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[1] We present a three-dimensional high-resolution hydrodynamic model for unsteady
incompressible flow over an evolving bed topography. This is achieved by using a
multilevel Cartesian grid technique that allows the grid to be refined in high-gradient
regions and in the vicinity of the river bed. The grid can be locally refined and adapted to
the bed geometry, managing the Cartesian grid cells and faces using a hierarchical tree data
approach. A ghost-cell immersed-boundary technique is applied to cells intersecting the bed
topography. The governing equations have been discretized using a finite-volume method
on a staggered grid, conserving second-order accuracy in time and space. The solution
advances in time using the fractional step approach. Large-eddy simulation is used as
turbulence closure. We validate the model against several experiments and other results
from literature. Model results for Stokes flow around a cylinder in the vicinity of a moving
wall agree well with Wannier’s analytical solution. At higher Reynolds numbers, computed
trailing bubble length, separation angle, and drag coefficient compare favorably with
experimental and previous computational results. Results for the flow over two- and
three-dimensional dunes agree well with published data, including a fair reproduction of
recirculation zones, horse-shoe structures, and boiling effects. This shows that the model is
suitable for being used as a hydrodynamic submodel in the high-resolution modeling of
sediment transport and formation and evolution of subaqueous ripples and dunes.

Citation: Nabi, M., H. J. de Vriend, E. Mosselman, C. J. Sloff, and Y. Shimizu (2012), Detailed simulation of morphodynamics:

1. Hydrodynamic model, Water Resour. Res., 48, W12523, doi:doi:10.1029/2012WR011911.

1. Introduction
[2] The deformation of alluvial beds under the action of

flowing water produces complex geometries that change in
time. Solving such problems is one of the main challenges in
computational morphodynamics. Methods based on bound-
ary-fitted grids offer an attractive way to deal with complex
geometries, because they greatly simplify the imposition of
boundary conditions. However, the possibilities to fit the
boundaries are limited for structured grids, whilst unstruc-
tured grids are computationally more expensive. Moreover,
boundary-fitted grids must be regenerated after each defor-
mation of the boundaries, which requires much computa-
tional effort. Generation of a grid suitable for complex
geometries can also be troublesome and sometimes cannot
be applied without multiblock techniques. These issues lead
to complexity and possibly instability in the computational

process. To avoid these problems, we use a fixed Cartesian
grid with special treatment of the boundary zones.

[3] Methods based on Cartesian grids have attracted
special attention, now that techniques to handle complex geo-
metries have become available. The Cartesian grids are fixed
and intersect the boundaries, which requires special treatment
of these boundaries, such as cut-cell techniques, or ghost-cell
immersed-boundary methods. In the former approach, the
cells that intersect the boundaries are cut. This approach has
been used for inviscid [Bayyuk, 1996; Quirk, 1994] and vis-
cous flow computations, including fixed and moving bounda-
ries [Mittal et al., 2008; Udaykumar et al., 2001; Ye et al.,
1999; Kirkpatrick et al., 2003]. It represents the boundary
location accurately, but a boundary can intersect a cell in
many ways, which causes complexity in programming and
reduces computational efficiency. Ghost-cell immersed-
boundary techniques force the flow at the boundary using
simple interpolation, which does not increase computation
time significantly. This method has been applied to viscous
flows with fixed [Gilmanov et al., 2003; Tseng and Ferziger,
2003; Balaras, 2004] and moving boundaries [Fadlun et al.,
2000; Yang and Balaras, 2006]. The cases they describe
show that the ghost-cell immersed-boundary method is suita-
ble for problems with very complex geometries.

[4] Uniform Cartesian grids are still expensive for simu-
lation of alluvial processes with large spatial and temporal
scales, because the entire domain has to be covered by cells
of the same size. The regions with highest gradients deter-
mine the cell size, whereas they usually cover only a small
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fraction of the domain. A locally refined Cartesian grid is
therefore preferable. This method has been applied success-
fully to inviscid flows [Aftosmis et al., 1998; Clarke et al.,
1986; Zeeuw and Powell, 1993; Waymel et al., 2006;
Ham et al., 2002] and viscous flows [Martin et al., 2008;
Iaccarino and Verzicco, 2003]. Aftosmis et al. [1998] con-
sider the grid as fully unstructured and discretize the equa-
tions on a single grid, whereas Ham et al. [2002] treat the
grid as multilevel and use a hierarchical tree data structure.
In a multilevel grid, each grid covers a subdomain of a
coarser grid. Some authors have suggested [Coirier and
Powell, 1996] or demonstrated [Berger et al., 2000; Ham
et al., 2002] that the hierarchical tree structure for the grid
is amenable to multigrid methods, which are more efficient
than the Krylov space methods for large matrices [Saad,
2003].

[5] To avoid complexity and the need of regridding after
each time step, we solve the flow on a Cartesian grid that is
locally refined in high-gradient regions such as the boundary
layer near the river bed. A ghost-cell immersed-boundary
method is applied, enforcing the no-slip condition on the
bed surface via momentum forcing at the bed. The current
method interpolates the flow for the ghost cells in a way
similar to Balaras [2004]. The current paper focuses on
describing the numerical methods for the hydrodynamic part
of the solver, validating the accuracy of the applied
approach and demonstrating the capabilities of the solver in
complex dynamic geometries. The cases used for this hydro-
dynamic validation are Stokes flow around a cylinder in the
vicinity of a moving wall, flow around a cylinder at higher
Reynolds numbers, and flow over two-dimensional (2-D)
and three-dimensional (3-D) dunes. Two companion papers
(M. Nabi et al., Detailed simulation of morphodynamics:
2. Sediment pick-up, transport and deposition; 3. Ripples
and dunes, submitted to Water Resour. Res., 2013a, 2013b)
show that the model performs well as a hydrodynamic sub-
model in the high-resolution modeling of sediment transport
and formation and evolution of subaqueous ripples and
dunes.

2. Governing Equations
[6] The governing equations for the fluid are the full

3-D, unsteady, incompressible Navier-Stokes equations
written in terms of primitive variables. These equations are
given below in terms of volume-filtered variables.

