
Plasma and Fusion Research: Regular Articles Volume 8, 2401091 (2013)

Accuracy Assurance in Binary Interaction Approximation for
N-Body Problems II∗)

Shun-ichi OIKAWA and Takanori KAMEI1)

Faculty of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan
1)Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan

(Received 19 November 2012 / Accepted 13 May 2013)

The modified accuracy assurance scheme for the Binary Interaction Approximation (BIA) to N-body prob-
lems is proposed. The present error-tolerance-adjusting scheme, implemented into the BIA introduced in this
study significantly reduces the CPU times and numerical errors in invariants of the motion compared to the
previous one.
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1. Introduction
We have proposed the Binary Interaction Approxima-

tion (BIA) scheme [1–5] to N-body problem. The BIA
scheme views an N-body problem as the superposition of

NC2 two-body problems [1]. If we are interested in the
motion of only one test particle-i at a time Δt from initial
conditions at t = 0, it is possible with the BIA scheme to
calculate ri(Δt) and ui(Δt) completely in parallel.

When the time interval Δt is chosen to be the time
Δ�/gth for a particle with a mass μ and its thermal speed
of gth =

√
2T/μ to travel the average interparticle sepa-

ration of Δ�/g = n−1/3 for plasmas with a temperature T
and a number density n, the BIA is proven to be a power-
ful scheme for N-body problems [3–5]. Generally speak-
ing, the BIA scheme is best suitable for fusion plasmas
that are low-density and high-temperature gases. As will
be shown later, however, for much longer time interval the
BIA scheme may give erroneous results. In this study, we
will introduce an accuracy-improving scheme to the BIA.

Equation of motion for the entire system is given as

mi
dui
dt
=

Zie2

4πε0

N∑
j�i

Z j
ri − r j

|ri − r j|3 . (1)

It is practically impossible to deal with the large number
of particles, i.e. N � 1, since the number of force calcu-
lations on the right-hand side of Eq. (1) is in proportion to
N2. Moreover, the number of time-steps tends to increase
with increasing N, so the total CPU time should scale as
N2.3−3.3.

The efficient, fast algorithms to calculate interparti-
cle forces include the tree method [6, 7], the fast multipole
expansion method (FMM), and the particle- mesh Ewalt
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(PPPM) method [8]. Efforts have been made to use paral-
lel computers and/or to develop special-purpose hardware
to calculate interparticle forces, e.g., the GRAvity PipE
(GRAPE) project [9].

In Ref. [5] we have proposed two accuracy assur-
ance schemes implemented into the original BIA [3] to
N-body problems. The first one is a sort of variable-time-
step (VTS) scheme for a given error tolerance. Since this
scheme sometimes does not converge, the error-tolerance-
adjusting (ETA) scheme is also introduced in Ref. [5].
With these two schemes combined into the BIA, a sig-
nificant improvement in terms of numerical error is ob-
tained [5]. However, the time step size in the previous
accuracy assurance scheme have never set larger during
the BIA scheme, which may lead to unnecessarily small
time step for a given error tolerance, accordingly long CPU
time.

We will introduce a revised time step size control
scheme, in which the time step size is adaptively changed
so as to reduce the number of BIA iterations as well as the
CPU time in this paper.

2. BIA Scheme
Let us now give a brief review on the BIA scheme and

the current error controlling scheme [5]. First choose a
particle pair (i, j) from N particles. There are NC2(N+1)/2
such combinations. The equation of motion for this case in
the BIA, instead of Eq. (1), is:

μi j

dgi j

dt
=

ZiZ je2

4πε0

ri j

r3
i j

, (2)

where ri j = ri− r j is the relative position, gi j = ui−u j is the
relative velocity, and μi j = mimi/(mi + mj) is the reduced
mass, Zie is the electric charge of particle-i.

Since the exact solutions to two-body problems are
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Fig. 1 Relative motion for a particle pair (i, j) in an orbital plane.
Scattering center is at the origin. The change in position
of the particle with a mass μi j is Δri j. If no interaction oc-
curs, the change in position is gi jΔt during a time interval
of Δt.

known, for any time interval Δt the solution, ri j(Δt) and
gi j(Δt) are easily found from the initial conditions ri j(0)
and gi j(0). Once the solutions to all the two-body systems
are found, changes in position and in velocity of individual
particle during the time interval Δt is calculated [3–5] as
follows:

miΔri = miuiΔt +
N∑
j�i

μi j(Δri j − gi jΔt), (3)

miΔui =
N∑
j�i

μi jΔgi j. (4)

Equation (4) for the velocity, i.e. momentum changes, en-
sures the momentum conservation of the entire system. It
should be noted that, unlike the changes in velocity Δui,
changes in position Δri, due to particle j is not simple
summation overΔri j. As shown in Fig. 1, the subtraction
by gi jΔt from total change in position Δri j gives change
in position due solely to the interaction between the pair
i, j. In the limit Δt → 0, Eq. (3) reduces to the definition
of velocity, and Eq. (4) reduces to the original equation of
motion, as given in Eq. (1).

