚
𝜓‖

2
≤ (𝑚

2
− (𝜆/2))‖𝜓‖

2, which is equivalent to
‖(−Δ + (𝜆/2))

1/2
𝜓‖

2

≤ 0. This implies that 𝜓 = 0. But this is
a contradiction.

In view of Theorem 28, we define, for each 𝜆 > 0, 𝑉
𝜆
:

R𝑑
→ B(C𝑁𝑑 ⊗K) by

𝑉
𝜆
(𝑥) :=

{

{

{

𝑉 (𝑥) if ‖𝑉 (𝑥)‖ >
𝜆

4𝑚
,

0 otherwise.
(108)

For each 𝜆 > 0, the operator

𝑅
𝜆
:= (−Δ +

𝜆

2
)

−1/2

(109)

is a bounded self-adjoint operator. Since 𝑉 is 𝐻
0
-bounded,

where 𝐻
0
is defined by (10) and (𝐻

0
+ 𝑖)𝑅

𝜆
is bounded, it

follows that𝑉𝑅
𝜆
and𝑉

𝜆
𝑅

𝜆
are bounded operators onH. Also

𝐻
0
𝑅

𝜆
is bounded with ‖𝐻

0
𝑅

𝜆
‖ ≤ 1. Hence the following

operators 𝑇
𝜆𝑗
(𝑗 = 1, 2, 3, 5) are inB(H):

𝑇
𝜆1

:= (𝐻
0
𝑅

𝜆
)

∗
𝑉

𝜆
𝑅

𝜆
,

𝑇
𝜆2

:= (𝑉
𝜆
𝑅

𝜆
)

∗
𝐻

0
𝑅

𝜆
,

𝑇
𝜆3

:= 𝑚𝛼
𝑑+1

𝑅
𝜆
𝑉

𝜆
𝑅

𝜆
,

𝑇
𝜆4

:= 𝑚𝑅
𝜆
𝑉

𝜆
𝑅

𝜆
𝛼

𝑑+1
,

𝑇
𝜆5

:= (𝑉
𝜆
𝑅

𝜆
)

∗
𝑉

𝜆
𝑅

𝜆
.

(110)

We set

V (𝑥) := ‖𝑉 (𝑥)‖ , V
𝜆
(𝑥) :=

𝑉𝜆
(𝑥)

 , a.e. 𝑥 ∈ R
𝑑
. (111)

For a compact operator 𝐴 on a Hilbert space, we denote
the nonincreasing sequence of the singular values of 𝐴

(repeated with multiplicity) by 𝜇
𝑛
(𝐴) (𝑛 ∈ N). For 𝑓 ∈

𝐿
𝑝
(R𝑑

), we set ‖𝑓‖
𝐿
𝑝 := (∫

R𝑑
|𝑓(𝑥)|

𝑝
𝑑𝑥)

1/𝑝.

Lemma 29. Let 𝑑 ≥ 3 and suppose that the assumption of
Lemma 25 holds and V ∈ 𝐿

𝑑
(R𝑑

) ∩ 𝐿
𝑑/2

(R𝑑
). Then, for all 𝑗 =

1, 2, 3, 4, 5, 𝑇
𝜆𝑗

is compact. Moreover, there exists a constant
𝐶 > 0 independent of 𝑉 and 𝜆 > 0 such that, for all 𝑛 ∈ N,

𝜇
𝑛
(𝑇

𝜆𝑗
) ≤ 𝐶

V𝜆

𝐿
𝑑𝑛

−1/𝑑
(𝑗 = 1, 2) ,

𝜇
𝑛
(𝑇

𝜆𝑗
) ≤ 𝐶


V1/2

𝜆



2

𝐿
𝑑
𝑛

−2/𝑑
(𝑗 = 3, 4) ,

𝜇
𝑛
(𝑇

𝜆5
) ≤ 𝐶

V𝜆


2

𝐿
𝑑𝑛

−2/𝑑
.