@uj

@xj
¼ 0; (1)

@ui

@t
þ @uiuj

@xj
¼ � 1

�

@P

@xi
þ @

@xj
½2ð� þ �tÞSij�; (2)

where xi’s are the coordinates, t is the time, P is the modi-
fied pressure, �0 is the mass density, ui is the filtered veloc-
ity component in xi direction, � and �t are the molecular
and turbulent viscosities, respectively, and Sij is the resolved
strain rate tensor:

Sij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
: (3)

In large eddy simulation (LES), the large eddies are solved
directly, whereas the smaller ones are captured by a turbu-
lence closure. LES uses volume filtering, eliminating
eddies smaller than the grid cell volume. The effect of the
small scales on the resolved part of turbulence appears in
the subgrid-scale (SGS) stress term

� ij ¼ uiuj � uiuj (4)

which must be modeled. The SGS effect is modeled using
the Smagorinsky model [Smagorinsky, 1963], in which the
turbulence viscosity is defined as

�t ¼ ðCS�Þ 2jSj; (5)

where CS ¼ 0:16 is Smagorinsky constant, and

jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
: (6)

� ¼ ð�x:�y:�zÞ1=3: (7)

Fixed boundaries are treated with a wall-function technique
rather than a dynamic model, as there is no viscous sublayer
on rough boundaries such as a river bed. Dynamic SGS
model is more accurate if the bed is smooth. As the bed is
covered by sediment, the bed cannot be treated same as a
smooth bed. Viscous sublayer can be destroyed on rough
bed (rough because of sediment not because of ripples). The
necessary condition for the dynamic model is imposing at
least one cell in the viscous sublayer, because the dynamic
model interpolates the boundary condition linearly [Fadlun
et al., 2000; Balaras, 2004; Tseng and Ferziger, 2003;
Yang and Balaras, 2006]. The following expression for the
near-bed region is adopted:

up

u�
¼ 1

�
ln

yp

y0
; (8)

where yp is the distance of a near-bed grid point to the bed,
up is flow velocity at the near-bed grid point, u� is local bed
shear velocity, � is the von Kármán constant, y0 ¼ ks=30,
and ks ¼ 2:5d50, in which ks is roughness height and d50 is
bed median sediment diameter. As we deal with uniform
sediment, d50 can be replaced by the sediment diameter d.

[7] The wall-function techniques yield satisfactory results
over flat beds, but in regions with mildly complex geome-
tries, and hence in the flow separation zones, the results
may deviate from the accurate solution. The aim of the cur-
rent model is to be applied for simulation of sediment trans-
port and morphodynamical changes. As the flow in the
separation zones is weak, it does not pick up much sedi-
ment, so that wall-function techniques are a suitable choice.

3. Numerical Methods
3.1. Discretization

[8] Equations (1) and (2) are solved with a second-order
accurate, two-step fractional step method. The diffusion
and advection terms in the momentum equations are discre-
tized by a second-order finite-volume method. Pressure and
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velocities are discretized on a staggered grid, in which the
pressure is located in the center and the velocities are
located on the faces of the cells. The solution advances in
time using an Adams-Bashforth-Crank-Nicolson method,
which conserves second-order accuracy in time. The diffu-
sion terms are discretized using an implicit Crank-Nicolson
scheme, the advection terms with a second-order Adams-
Bashforth scheme. This eliminates the viscous stability
constraint, which can be quite stringent in case of viscous
flows. The two-step fractional step method estimates the
velocity field by the predictor

1

�t
ðu� � uN�1 Þ þ 3

2
CðuN�1 Þ � 1

2
CðuN�2 Þ

þ 1

2
Dðu� þ uN�1Þ þ GP

N�1=2 ¼ fðtN�1=2Þ;
(9)

where N indicates the time step. C, D, and G are spatial
operators for advection, diffusion, and pressure, respec-
tively. f is a forcing term that must be determined such that
uNþ1 satisfies the boundary conditions immersed in the
computational domain. The resulting velocity field u� is
not divergence free, and the velocity and pressure have to
be corrected by a pressure-correction term

uNþ1 ¼ u� � ð�t=�Þr�p; (10)

P
Nþ1 ¼ P

N þ �p; (11)

where �p is the pressure correction, and it is found by solv-
ing the Poisson equation

r2�p ¼ �

�t
ru�: (12)

3.2. Boundaries

[9] The ghost-cell method used here is based on the
application of direct forcing at the immersed boundaries,
an approach similar to that used by Mohd-Yusof [1997] and
Fadlun et al. [2000]. The force is a function of time and
space, and is defined such that the desired boundary condi-
tions are satisfied in every time step. The location of this
force does not necessarily coincide with a grid point, so
interpolation or extrapolation to these points is needed. The
magnitude of the forcing can be derived from the Navier-
Stokes equations:

uNþ1
G � uN

i

�t
¼ RHSi þ fi; (13)

where RHS is the right-hand side of the Navier-Stokes
equations and includes the advection, diffusion, and pres-
sure terms. uNþ1

G is the velocity on the immersed bounda-
ries, and fi is the forcing function. The force fi in equation
(13) can be determined exactly if the unknowns are defined
exactly at the boundaries. This is generally not the case in
complex geometries. Interpolation and extrapolation tech-
niques to determine the forcing term on the ghost cells can
be classified into two categories: (1) schemes that allocate

the ghost cells inside the fluid in the vicinity of the bound-
ary [Balaras, 2004] and (2) techniques that consider the
first cell in the ‘‘solid,’’ i.e., outside the fluid domain, as the
ghost cell [Tseng and Ferziger, 2003].

