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It has been pointed out that the anomalous enstrophy dissipation in non-smooth weak
solutions of the two-dimensional Euler equations has a clue to the emergence of
the inertial range in the energy density spectrum of two-dimensional turbulence
corresponding to the enstrophy cascade as the viscosity coefficient tends to zero.
However, it is uncertain how non-smooth weak solutions can dissipate the enstrophy.
In the present paper, we construct a weak solution of the two-dimensional Euler
equations from that of the Euler-α equations proposed by Holm, Marsden & Ratiu
(Phys. Rev. Lett., vol. 80, 1998, pp. 4173–4176) by taking the limit of α → 0.
To accomplish this task, we introduce the α-point-vortex (αPV) system, whose
evolution corresponds to a unique global weak solution of the two-dimensional Euler-α
equations in the sense of distributions (Oliver & Shkoller, Commun. Part. Diff. Equ.,
vol. 26, 2001, pp. 295–314). Since the αPV system is a formal regularization of the
point-vortex system and it is known that, under a certain special condition, three point
vortices collapse self-similarly in finite time (Kimura, J. Phys. Soc. Japan, vol. 56,
1987, pp. 2024–2030), we expect that the evolution of three α-point vortices for the
same condition converges to a singular weak solution of the Euler-α equations that
is close to the triple collapse as α→ 0, which is examined in the paper. As a result,
we find that the three α-point vortices collapse to a point and then expand to infinity
self-similarly beyond the critical time in the limit. We also show that the Hamiltonian
energy and a kinematic energy acquire a finite jump discontinuity at the critical time,
but the energy dissipation rate converges to zero in the sense of distributions. On
the other hand, an enstrophy variation converges to the δ measure with a negative
mass, which indicates that the enstrophy dissipates in the distributional sense via the
self-similar triple collapse. Moreover, even if the special condition is perturbed, we
can confirm numerically the convergence to the singular self-similar evolution with
the enstrophy dissipation. This indicates that the self-similar triple collapse is a robust
mechanism of the anomalous enstrophy dissipation in the sense that it is observed for
a certain range of the parameter region.
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1. Introduction
1.1. Background and motivation

One of the assumptions that Kolmogorov had made in his theory of three-dimensional
isotropic turbulence was that the energy dissipation rate converged to a non-zero
positive constant as the kinetic viscosity coefficient ν vanished. Naively speaking, the
assumption is not satisfied as long as smooth solutions of the Euler equations, which
are the limit of the Navier–Stokes equations as ν→ 0, are considered, since the energy
dissipation rate is always zero owing to the energy conservation. On the other hand,
Onsager mentioned, without any rigorous proof, that the energy could dissipate, if the
Hölder continuity of non-viscous flow fields were less than or equal to 1/3, which is
known as the Onsager conjecture (Onsager 1949; Eyink & Sreenivasan 2006).

Constantin, E & Titi (1994) showed that the energy was conserved for a weak
solution of the Euler equations in the Besov space Bα3∞(T3) on the three-dimensional
periodic box T3 with α > 1/3. Since the index α of the Besov space corresponds to a
Hölder continuity of functions, this is regarded as a modern statement of the Onsager
conjecture. Later, Duchon & Robert (2000) called a weak solution of the Euler
equations dissipative when its corresponding energy dissipation rate was greater than
or equal to zero in the sense of distribution. They showed that the energy dissipation
rate was zero when the Hölder continuity of weak solutions of the Euler equations was
greater than 1/3. Also, some of the statistical properties predicted by Kolmogorov’s
turbulence theory are described in terms of the dissipative weak solution (Duchon &
Robert 2000; Eyink 2003). These studies point out that non-smooth weak solutions
of the Euler equations with the non-negative energy dissipation rate would satisfy
Kolmogorov’s assumption and may play a vital role in understanding of turbulence.
However, the existence of dissipative weak solutions for the Euler equations is still
unknown. Besides, the notion of weak solutions is so abstract that it is uncertain
what kind of fluid evolution belongs to the class of dissipative weak solutions from a
physical point of view. A motivation of the present study is describing such a singular
weak solution as a physically recognizable fluid motion without losing mathematical
rigour.