(112)

Proof. By theweakHausdorff-Young inequality (e.g., [11, page
32]) and the condition 𝑑 ≥ 3, one can easily see that the
Fourier transform𝑔

𝜆
of the function:R𝑑

∋ 𝑘 → (𝑘
2
+𝜆/2)

−1/2

is in 𝐿
𝑝


w (R
𝑑
) (the weak 𝐿

𝑝


space on R𝑑) with 1/𝑝

= 1 −

1/𝑑 and ‖𝑔
𝜆
‖

𝑝

,w ≤ 𝑐

𝑑
, where ‖ ⋅ ‖

𝑝

,w denotes the “pseudo”

norm of 𝐿𝑝

w (R
𝑑
) and 𝑐

𝑑
is a constant independent of 𝜆 > 0.

By Cwikel’s theorem [14, Section 3] and the condition V ∈

𝐿
𝑑
(R𝑑

), which implies that V
𝜆
∈ 𝐿

𝑑
(R𝑑

), V
𝜆
𝑅

𝜆
is compact as

an operator on 𝐿
2
(R𝑑

) and

𝜇
𝑛
(V

𝜆
𝑅

𝜆
) ≤ 𝐾

1

V𝜆

𝐿
𝑑𝑛

−1/𝑑
, 𝑛 ∈ N, (113)

where 𝐾
1
> 0 is a constant independent of 𝑉, 𝜆 > 0 and

𝑛 ∈ N. Since dimK < ∞, it follows that V
𝜆
𝑅

𝜆
is compact

also as an operator onH. Let

𝐵
𝜆
(𝑥) :=

{{

{{

{

𝑉 (𝑥)

V (𝑥)
if V (𝑥) > 𝜆

4𝑚
,

0 otherwise.
(114)

Then 𝐵
𝜆
is bounded with ‖𝐵

𝜆
(𝑥)‖ ≤ 1. We have 𝑉

𝜆
𝑅

𝜆
=

𝐵
𝜆
V

𝜆
𝑅

𝜆
. Hence 𝑉

𝜆
𝑅

𝜆
is compact. This shows that all 𝑇

𝜆𝑗
(𝑗 =

1, 2, 3, 4, 5) are compact.
In general, for all compact operators 𝐴 and bounded

operators 𝐵 on a Hilbert space

𝜇
𝑛
(𝐵𝐴) ≤ ‖𝐵‖ 𝜇𝑛

(𝐴) . (115)

(e.g., see [15, Theorem 1.6].). Hence

𝜇
𝑛
(𝑉

𝜆
𝑅

𝜆
) ≤

𝐵𝜆

 𝜇𝑛
(V

𝜆
𝑅

𝜆
) ≤ 𝐾

1

V𝜆

𝐿
𝑑𝑛

−1/𝑑
. (116)

Therefore

𝜇
𝑛
(𝑇

𝜆1
) ≤

𝐻0
𝑅

𝜆

𝐾1‖V‖𝐿
𝑑𝑛

−1/𝑑
≤ 𝐾

1

V𝜆

𝐿
𝑑𝑛

−1/𝑑
. (117)

Similarly one can show that 𝑇
𝜆2
, is compact and

𝜇
𝑛
(𝑇

𝜆2
) ≤ 𝐾

1

V𝜆

𝐿
𝑑𝑛

−1/𝑑
, (118)
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where we have use the fact that 𝜇
𝑛
(𝐴) = 𝜇

𝑛
(𝐴

∗
) for all

compact operators on a Hilbert space [15, (1.3)].
As for 𝑇

𝜆3
, we write

𝑇
𝜆3

= 𝑚𝛼
𝑑+1

𝑅
𝜆
V1/2

𝜆
𝐵

𝜆
V1/2

𝜆
𝑅

𝜆
. (119)