If we are interested in the motion of only one test
particle-i at a time t = Δt from the initial conditions at
a time t = 0, it is possible with the BIA scheme to cal-
culate ri(Δt) and ui(Δt) completely in parallel, since it is
based on the principle of superposition of Δri j and Δgi j

using Eq. (3), and Eq. (4).

2.1 Accuracy assured BIA scheme
Suppose a general ordinary differential equation, for a

time-dependent function y = y(t), of the form:

dy
dt
= f (y, t), (5)

with an initial condition at a time t = 0 of y(0) = y0.

Let us define an exact time-shift operator D[y,Δt] on
any time-dependent quantity:

D[y(t),Δt] ≡ y(t + Δt). (6)

Similarly let us introduce an operator:

B[ri,Δt] = ri+uiΔt+
1
mi

N∑
j�i

μi j(Δri j−gi jΔt)

B[ui,Δt] = ui +
1
mi

N∑
j�i

μi jΔgi j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (7)

which is an approximate operator to the exact operator
B[y,Δt] with the BIA scheme described in the foregoing
section, i.e. Eqs. (3)-(4).

2.2 Variable-time-step scheme
With these notations defined above, let y1(Δt) and

y2(Δt) denote the approximate solutions at a time t = Δt,
as

y1(Δt) = B[y(0),Δt], (8)

y2(Δt) = B[B[y(0),Δt/2],Δt/2]. (9)

Since the solution y2(Δt) is generally better than y1(Δt) in
terms of numerical errors, we will choose an error toler-
ance εT in such a way that, if the following condition is
satisfied,

|y1 − y2| < εT, (10)

we will accept the approximate solution y2(Δt). In our pre-
vious variable time step control scheme in Ref. [5], the
time step size was reduced by half if |y1 − y2| < εT other-
wise no change was made on Δt:

If |y1 − y2| < εT then Δt → Δt/2. (11)

In this paper we call this scheme VTS-0. Thus, throughout
the calculation Δt is reduced by half if necessary and never
set larger.

In this paper, a new scheme called VTS-1 is proposed:
If |y1 − y2| < εT then

Δt → min

(
0.9 ×

√
εT

|y1 − y2| , 5.0
)
× Δt, (12)

else

Δt → min

(
0.9 ×

√
εT

|y1 − y2| , 0.1
)
× Δt, (13)

where numerical factors of 5.0 and 0.1 are introduced to
prevent the time step size Δt in the next stage from chang-
ing too much, as compared to the current one. The above
procedure will be repeated until the time reaches the pre-
scribed final time tend.

For an N-body problem, the approximate position ri

and the velocity ui at a time Δt, using the conventional BIA
scheme, are formally represented as

ri(Δt) = B[B[ri(0),Δt/2],Δt/2],

ui(Δt) = B[B[ui(0),Δt/2],Δt/2].
(14)
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Fig. 2 A 9,262-body problem for a normalized pursuit time of
Δt = 10 using VTS-0. The red squares are the estimated
error |y1 − y2|, the green triangles are the time accepted
by the BIA, and the blue circles are the tolerance εT.

It is sometimes the case that, as was shown in Fig. 4
of Ref. [5], the estimated errors, |y1 − y2|, are never below
the prescribed tolerance εT, so that the physical time in the
BIA does not proceed at all. In the present BIA scheme
both with VTS-0 and VTS-1 for time step control, the same
error tolerance adjustments (ETA) are employed as in Ref.
[5].

3. Test Calculation
A test calculation with the error-tolerance-adjusting

scheme is made for the number of particles of N = 9262,
half of which are electrons and positive ions with a charge
and a mass of +e and 1000me, where e and me are an
elementary charge and an electron mass. The particles
are randomly distributed initially in position with an av-
erage interparticle separation Δ� = n−1/3 and velocity dis-
tribution is also uniform around their thermal speed gth =√

2T/μ in a plasma with a number density and a tempera-
ture T .