[10] In the present study, the former category is used,
i.e., the ghost cells are located in the fluid in the vicinity of
the boundary. They are defined as cells that have at least
one neighbor cell located in the solid. To classify the nodes,
an integer flag is used: nodes with flag –1 are located in the
solid, nodes with flag 1 in the fluid. Ghost nodes have flag
zero. There are several ways to interpolate the velocities
for the ghost cells to satisfy the boundary conditions. In the
present work, the ghost cell is located on the bed normal
vector passing through it, and it forms the imaginary point
I as shown in Figure 1. The imaginary point is extended
into the fluid to find the required nodes (in fluid) for a trilin-
ear (bilinear in 2-D) interpolation. In the case, some of
required nodes still fall in the solid, the extension can be
continued. Later on, the logarithmic interpolation of equa-
tion (8) between point I and the bed is applied to interpolate
the values for the ghost points.

[11] In the above algorithm, boundary conditions for the
pressure near the interface are not imposed explicitly, but
they are essentially implicit in the source term of the Pois-
son equation [Balaras, 2004].

3.3. Mesh Refinement

[12] Another problem with a Cartesian grid, on top of the
complications arising from the immersed boundaries, is the
problem of resolution. A simple Cartesian grid treats all
portions of flow equally; all cells in the grid are squares or
cubes of the same size. A simple-structured Cartesian grid
requires a large number of cells to capture the small eddies
in a turbulent flow, whence a fully structured Cartesian grid
can be computationally demanding. To resolve real-life
geometries and flows, some form of grid adaptation may
therefore be necessary.

Figure 1. Interpolation stencil in 2-D. The ghost node
‘‘I’’ is interpolated bilinearly using the nearest points in the
fluid.
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[13] To optimize the demand for computational resour-
ces, we use an adaptive multilevel Cartesian mesh with
local refinement, such that more grids cells can be placed
in high-gradient regions such as boundary layers. Figure 2
shows such kind of grid over a dune. The grid generation
process starts from a relatively coarse Cartesian grid
(a base grid) encompassing the overall domain. The grid
generation then proceeds by successive refinements. Each
coarse cell is divided into eight equal children cells (four
children in 2-D) to form the next level of refinement (see
Figure 2). The corresponding data structure is discussed in
the next section.

3.4. Data Structure

[14] For a typical structured-grid code, the data structure
can be contained entirely in an ði; j; kÞ index. Unstructured
grid codes usually have a significantly more complex data
structure. As the connectivity of such a grid is of prime im-
portance, information must be stored on which cells are
neighbors of a given cell.

[15] There are two common types of data structure for
this type of refined Cartesian grids: the hierarchical tree
structure and the fully unstructured approach. In view of
drawbacks associated with fully unstructured grids, the hier-
archical tree data structure is chosen here. The finer grids
are considered as subdomains of the coarser grids, which
are treated separately as a kind of nested grids. Figure 3
shows a fully unstructured grid and a multilevel grid.

[16] Coirier and Powell [1996] used the hierarchical tree
structure in their Euler and Navier-Stokes solver, demon-
strating that the tree structure provides a logical means of
finding cell-to-cell connectivity and allows straightforward
isotropic refinement and coarsening through tree growth
and pruning.

[17] The solution of viscous incompressible flows requires
that careful attention be paid to the velocity-pressure

coupling to prevent nonphysical oscillations in the solution.
This is normally accomplished by using a staggered-grid
method. This requires calculation and storage of face-based
data. The storage and management of faces between cell
neighbors requires the definition of new tree structures for
faces. The tree structures for faces are managed in a compa-
rable way as those for the cells. Three kinds of faces (per-
pendicular to x-, y-, and z-coordinates) require three extra
trees. In a 3-D mesh, the cells form an octree, and the faces
form three quad-tree data structures.

[18] Figure 4 shows the structure of cell-cell connections
in 2-D. Furthermore, the boundary conditions for any grid
level are defined by ghost cells and ghost faces. The ghost
cells and ghost faces are managed in such a way that they
surround all subdomains. The values on the ghost cells and
ghost faces can be interpolated from the values on the
coarser grid. A high-order interpolation is necessary to con-
serve the order of accuracy. We implemented a third-order
interpolation to conserve second-order accuracy.

[19] There is no explicit treatment necessary for interfa-
ces in the current model. For fully unstructured grid, the
interface between two grids has to be treated explicitly, in
such a way that the mass stay conserved. Therefore, special
treatment for the flux is necessary. As we apply a multile-
vel grid, the grid is decomposed into several locally inde-
pendent grids as shown in Figure 3. Each grid is solved
independently with the boundary conditions in its interface
which are interpolated from the coarser grid. Although we

Figure 2. (a) Multilevel Cartesian grid over a dune. (b)
The cells of the coarse grid are divided into eight children
to form the finer grid.

Figure 3. A fully (a) unstructured grid and (b) a multi-
level grid.
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say independently, but in fact they are not independent, and
they are linked by restriction and prolongation operators in
the multigriding process.

[20] However, some papers claim that the order of accu-
racy decreases at the interfaces between the grids, because
the gradients of variables are not continuous there, although
the variables stay continuous. They solve this deficiency by
a third-order interpolation of the fluxes between the fine
and course grids to smooth the gradient. In our model, we
solved this deficiency by increasing the order of interpola-
tion for restriction operator (changed from second to fourth
order). This method implicitly corrects the gradient of the
variable on the grids interfaces. Although the number of
operations will increase for a higher-order interpolation, but
we still believe that the model becomes more efficient as
the searching process for the suitable cells for interpolation
(and decide which call can be used for a better performance)
in former approach can be a more time-consuming process.

[21] By this kind of data structure, the parent-children
connectivity can be directly employed to find the related
cells and faces on the finer and coarser grids, which makes
the implementation of a multigrid method straightforward
and does not have the problem of hanging nodes breaching
the symmetry of coefficient matrices, as may be the case
with fully unstructured grids.

3.5. Moving Boundaries

[22] The general algorithm outlined in section 3.1 is
directly applicable to moving boundary problems, such as
alluvial processes. For moving boundary problems, the forc-
ing approach and the related interpolations must be re-eval-
uated every time the location of the interface is updated.
Moreover, complications may arise that are usually related
to the time advancement scheme. This is due to the fact that
the role of the grid points near the interface changes from
time step to time step, as the solid body moves through the

fixed grid. Thus, a forcing point may change to a fluid or a
solid point, or conversely.