By the condition V ∈ 𝐿
𝑑/2

(R𝑑
), V1/2

𝜆
∈ 𝐿

𝑑
(R𝑑

). Hence, Cwikel’s
theorem again, V1/2

𝜆
𝑅

𝜆
is compact and

𝜇
𝑛
(V1/2

𝜆
𝑅

𝜆
) ≤ 𝐾



1


V1/2

𝜆

𝐿
𝑑
𝑛

−1/𝑑
, (120)

where 𝐾

1
> 0 is a constant independent of 𝑉 and 𝜆 > 0. We

have

𝜇
𝑛
(𝑇

𝜆3
) ≤ 𝑚𝜇

𝑛
(𝑅

𝜆
V1/2

𝜆
𝐵

𝜆
V1/2

𝜆
𝑅

𝜆
) . (121)

In general, for all compact operators 𝐴 and bounded opera-
tors𝐷 on a Hilbert space,

𝜇
2𝑛+1

(𝐴
∗
𝐷𝐴) ≤ ‖𝐷‖ 𝜇𝑛+1

(𝐴)
2
,

𝜇
2𝑛
(𝐴

∗
𝐷𝐴) ≤ ‖𝐷‖ 𝜇𝑛

(𝐴)
2
,

(122)

where we have used the fact that, for all compact operators 𝐴
and 𝐵 on a Hilbert space,

𝜇
𝑛+𝑘+1

(𝐴𝐵) ≤ 𝜇
𝑛+1

(𝐴) 𝜇
𝑘+1

(𝐵) , 𝑛, 𝑘 ≥ 0. (123)

Hence

𝜇
2𝑛+1

(𝑇
𝜆3
) ≤ 𝑚𝜇

𝑛+1
(V1/2

𝜆
𝑅

𝜆
)

2

≤ 𝑚(𝐾


1
)

2
V1/2

𝜆



2

𝐿
𝑑
(𝑛 + 1)

−2/𝑑
,

𝜇
2𝑛
(𝑇

𝜆3
) ≤ 𝑚𝜇

𝑛
(V1/2

𝜆
𝑅

𝜆
)

2

≤ 𝑚(𝐾


1
)

2
V1/2

𝜆



2

𝐿
𝑑
𝑛

−2/𝑑
,

(124)

which imply that

𝜇
𝑛
(𝑇

𝜆3
) ≤ 𝐾



2


V1/2

𝜆



2

𝐿
𝑑
𝑛

−2/𝑑
, 𝑛 ∈ N, (125)

where 𝐾


2
> 0 is a constant independent of 𝑉, 𝜆, and 𝑛.

Similarly we have

𝜇
𝑛
(𝑇

𝜆4
) ≤ 𝐾



2


V1/2

𝜆



2

𝐿
𝑑
𝑛

−2/𝑑
,

𝜇
𝑛
(𝑇

𝜆5
) ≤ 𝐾



3

V𝜆


2

𝐿
𝑑 𝑛

−2/𝑑
, 𝑛 ∈ N,

(126)

where 𝐾

3
> 0 is a constant independent of 𝑉, 𝜆 and 𝑛. Thus

the desired results follow.

Theorem 30. Let 𝑑 ≥ 3, and suppose that the assumption of
Lemma 25 holds and ‖𝑉(⋅)‖ ∈ 𝐿

𝑑
(R𝑑

) ∩ 𝐿
𝑑/2

(R𝑑
). Let 𝜆 ∈

(0,𝑚
2
). Then, there exists a constant 𝐶

0
> 0 independent of 𝑉

and 𝜆 such that

𝑁(𝜆, 𝑉) ≤ 𝐶
0
∫

‖𝑉(𝑥)‖>𝜆/4𝑚

(‖𝑉 (𝑥)‖
𝑑/2

+ ‖𝑉 (𝑥)‖
𝑑
) 𝑑𝑥.

(127)

Proof. We need only to consider the case where 𝑁 :=

𝑁(𝜆, 𝑉) ≥ 1. Then there exists an 𝑁-dimensional sub-
space 𝐸 of H such that (106) holds for all 𝜓 ∈ 𝐸. It is easy
to see that ‖(𝑉

𝜆
− 𝑉)𝜙‖ ≤ (𝜆/4𝑚)‖𝜙‖, for all 𝜙 ∈ H.