Figure 2 shows that a 9,262-body problem for a nor-
malized pursuit time of 10 × Δt = 10Δ�/gth using VTS-0.
The red squares are the estimated error |y1 − y2|, the green
triangles are the time accepted by the BIA, and the blue cir-
cles are the tolerance εT. This figure shows that more than
400 BIA trials are required to reach a prescribed final time
of 10 × Δt = 10Δ�/gth, and no error tolerance adjustment
occurs with VTS-0 scheme.

On the other hand, it is shown in Fig. 3 that the present
BIA with VTS-1 scheme needs less than 70 trials and the
error tolerance adjustments occur five times. The initial,
or prescribed, error tolerance is εT = 10−11 and its final
value is around 10−8. In spite of the larger adjusted fi-
nal error tolerance in VTS-1 scheme than that in VTS-0,
the errors in invariants of the motion, linear and angular
momenta and total energy are all smaller than those due
to VTS-0 scheme, as shown in Table 1. Also tabulated
in the table are the corresponding relative numerical er-

Fig. 3 A 9,262-body problem for a normalized pursuit time of
Δt = 10 using VTS-1. The red squares are the estimated
error |y1 − y2|, the green triangles are the time accepted
by the BIA, and the blue circles are the tolerance εT.

Table 1 Relative errors in invariants of the motion for a 9,262-
body problem with a normalized pursuit time ofΔt= 10.
DIM represents the direct integration method, specifi-
cally the 6-stage-5th-order Runge-Kutta-Fehlberg with
an absolute error tolerance of 10−16. Linear mom. in
the table stands for the total linear momentum, angular
mom. the total angular momentum.

rors due to the direct integration method, DIM (specifically
the Runge-Kutta-Fehlberg with an absolute error tolerance
of 10−16 [10]). Thus the present error tolerance adjusting
scheme, VTS-1, implemented into the BIA introduced in
this study significantly reduces the CPU times and numeri-
cal errors in invariants of the motion. Thus larger final error
tolerance εT of VTS-1 than that of VTS-0 does not neces-
sarily means the actual numerical errors, such as momenta
and energy, be larger. Other distinctive difference between
VTS-0 and VTS-1 include: (a) it takes several BIA trials
for the estimated errors |y1 − y2| of VTS-0 scheme given
by Eq. (11) to reach below the prescribed error tolerance
εT = 10−11 for the first time, while only two BIA trial using
VTS-1 scheme given by Eqs. (12) and (13), and (b) the es-
timated error of VTS-1 scheme shows frequent oscillation,
i.e., undershoots and overshoots about the error tolerance.
Such an oscillation would lead to increase in the number
of BIA trials and consequently in the CPU time. However,
it turns out that the increment in the number of trials is
acceptably small and the errors in invariants are the small-
est among other VTS schemes examined (not shown), in
which the square root in Eqs. (12) and (13) are replaced by
cubic root and fourth root in order to reduce the number of
over- and under shoots.
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Fig. 4 Test particle trajectory for the 9,262-body problem with a
normalized pursuit time of Δt = 10 using VTS-1. A par-
ticle starts at the point marked with a filled circle in green
moves in the configuration space (x, y, z) along a red line,
which is obtained by using a direct integration method
(DIM), specifically a Runge-Kutta-Fehlberg scheme with
an absolute error tolerance of 10−16. The BIA gives the
velocity at blue circle, which is close to the endpoint of
the red line.

Fig. 5 Test particle trajectory for the 9,262-body problem with a
normalized pursuit time of Δt = 10 using VTS-1. A par-
ticle starts at the point marked with a filled circle in green
moves in the velocity space (u, v, w) along a red line,
which is obtained by using a direct integration method
(DIM), specifically a Runge-Kutta-Fehlberg scheme with
an absolute error tolerance of 10−16. The BIA gives the
velocity at blue circle, which is close to the endpoint of
the red line.

A test particle’s trajectories for the 9,262-body prob-
lem in the configuration space and the velocity space with a
normalized pursuit time of 10 ×Δt = 10Δ�/gth using VTS-
1 are depicted in Figs. 4 and 5, respectively. In Figs. 4 and
5, the complicated changes in position and velocity of a
test particle with time, or the deflection and the acceler-
ation, are reproduced well with the BIA (blue triangles).
The red lines in Figs. 4 and 5 represent the trajectories cal-
culated by using a Runge-Kutta-Fehlberg integrator [10]
with an absolute local error tolerance of 10−16.

4. Summary
New accuracy assurance schemes are introduced to

the Binary Interaction Approximation (BIA) to N-body
problems. The present error-tolerance-adjusting scheme,
called VTS-1 in this paper, implemented into the BIA in-
troduced in this study significantly reduces the CPU times
and numerical errors in invariants of the motion.
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