[23] The solution of the momentum equation at time step
n requires physical values of the velocity vector and pres-
sure, as well as their derivatives from time step n – 1 at all
fluid points. If the interface changes location, the required
values from time step n – 1 may be nonphysical. Due to
Courant-Friedrichs-Lewy (CFL) restriction of the present
scheme the boundaries cannot move by more than one grid
cell in each time step, which results in three possible
changes in the flags of the points near the interface,

[24] 1. The interface does not pass any grid point. In this
case, the grid points do not change role and no stability
problems arise.

[25] 2. The interface moves toward the fluid and passes a
forcing point. The forcing point becomes solid and the near-
est fluid point becomes a forcing point. Because the new
solid point has a history from the previous time step, no sta-
bility problems arise.

[26] 3. The interface moves toward the solid and passes a
grid point. The forcing point now becomes fluid and the
next solid point becomes a forcing point. Because the new
forcing point has no history from the previous time step,
stability problems may arise.

[27] Situation 3 is shown in Figure 5 for a 2-D case. In
the left part of Figure 5 the derivative @uv=@y makes use of
velocities v1 and v2. The values of v1 and v2 are both physi-
cal because they are located outside the solid. In a later
stage, the boundary moves toward the solid (see the right
Figure 5) and the role of u2 changes (from forcing to fluid
point). The same derivative now makes use of v3 and v4,
while v3 is located in the solid and has no physical value.
To avoid such instabilities, Yang and Balaras [2006]
applied a field-extension procedure in which the velocity
and pressure fields are extrapolated to the first point in
the solid phase (pseudofluid points) at the end of each

Figure 4. (a) Cell refinement and (b) data structure for multi-level Cartesian grid. A tree data structure
is defined to identify the intergrid connections.
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deformation. They constructed the values of the velocity at
the pseudofluid points using a procedure that is similar to
the procedure applied by Tseng and Ferziger [2003]. How-
ever, a test of the present model with and without field
extension showed no significant difference in the results.
Therefore, we stick to the forcing procedure described in
section 3.1, also after deformation of the model domain.

[28] In ghost-cell immersed-boundary methods, the pres-
sure has to be interpolated around the velocity nodes. The
interpolated pressure is to be used in momentum equations
and as mentioned earlier, the solution of pressure Poisson
equation does not need a forcing approach. Unlike the
velocities, the pressure at the immersed boundaries cannot
be determined explicitly. The boundary condition for pres-
sure is of the Neumann type and can be expressed in nor-
mal derivative form as

@p

@n
¼ 0; (14)

with the normal derivative to be found from:

@p

@n
¼ @p

@xi
ni; (15)

where ni’s are the components of the normal unit vector,~n.
[29] Applying an interpolation procedure similar to that

for the velocities to an image point of pressure located in
the fluid, the pressure value in the ghost cell can be deter-
mined as

pp ¼ pI ; (16)

where pp is the ghost-cell pressure and pI is the pressure at
the image point.

[30] We should also note that, due to the staggering of
the mesh, the selection of points on the pressure grid is not
only based on their relative location with respect to the

interface but also on their association to velocity values that
are non-physical. As a result, the pressure is also extended
to nodes on the pressure grid that would have been classified
as boundary nodes on the velocity grid.

3.6. Solution Techniques

[31] Full approximation storage (FAS) multigrid cycles
have been implemented to solve the momentum and pres-
sure correction equations, with the following time-stepping
algorithm.

[32] 1. Solve the momentum equations
(a) Apply one FAS cycle for momentum in x direction.
(b) Apply one FAS cycle for momentum in y direction.
(c) Apply one FAS cycle for momentum in z direction.
(d) Calculate the scalar fields, like turbulence closure.
(e) Check the residual. If it is not converged, go to (a).
[33] 2. Apply FAS cycles for the pressure correction

until convergence.
[34] 3. Correct the velocity field and pressure.
[35] 4. Reforce the flow beside the moving solid bounda-

ries (or apply field extension).
[36] 5. Go to step 1.
[37] FAS multigrid for the pressure correction is found to

be more stable than the linear multigrid. It is probably
because of the presence of hanging nodes that bring com-
plexity as well as nonlinearity to the existing interpolations.
The local iteration process in step 1 is very fast if an implicit-
explicit method (i.e., the Crank-Nicolson-Adams-Bashforth
method) is used. Fully explicit methods are restricted to small
CFL numbers, and they can be very expensive. Fully implicit
methods, on the other hand, are unconditionally stable, but
they require more iterations to achieve convergence. It is pos-
sible to apply large time steps in fully implicit methods, but
turbulence involves multiple time scales and the required
time step is not allowed to exceed its smallest time scale.
Hence, fully implicit techniques with small time steps (in the
order of the Kolmogorov time scale) can be more expensive
than implicit-explicit methods. The code is fully parallelized
by OpenMP on shared memory computers, and an efficiency
of 75% is achieved.

4. Numerical Experiments
[38] To validate the present model, we simulated differ-

ent cases that have been extensively documented in litera-
ture. We started from determining the order of accuracy of
the model by solving Wannier flow. Subsequently, uniform
flow around a cylinder and flow over fixed 2-D and 3-D
dunes were simulated and compared with published numer-
ical and experimental results.

4.1. Wannier Flow

[39] To verify the order of accuracy of the model includ-
ing ghost cells at immersed boundaries, we simulated
Stokes flow around a cylinder in the vicinity of a moving
wall. This problem has been solved analytically by Wannier
[1950]. Wannier obtained the exact solution for Stokes flow
around a spinning cylinder located inside a larger rotating
cylinder. This problem can be simplified by an infinite
increase in the radius of the outer cylinder. The outer cylin-
der thus changes its role to an infinite horizontal wall mov-
ing in its own plane. Therefore, the flow is bounded by the
wall on one side and extends to infinity in other directions.