Let 𝜓 ∈ 𝐸. Then, as in the proof of Theorem 28, we have
‖(𝐻

𝑚
+ 𝑉

𝜆
)𝜓‖

2
≤ (𝑚

2
− (𝜆/2))‖𝜓‖

2, which is equivalent to
the following inequality:



(−Δ +
𝜆

2
)

1/2

𝜓



2

+ ⟨𝐻
0
𝜓,𝑉

𝜆
𝜓⟩ + ⟨𝑉

𝜆
𝜓,𝐻

0
𝜓⟩

+ 𝑚⟨𝛼
𝑑+1

𝜓,𝑉
𝜆
𝜓⟩ + 𝑚⟨𝑉

𝜆
𝜓, 𝛼

𝑑+1
𝜓⟩

+
𝑉𝜆

𝜓


2
≤ 0.

(128)

The subspace 𝐹 := (−Δ + 𝜆/2)
1/2

𝐸 is also 𝑁-dimensional.
Inequality (128) implies that, for all 𝜙 ∈ 𝐹,

𝜙


2
≤ ⟨𝜙, 𝑇

𝜆
𝜙⟩ , (129)

where

𝑇
𝜆
:= −

5

∑

𝑗=1

𝑇
𝜆𝑗
. (130)

By Lemma 29, 𝑇
𝜆
is a compact self-adjoint operator on

H. Hence, by the Hilbert-Schmidt theorem, there exists
a complete orthonormal system {𝜙

𝑛
}

∞

𝑛=1
of H and a real

sequence {𝑡
𝑛
}

∞

𝑛=1
such that 𝑇

𝜆
𝜙

𝑛
= 𝑡

𝑛
𝜙

𝑛
and lim

𝑛 → ∞
𝑡

𝑛
= 0.

Using this fact, one sees that the number of eigenvalues 𝑡
𝑛

of 𝑇
𝜆
with 𝑡

𝑛
≥ 1 is more than or equal to dim𝐹 = 𝑁.

Hence 𝜇
𝑁
(𝑇

𝜆
) ≥ 1. Let 𝑘 be the largest natural number

not exceeding (𝑁 + 4)/5. Then 5𝑘 − 4 ≤ 𝑁. Hence 1 ≤

𝜇
𝑁
(𝑇

𝜆
) ≤ 𝜇

5𝑘−4
(𝑇

𝜆
). On the other hand, by a general fact on

singular values of the sum of two compact operators (e.g., [15,
Theorem 1.7]), we have

𝜇
5𝑘−4

(𝑇
𝜆
) ≤

5

∑

𝑗=1

𝜇
𝑘
(𝑇

𝜆𝑗
) . (131)

Using this fact and Lemma 29, we obtain

1 ≤ 2𝐶
V𝜆

𝐿
𝑑𝑘

−1/𝑑
+ 2𝐶


V1/2

𝜆



2

𝐿
𝑑
𝑘

−2/𝑑
+ 𝐶

V𝜆


2

𝐿
𝑑𝑘

−2/𝑑
.

(132)

We have 𝑘 ≥ 𝑁/5. Hence

1 ≤ 𝐶

(
V𝜆

𝐿
𝑑𝑁

−1/𝑑
+

V1/2

𝜆



2

𝐿
𝑑
𝑁

−2/𝑑
+
V𝜆


2

𝐿
𝑑𝑁

−2/𝑑
) ,

(133)

where 𝐶
> 0 is a constant independent of 𝑉, 𝜆, and 𝑁. This

implies that 𝑁 ≤ 𝐶
0
(‖V1/2

𝜆
‖

𝑑

𝐿
𝑑 + ‖V

𝜆
‖

𝑑

𝐿
𝑑) with a constant 𝐶

0

independent of 𝑉 and 𝜆. Thus (127) holds.