Figure 5. (a) Moving the boundary can bring nonphysical
values for the derivatives in momentum equations. (b) The
role of u changes from ghost cell to fluid cell, and it gives
nonphysical values of @vu=@y. The white, black, and red
colors clarify the solid points, the fluid points, and the forc-
ing points, respectively.
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Here we consider the case where the inner cylinder is not
spinning.

[40] The flow is calculated for three different grid resolu-
tions, namely 16� 16, 32� 32, and 64� 64 as base grids.
All grids are locally refined by two more levels around the
cylinder and the moving wall (3-levels grids). To minimize
the effect of slip errors, which are more significant at low
Reynolds numbers, the boundary is reforced after the cor-
rection in the fractional step method. The velocity field and
the grid structure are shown in Figure 6. The results of the
current simulation have been compared with Wannier’s
relations, and the L2 norm errors in the velocities have
been plotted in Figure 7, which shows a convergence rate
of slightly more than 2, i.e., second-order accuracy of the
velocities.

4.2. Flow Around a Circular Cylinder

[41] The simulation of flow around a cylinder is an inter-
esting test case, because its behavior can change dramati-
cally as a function of Reynolds number. At high Reynolds
numbers, the flow separates and forms a von Kármán vor-
tex street. This flow has been studied extensively, numeri-
cally, as well as experimentally.

[42] We performed simulations at three different Reynolds
numbers, Re ¼ 20, 40, and 100, based on the free-stream ve-
locity and the diameter of the cylinder. This flow case has
been studied previously by Tritton [1959], Dennis and
Chang [1970], Coutanceau and Bouard [1977], Fornberg
[1980], Braza et al. [1986], Liu et al. [1998], Ye et al.
[1999], Kim et al. [2001], Calhoun [2002], Tseng and
Ferziger [2003], Russell and Wang [2003], Pan [2006], and
Xu and Wang [2006].

[43] The nondimensional far-field stream velocity was
held constant at U1 ¼ 1 m s�1. The base calculations were

done on a 1024� 512 grid. Figures 8 and 9 show the
streamlines and the vorticity contours, respectively, for the
Re ¼ 40 case. Figure 10 shows the expected trailing von
Kármán vortex street at Re ¼ 100. This particular simula-
tion was run to a nondimensional time of 150 to ensure full
development of the quasi steady state condition.

[44] Table 1 shows a summary of results for the cases
with steady-state solution for two different Reynolds num-
bers, Re ¼ 20 and 40, in terms of trailing bubble length,
angle of separation, and drag coefficient. Table 2 shows the
results for Re ¼ 100 in terms of drag and lift coefficients.
These geometric results compare favorably with both
experimental and previous computational results.

4.3. Flow Over a Flat Bed

[45] To investigate the efficiency of the current model
and compare with the standard structured grid models, a
3-D flow on a flat bed is simulated. Two cases, namely with
local refining and without local refining, are considered.
The size of the cells in the case without local refining was
equal to the size of the finest cells in the case with local
refining. The local refining was made by a base grid of
32� 32� 16 and constructing three extra finer levels close
to the bed. Table 3 shows the necessary time for simulating

Figure 6. Computational domain and velocity field for
Wannier flow. The grid is presented in a coarser form for
visualization purposes.

Figure 7. Error in the L2 -norm for the velocities in Wan-
nier flow with source. h ¼ �x ¼ �y, and l indicates the
level number.

Figure 8. Streamlines for Re ¼ 40 cylinder.
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the first 20 time steps for both cases. The case without
refining needed almost 16 times more cells to achieve the
same accuracy of the case with local refining. Although
local refining decreases the number of cells dramatically, it
can be seen that the time of the simulation is decreased by
a factor of 4, because the interpolations for the boundaries
between the grid interfaces are time consuming.

[46] The efficiency of the current model is strongly de-
pendent on the grid topology and the number of interface
cells, which has to be interpolated from their coarser levels.
The current example is a simple case to show an approxi-
mate efficiency of the model. If the area of the interfaces
between the find and coarse grids increase, more cells are
necessary to be interpolated, and the efficiency probably
slightly decreases.

4.4. Flow Over Fixed 2-D Dune

[47] To validate the model for irregular bedforms, we
simulated flow over 2-D dunes and, on this basis, we stud-
ied the flow over the dunes. McLean et al. [1994] con-
ducted a series of experiments for the flow over 2-D dunes.
The experimental flume was 22 m long, 0:9 m wide, and
0:9 m deep. Twenty fixed dunes of 0:8 m length and
0:04 m height were placed in the flume. The stoss side of the
dunes was a half-cosine wave running from its lowest point
at the trough to its highest point at the crest (Figure 11). The
angle of the lee slope was 30�. Three flow conditions were
investigated, with flow depths varying from 0:158 to
0:546 m. Table 4 shows the experimental conditions.

[48] We simulated runs 2 and 3 with the same flow condi-
tions and bed geometry as in the experiments. The bounda-
ries in streamwise and transverse directions were taken
periodic. A pressure gradient was applied in streamwise
direction to mimic the slope force. The value of the pressure
gradient was calculated in such a way that the desired bulk
velocity was achieved. For runs 2 and 3, the simulations are
done on base grids of 128� 64� 32 and 128� 64� 64 in
streamwise, spanwise, and normal direction, respectively,
with one extra level of refining beside the bed. Figure 12

Figure 9. Vorticity for Re ¼ 40 cylinder. Contour values
are �4 : 0:2 : 4.

Figure 10. Vortex street behind cylinder at Re ¼ 100.
Contour values are �2:5 : 0:1 : 2:5.

Table 2. Summary of Results for Re ¼ 100a

CD CL St

Braza et al. [1986] 1.36 6 0.015 60.250
Liu et al. [1998] 1.35 6 0.012 60.339 0.164
Calhoun [2002] 1.33 6 0.014 60.298 0.175
Russell and Wang [2003] 1.38 6 0.007 60.300 0.169
Present 1.33 6 0.013 60.315 0.170

aCD, CL, and St are the drag coefficient, lift coefficient, and Strouhal
number, respectively.