As in Corollaries 1.2 and 1.3 in [13], we have from
Theorem 30 the following results.
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Corollary 31. Under the same assumption as in Theorem 30,
the number 𝑁(𝑉) of eigenvalues of 𝐻(𝑉) in (−𝑚,𝑚) is finite
and

𝑁(𝑉) ≤ 𝐶
0
∫
R𝑑

(‖𝑉 (𝑥)‖
𝑑/2

+ ‖𝑉 (𝑥)‖
𝑑
) 𝑑𝑥. (134)

Corollary 32. Suppose that the assumption of Theorem 30
holds. Let 𝜆

𝑗
(𝑗 = 1, . . . , 𝑁(𝑉)) be the eigenvalues of 𝐻(𝑉) in

(−𝑚,𝑚), counted with multiplicity, and let 𝛾 > 0 be such that

𝑓
𝛾
(𝑉) := ∫

R𝑑
‖𝑉 (𝑥)‖

𝛾
(‖𝑉 (𝑥)‖

𝑑/2
+ ‖𝑉 (𝑥)‖

𝑑
) 𝑑𝑥 < ∞.

(135)

Then, there exists a constant 𝐶
𝛾
> 0 such that

𝑁(𝑉)

∑

𝑗=1

(𝑚
2
− 𝜆

2

𝑗
)

𝛾

≤ 𝐶
𝛾
𝑓

𝛾 (𝑉) . (136)

8.2. Applications. Now we apply the results in the preceed-
ing section to the Dirac operator 𝐻. For 𝜆 ∈ (0,𝑚

2
),

we denote by 𝑁(𝜆) the number of eigenvalues of 𝐻 in
(−√𝑚2 − 𝜆,√𝑚2 − 𝜆).

Theorem 33. Let 𝑑 ≥ 3 and 𝜆 ∈ (0,𝑚
2
). Suppose that the

assumption of Theorem 26 holds. Let

𝐹
𝑀,Φ (𝑥) := ‖𝑀 (𝑥) − 𝑚‖ + 2𝑚


sin Φ (𝑥)

2


, a.e. 𝑥 ∈ R

𝑑
.

(137)

(i) If 𝐹
𝑀,Φ

(𝑥) ≤ 𝜆/4𝑚, a.e. 𝑥 ∈ R𝑑, then𝑁(𝜆) = 0.

(ii) Suppose that 𝐹
𝑀,Φ

∈ 𝐿
𝑑/2

(R𝑑
) ∩ 𝐿

𝑑
(R𝑑

). Then there
exists a positive constant 𝐶 > 0 independent of 𝑀,Φ,
and 𝜆 such that

𝑁(𝜆) ≤ 𝐶∫
𝐹𝑀,Φ(𝑥)>𝜆/4𝑚

(𝐹
𝑀,Φ(𝑥)

𝑑/2
+ 𝐹

𝑀,Φ(𝑥)
𝑑
) 𝑑𝑥 < ∞.

(138)

Moreover, the number 𝑁
0
of eigenvalues of 𝐻 in (−𝑚,𝑚)

obeys

𝑁
0
≤ 𝐶∫

R𝑑
(𝐹

𝑀,Φ
(𝑥)

𝑑/2
+ 𝐹

𝑀,Φ
(𝑥)

𝑑
) 𝑑𝑥 < ∞. (139)

Proof. (i) We can write𝐻 = 𝐻(𝑉) with𝑉 = 𝛼
𝑑+1

(𝑀𝑒
𝑖Φ
−𝑚).

Hence

‖𝑉 (𝑥)‖ =

𝑀 (𝑥) 𝑒

𝑖Φ(𝑥)
− 𝑚



≤ ‖𝑀 (𝑥) − 𝑚‖ + 𝑚

𝑒

𝑖Φ(𝑥)
− 1


= 𝐹

𝑀,Φ (𝑥) .