Table 1. Summary of Results for Re ¼ 20 and Re ¼ 40a

Re ¼ 20 Re ¼ 40

LZ L� CD L � CD

Ye et al. [1999] 0.9 2.0 2.3 1.5
Tseng and Ferziger [2003] 2.21 1.53
Pan [2006] 0.85 2.01 2.13 1.5
Xu and Wang [2006] 0.92 44.2 2.23 2.21 53.5 1.66
Tritton [1959] 2.22 1.48
Coutanceau and Bouard

[1977]
0.73 42.3 1.89 52.8

Fornberg [1980] 0.91 2.00 2.24 1.50
Dennis and Chang [1970] 0.94 43.7 2.05 2.35 53.8 1.52
Calhoun [2002] 0.91 45.5 2.19 2.18 54.2 1.62
Russell and Wang [2003] 0.94 43.3 2.13 2.29 53.1 1.60
Present 0.93 44.2 2.21 2.22 53.5 1.58

aL is the trailing bubble length, � is the angle of separation, and CD is
the drag coefficient.

Table 3. Comparison of the Time Necessary Simulating the First
20 Time Steps

Number of Cells Time (s)

With refining 8,388,608 1940.7
Without refining 507,392 501

Figure 11. Schematic representation of the 2-D fixed, ar-
tificial dunes. Flow over the dunes runs from left to right.
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shows the computed instantaneous streamwise velocity on
this dune for runs 2 and 3, and Figure 13 the spatially and
temporally averaged streamwise velocity. It can be seen that
the circulation zone is small in run 2, whereas a relatively
large recirculation zone is formed behind the lee side of the
dunes in run 3. Figure 14 shows the instantaneous vorticity
for these two runs. The vorticity behind the dune crest in the
bottom figure seems to exhibit a boiling effect. The boiling
is generated at the stoss side of the dune and separates from
the crest into the flow. In a later stage, the boiling reaches
the free surface and produces a small deformation in the free
surface [Best, 2005]. Figure 15 shows the turbulence kinetic
energy (TKE). The maximum TKE for run 2 is located close
to the dunes crest, whereas the maximum in run 3 is found
around the recirculation zone. The region of high TKE
is larger in run 3, but the maximum value is much higher in
run 2. Apparently, the large recirculation zone in run 3 is
more effective in transferring turbulence to the region
around it.

[49] To visualize the coherent structures of the flow, we
followed the approach developed by Hunt et al. [1988],
based on the second invariant of ru :

Q ¼ � 1

2

@ui

@xj

@uj

@xi
¼ � 1

2
ðjSj2 � j�j2Þ; (17)

where S and � are the symmetric and antisymmetric com-
ponents of ru. Figure 16 shows the coherent structure
above the dune for runs 2 and 3 by plotting the isosurface
Q ¼ 8 s�2. Clearly, the turbulence structures in run 2 are

Table 4. Experimental Conditions for 2-D Dunes from McLean et al. [1994]a

Run h (m) U (m s�1) Re Fr �T (Pa) uT
� (m s�1) Cf S (� 104)

1 0.210 0.482 1.01 � 105 0.336 1.49 0.0386 0.0064 8.3
2 0.158 0.377 0.60 � 105 0.303 1.20 0.0346 0.0084 9.4
3 0.546 0.284 1.55 � 105 0.123 0.45 0.0212 0.0056 0.81

ah is the average water depth, U is the averaged velocity, Re is the Reynolds number, Fr is the Froude number, �T is the bed shear stress, uT
� is the shear

velocity, Cf is the total drag coefficient, and S is the channel slope.

Figure 12. Instantaneous streamwise velocity (m s�1) for
runs (top) 2 and (bottom) 3.

Figure 13. Spatially and temporally averaged streamwise
velocity (m s�1) for runs (top) 2 and (bottom) 3. Run 3
shows a larger recirculation than run 2.

Figure 14. Instantaneous vorticity for runs (top) 2 and
(bottom) 3. The boiling phenomena can be observed in run 3.
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smaller than those in run 3. In run 3, the recirculation zone
generates large eddies that break down to smaller eddies on
the stoss side of the next dune. Given the small recircula-
tion zone in run 2, no large eddies can be generated by the
recirculation zone. To show this phenomenon more clearly,
the coherent structure is plotted in Figure 17 for a larger
value of Q (Q ¼ 20 s�2), thus filtering out the smaller struc-
tures. Figure 17 shows that in run 3 large structures are
formed behind the lee side of dunes, whereas in run 2 the

smaller structures still dominate. Further downstream, these
highly 3-D structures interact with the wall and generate
disturbances with the same spanwise wavelength. These
disturbances evolve into ‘‘horseshoe’’ vortical structures.
Figure 18 shows such kind of structures behind the lee side
of a dune and on the stoss side of the next dune. Both legs
of the horseshoe structure are associated with high levels of
positive and negative streamwise vorticity (right and left
leg, respectively, facing in the flow direction). As the two
legs meet along the tip, regions of high spanwise vorticity
are formed. As a result, strong vertical fluid motions are

Figure 15. Spatially and temporally averaged TKE
(m2 s�2) for runs (top) 2 and (bottom) 3. TKE has a larger
value in run 2, but the region of high TKE is larger in run 3.

Figure 16. Coherent structures of turbulence over the
dunes for runs 2 and 3 for Q ¼ 8 s�1.

Figure 17. Coherent structures of turbulence over the
dunes for runs 2 and 3 for Q ¼ 20 s�1.

Figure 18. Horseshoe structures on the stoss side of dune
in run 3 for Q ¼ 12 s�1.
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Figure 19. Comparison of nondimensional time-averaged streamwise velocity profiles over 2-D dune
for (top) case 2 and (bottom) case 3. The circles are the measurements, and the solid lines are the simu-
lated profiles.

Figure 20. Comparison of nondimensional time-averaged vertical velocity profiles over 2-D dune for
(top) case 2 and (bottom) case 3. The circles are the measurements, and the solid lines are the simulated
profiles.
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Figure 21. Comparison of nondimensional time-averaged Reynolds stress profiles of �u0u0 over 2-D
dune for (top) case 2 and (bottom) case 3. The circles are the measurements, and the solid lines are the
simulated profiles.