(140)

Hence, the present assumption implies that ‖𝑉(𝑥)‖ ≤ 𝜆/4𝑚

a.e. 𝑥 ∈ R𝑑. Hence, by Theorem 28,𝑁(𝜆) = 0.
(ii) By (140) and the present assumption, ‖𝑉(⋅)‖ ∈

𝐿
𝑑
(R𝑑

) ∩ 𝐿
𝑑/2

(R𝑑
). Thus we can apply Theorem 30 to obtain

(138). Inequality (139) follows from (138) or Corollary 31.

We have from Corollary 32 the following fact.

Corollary 34. Let 𝑑 ≥ 3. Suppose that the assumption of
Theorem 26 and 𝐹

𝑀,Φ
∈ 𝐿

𝑑/2
(R𝑑

) ∩ 𝐿
𝑑
(R𝑑

). Let 𝜆
𝑗
(𝑗 =

1, . . . , 𝑁
0
) be the eigenvalues of 𝐻 in (−𝑚,𝑚), counted with

multiplicity, and let 𝛾 > 0 be such that

𝑓
𝛾
(𝑀,Φ)

:= ∫
R𝑑

𝐹
𝑀,Φ

(𝑥)
𝛾
(𝐹

𝑀,Φ
(𝑥)

𝑑/2
+ 𝐹

𝑀,Φ
(𝑥)

𝑑
) 𝑑𝑥 < ∞.

(141)

Then, there exists a constant 𝐶
𝛾
> 0 such that

𝑁0

∑

𝑗=1

(𝑚
2
− 𝜆

2

𝑗
)

𝛾

≤ 𝐶
𝛾
𝑓

𝛾 (𝑀,Φ) . (142)

We can also use Theorems 23 and 27 to obtain another
upper bound for𝑁(𝜆). Let

𝐺
𝑀,Φ (𝑥) :=



𝑀 (𝑥) − 𝑚 −

𝑑

∑

𝑗=1

𝛼
𝑑+1

𝛼
𝑗
𝑒

𝑖Φ(𝑥)/2
𝐸

𝑗 (𝑥)



,

a.e. 𝑥 ∈ R
𝑑
.

(143)

Theorem 35. Let 𝑑 ≥ 3, and let 𝜆 ∈ (0,𝑚
2
). Suppose that the

assumption of Theorem 27 holds. Then one has the following.

(i) If 𝐺
𝑀,𝜙

(𝑥) ≤ 𝜆/4𝑚 for a.e. 𝑥 ∈ R𝑑, then𝑁(𝜆) = 0.

(ii) Suppose that 𝐺
𝑀,Φ

∈ 𝐿
𝑑/2

(R𝑑
) ∩ 𝐿

𝑑
(R𝑑

). Then (138)
and (139) with 𝐹

𝑀,Φ
replaced by 𝐺

𝑀,Φ
hold.

Proof. By Theorem 23, 𝑁(𝜆) is equal to the number of
eigenvalues of 𝐻 in (−√𝑚2 − 𝜆, √𝑚2 − 𝜆). One can write
𝐻


= 𝐻

𝑚
+ 𝑉 with 𝑉 := 𝛼

𝑑+1
(𝑀 − 𝑚 − ∑

𝑑

𝑗=1
𝛼

𝑑+1
𝛼

𝑗
𝐴

𝑗
). We

have ‖𝑉(𝑥)‖ = 𝐺
𝑀,Φ

(𝑥).Thus, in the sameway as in the proof
of Theorem 30, we obtain the desired results.

Theorem 35 implies the following result as in
Corollary 34.

Corollary 36. Let 𝑑 ≥ 3. Suppose that the assumption of
Theorem 27 holds and 𝐺

𝑀,Φ
∈ 𝐿

𝑑/2
(R𝑑

) ∩ 𝐿
𝑑
(R𝑑

). Then (142)
with 𝐹

𝑀,Φ
replaced by 𝐺

𝑀,Φ
holds for all 𝜆 > 0 such that

∫
R𝑑

𝐺
𝑀,Φ

(𝑥)
𝛾
(𝐺

𝑀,Φ
(𝑥)

𝑑/2
+ 𝐺

𝑀,Φ
(𝑥)

𝑑
)𝑑𝑥 < ∞.
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