Figure 22. Comparison of nondimensional time-averaged Reynolds stress profiles of �w0w0 over 2-D
dune for (top) case 2 and (bottom) case 3. The circles are the measurements, and the solid lines are the
simulated profiles.
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formed between the legs and close to the tip, lifting fluid
from the wall region. In some instances, the intensity of
these vertical fluid upwellings is as strong as 30% of the
bulk flow velocity [Grigoriadis et al., 2009]. This phenom-
enon has a strong effect on the pickup of sediment and
hence on the reworking of the bed.

[50] Figure 19 shows the time-averaged streamwise ve-
locity normalized by the averaged bed shear velocity uT

�
(averaged over time and space) and compared with
McLean’s experiments. The normalized velocities in run 2
are generally slightly larger than those in run 3; however,
considering the differences in depth and Froude number,
the shapes of the individual profiles agree fairly with the
experiments. Profiles of the vertical velocity for runs 2 and
3 are presented in Figure 20. An overprediction of the verti-
cal velocity can be observed in the recirculation zone for
run 2. An overprediction occurs mainly in the recirculation
region, as can be expected when using wall functions that
are valid only for attached boundary layers. The agreement
also holds for the Reynolds stress components shown in
Figures 21–23. An underprediction in Reynolds shear stress
w0w0 can be observed in the recirculation zone for runs 2
and 3 in Figure 22, in which w0 is the fluctuation of the
velocity in vertical direction.

4.5. Flow Over Fixed 3-D Dune

[51] The interaction between the flow field and the bed-
forms is a complex one, involving as-yet poorly understood
feedback mechanisms. One of these mechanisms is the
effect the bedforms have on the turbulent flow field. Due
to the limitations of turbulent flow measurements made
over 3-D dunes, the information will be limited to measure-
ments made over 2-D features of various types, including
strongly asymmetric steep-angle dunes, relatively symmetric

low-angled dunes, and spatially accelerated flows. Maddux
et al. [2003a, 2003b] has performed a series of experiments
on fixed 3-D dunes. The configurations of these experiments
are identical with the experiments on 2-D dunes performed
by McLean et al. [1994]. Maddux’s dunes were qualitatively
similar to real sinuous-crested 3-D dunes, as observed in the
field and in flumes with mobile sediments [Gabel, 1993].
The dunes had a mean wavelength � of 0:8 m and a mean
height � at the crest of 0:04 m. The stoss side of the dunes
was a half-cosine wave running from its low point at the
trough to its high point at the crest. The angle of the lee
slope was 30�. The mean height, wavelength, and cross sec-
tion of these dunes matched that of 2-D bedforms used in
experiments conducted by McLean et al. [1994]. The three-
dimensionality of the dunes was expressed as a full cosine
wave in the spanwise direction, superimposed on the profile
of the 2-D dunes (Figure 24). The height of the crests of the
dunes above the troughs, �, varied in the spanwise direction

Figure 23. Comparison of nondimensional time-averaged Reynolds stress profiles of �u0w0 over 2-D
dune for (top) case 2 and (bottom) case 3. The circles are the measurements, and the solid lines are the
simulated profiles.

Figure 24. Schematic representation of the 3-D fixed, ar-
tificial dunes. Flow over the dunes runs from left to right.
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from 0:02 to 0:06 m. Successive crestlines were 180� out
of phase, so that a dune with a high middle and low sides
was followed immediately by a dune with a low middle
and high sides, as shown in Figure 24. It resulted in a crest-
to-crest wavelength, �, that varied in the cross-stream
direction from 0:73 to 0:87 m. The resulting steepness of
the dunes varied in the spanwise direction as well, with �=�
values ranging from 0.025 to 0.075. These values matched
well with the values of �=� for real dunes in the field
[Maddux et al., 2003a]. Although typical 3-D dunes are
often more complex, with concave faces and other features,
these dunes are sufficiently realistic while maintaining
enough similarity to previous measurements to facilitate an
understanding of the response of the flow to 3-D bed topog-
raphy. Maddux et al. [2003a] show a significant difference
in turbulence structure and bed friction between 2-D and
3-D dunes. This difference is in such a degree for which the

three dimensionality of the dunes must be taken seriously
into account.

[52] Maddux et al. [2003a, 2003b] have extended the
experiments over 3-D dunes for flow of the similar depth
and discharge as for experiments 2 and 3 over 2-D dunes.
Table 5 shows the conditions for Maddux’s experiments,
and they are named T2 and T3, related to McLean’s experi-
ments 2 and 3, respectively. The water depth and the bulk
velocities for T2 and T3 are slightly different than those for
experiments 2 and 3.

[53] Here we simulate the flow over 3-D dunes with the
same condition for the experiment T2 and we call it R2.
The boundaries in streamwise direction are set to periodic.
Smooth solid boundary conditions in spanwise direction
are imposed to account for the glass side walls in Maddux’s
experiment. The free surface is considered as a rigid lid,
and the flow is derived by a pressure gradient to obtain the

Table 5. Experimental Conditions for 3-D Dunes from Maddux et al. [2003a]a

Run h (m) U (m s�1) Re Fr �T (Pa) uT
� (m s�1) Cf S (�104)

T2 0.173 0.357 0.62 � 105 0.275 1.71 0.0413 0.0134 10.6
T3 0.561 0.261 1.46 � 105 0.111 0.46 0.0215 0.0068 2.40

ah is the average water depth, U is the averaged velocity, Re is the Reynolds number, Fr is the Froude number, �T is the bed shear stress, uT
� is the shear

velocity, Cf is the total drag coefficient, and S is the channel slope.

Figure 25. Computed depth-averaged (top left) streamwise and (bottom left) spanwise velocities
for run R2, and comparison with T2 experiment from Maddux et al. [2003a] for (top right) streamwise
(bottom right) and spanwise velocities.
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desired bulk velocity. The bed is considered as a rough
boundary with sediment diameter of 1 mm on the bed as it
is imposed in T2 [Maddux et al., 2003a]. The simulations
are done on a base grid of 128� 64� 32 in streamwise,
spanwise, and normal direction, with one extra level of
refining beside the bed.

[54] Figure 25 shows the computed depth-averaged
streamwise and spanwise velocities for run R2, and they are
compared with the contour graphs from Maddux’s experi-
ment T2. A qualitatively good agreement can be seen
between the computed results and Maddux’s measurements.
The highest streamwise velocity is located on the crest line
of the dunes but not on the crest point. The highest stream-
wise velocity is located in the middle distances between the
centerline and the walls, which is called as ‘‘node of the
dune crest’’ in Maddux et al. [2003a]. The lowest streamwise
velocity is located in the trough parts directly after the crest
points because of weak velocity field in the recirculation
zone behind the crest point. The largest absolute values of
spanwise velocities are located on the halfway between the

nodes of crest lines. The four quadrants of the spanwise ve-
locity in Figure 25 are the results of the geometrical curva-
tures of the dunes.

[55] Figure 26 shows the streamwise-averaged velocities
for run R2 and that for Maddux’s experiment T2. It shows
that the streamwise velocity has maximum values on the
nodes of the crest, as it is also observed from Figure 25.
For spanwise and normal velocities, a secondary current
can be concluded, which can be more clearly seen in
Figure 30. Further, the validations are extended to the
Reynolds stresses. Figure 27 shows a comparison between
Reynolds shear stresses for the current computations for
run R2 and the measurement T2. All these figures show
that the computed results qualitatively agree with the
measurements.

[56] Figure 28 shows the instantaneous streamwise ve-
locity in the streamwise center section and node sections
and Figure 29 shows the time-averaged velocity vectors in
the center section and node section for run R2. A relatively
strong recirculation zone can be observed in the center

Figure 26. Computed streamwise-averaged velocities for (top left) streamwise, (middle left) normal,
and (bottom left) spanwise velocities for run R2, and comparison with T2 experiment from Maddux
et al. [2003a] for (top right) streamwise, (middle right) normal, and (bottom right) spanwise velocities.
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Figure 27. Computed streamwise-averaged Reynolds shear stresses (top left) �u0v0 , (middle left)
�v0w0 , and (bottom left) �u0w0 for run R2, and comparison with T2 experiment from Maddux et al.
[2003a] for (top right) �u0v0 , (middle right) �v0w0 , and (bottom right) �u0w0 .

Figure 28. Instantaneous streamwise velocity (m s�1) at the center section and node sections of the 3-
D dune.
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section, whereas a weak recirculation exists in the node
section. Although the streamwise velocity is stronger on
the node of the crest line, the height of this point is much
less than the crest point, and it makes the recirculation zone
less strong. The size of recirculation zone is more affected
by the height of the dune rather than the velocity distribu-
tion on the dune crest line.

[57] Figure 30 shows the time-averaged velocity vectors
in the trough of the dune (in x ¼ 0:8 m). Four counterrotat-
ing secondary circulation vectors, with secondary current
velocities, can be observed. The loops are also observed in
the experiment T2. These secondary currents appear to be
generating a net downward momentum flux. This flux
could be carrying momentum that is not being carried by
low levels of turbulence over the 3-D dunes [Maddux et al.,
2003a].

[58] Figure 31 shows the instantaneous vorticity in the
center section and on the node sections of the domain. The
boiling effect can be less observed on the crest node, and
the vorticity structures are pulled down. Although on the
crest point, the vorticity is also in some contents pulled to-
ward the bed, after the recirculation zone, the vorticity is
separated again and goes toward the water surface. This
trend is observed in all instantaneous vorticity profiles of
the current run.

[59] Figure 32 shows the time-averaged TKE in the cen-
ter section and node sections of the domain. A larger region
of TKE can be observed behind the crest point than the

node because of larger recirculation zone. As the recircula-
tion zone gets smaller, the TKE gets concentrated in a
smaller region, although the turbulence intensity of these
two regions are comparable.

5. Conclusions
[60] We have developed an efficient numerical model for

hydrodynamics in a cost-efficient way, to be applied for the
simulation of morphodynamics. This model uses unstruc-
tured Cartesian grids with local refining to be able to capture
the small scales turbulence with efficient computational
costs. The grid can be refined in high-gradient regions as
well as in the vicinity of the bed, in the form of an adaptive
grid. The adaptivity can follow the movement of the bed to
yield a high-resolution solution for the flow in complex mov-
ing bed topology. A ghost-cell immersed-boundary method
is applied for the cells that intersect the boundaries. LES is
employed to resolve the turbulence.

[61] At the first step, the hydrodynamics model is com-
pared with an analytical solution of flow (Wannier flow) to
validate the applied multilevel techniques as well as the
applied ghost-cell immersed boundary technique. Compar-
ing with Wannier’s analytical solution, the results show a
second order of accuracy for the velocities. Moreover, the
flow fields around a 2-D cylinder at Reynolds numbers of
20, 40, and 100 are simulated, and they are compared with
the published results, and a good agreement is found.

[62] The flow has been simulated on fixed 2-D dunes. A
comparison with experimental measurements from previ-
ous studies shows a good agreement. The model has suffi-
cient capability to calculate the physical phenomena such
as turbulence coherent structures and boiling vortices.
Moreover, the flow on 3-D dunes is solved, and the con-
tours for velocities and Reynolds shear stresses are com-
pared with the previous experimental studies from
literature. The contours show qualitatively good agreement
with the experimental measurements. Furthermore, the
model captured the recirculation zone and the current of
turbulence in a physics-based way. The model has a poten-
tial to be employed for simulation of sediment transport
and morphodynamic evolution of an alluvial bed.

Figure 29. Time-averaged velocity vectors in the (left) streamwise central section and (right) streamwise
node section.

Figure 30. Time-averaged velocity vectors in the trough
of the dune in x ¼ 0:8 m. Four loops can be observed,
which rotate in the direction opposite to their surrounding
loops.
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