One procedure to construct a weak solution is regularizing the Euler equations in a
certain manner and then taking the limit of their global solution with respect to the
regularization parameter. As a regularized model, we consider the Euler-α equations
proposed by Holm, Marsden & Ratiu (1998) and Holm (2002), which are derived from
the Euler equations by averaging the spatial information of the flow below the small
scale α (Marsden & Shkoller 2003). The three-dimensional Euler-α equations and
their viscous extension, the three-dimensional Navier–Stokes-α equations, are regarded
as physically relevant models of turbulent flows (Chen et al. 1999; Foias, Holm &
Titi 2001, 2002; Mohseni et al. 2003). In spite of its physical significance, it is
still hard to apply the procedure to the three-dimensional Euler-α equations, since
the existence of a global solution for these equations is as yet unknown (Hou & Li
2006). Thus, in the present paper, we consider the two-dimensional Euler-α equations.
Although the two-dimensional flow is different from the three-dimensional flow, the
two-dimensional Euler-α equations provide us with more theoretical advantages than
the three-dimensional ones in dealing with the present problem as explained in § 1.2.
Moreover, Lunasin et al. (2007) confirmed numerically that the Navier–Stokes-α flow
acquired the inertial ranges in the energy density spectrum that correspond to the
backward energy cascade and the forward enstrophy cascade for scales larger than the
filtering level α. Since the enstrophy cascade is a characteristic property observed in
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two-dimensional turbulence (Kraichnan 1967; Leith 1968; Batchelor 1969), the two-
dimensional Euler-α and the Navier–Stokes-α equations are also regarded as physical
models of two-dimensional turbulence. Therefore, if we could construct a singular
weak solution of the two-dimensional Euler-α equations that dissipates the enstrophy
by taking the limit of α→ 0, it may shed some light upon the relation between
two-dimensional turbulence and singular weak solutions of the Euler equations.

1.2. The two-dimensional Euler-α and the α-point-vortex system
The Euler-α equations for the incompressible velocity field u(x, t) in the two-
dimensional space x ∈ R2 and at time t ∈ [0,T) are

(1− α21)∂tu+ u ·∇(1− α21)u− α2 (∇u)T ·1u=−∇p,
∇ ·u= 0, u(x, 0)= u0(x).

}
(1.1)

Introducing the scalar α-vorticity q = (1 − α21)∇⊥ · u and taking the curl of the
Euler-α equations, we have the equations for q:

qt + (u ·∇)q= 0, u= Kα ∗ q, q(x, 0)= (1− α21)∇⊥ ·u0(x). (1.2)

The kernel is given by Kα(x) = Gα(x) ∗ (1/2π)∇⊥ log |x| and Gα(x) is the Green
function associated with the Helmholtz operator (1− α21),

Gα(x)=− 1
2πα2

K0

( |x|
α

)
, (1.3)

in which K0(x) is a modified Bessel function of the second kind (Watson 2008).
Linshiz & Titi (2010) showed that there existed a unique global solution of the

two-dimensional Euler-α equations for the initial velocity field in the Sobolev space
Hm(R2), m > 2, and it converged to that of the Euler equations in L∞([0,∞);Hm).
Moreover, for weaker initial vorticity data in the space of Radon measure on R2, the
global existence of a unique weak solution in the sense of distributions has been
established by Oliver & Shkoller (2001). On the other hand, in a similar manner as
in the three-dimensional Euler equations, Duchon & Robert (2000) defined a weak
solution of the two-dimensional Euler equations with non-negative energy dissipation
rate in the distributional sense. They also showed that the weak solution for the initial
vorticity data in Lp(R2) ∩ L1(R2), whose existence has been proven by Diperna &
Majda (1987), was not dissipative if p > 3/2. Moreover, Eyink (2001) proved that
the weak solution did not dissipate the enstrophy for 1 < p <∞ in a weak sense.
Therefore, we need to consider weaker function spaces for the initial vorticity data in
order to obtain weak solutions with enstrophy dissipation.

When the vorticity field is represented by discrete δ-functions, a point-vortex system
is derived from the two-dimensional Euler-α equations, which we call the α-point-
vortex (αPV) system. The α-point vortex was first introduced by Holm & Marsden
(1998) and its induced velocity field was derived by Holm, Nitsche & Putkaradze
(2006). The αPV system provides us with an important class of global weak solutions
of the Euler-α equations, since the vorticity field consisting of discrete δ-functions
belongs to the space of Radon measure on R2. This contrasts with the fact that the
motion of point vortices, which is formally reduced from the Euler equations for the
discrete vorticity field, is not a weak solution of the Euler equations, since the velocity
field induced by the point vortices does not belong to L2

loc(R2) in which a weak
solution of the Euler equations exists (Delroit 1991).
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It is also known that, under a certain circumstance, three point vortices collide
self-similarly at a point in finite time (Aref 1979; Novikov & Sedov 1979; Kimura
1987). Since the Euler equations are formally equivalent to the Euler-α equations with
α = 0, one can expect that, under the same circumstance, the motion of three α-point
vortices converges to a singular solution that is close to the triple collapse as α tends
to zero, which is examined in the present paper. Strictly speaking, since the motion
of the α-point vortices for α→ 0 is different from that of the point vortices, the
triple collapse is just a reference to obtain a singular weak solution of the Euler-α
equations. It is also worth mentioning that the triple collapse of the point vortex itself
is less important as long as we are concerned with the relation between singular
weak solutions and two-dimensional turbulence, since the triple collapse is not a weak
solution of the Euler equations. Hence, the singular weak solution of the Euler-α
equations for α→ 0 is a mathematical entity that could dissipate the enstrophy. This is
the reason why we consider the limit solution of the αPV system.

In the next section, we give a brief summary of some known results on the point-
vortex system that help the reader understand the following sections. In § 3, the
equation of α-point vortices is derived from the Euler-α equations. Then, we show
that the αPV system satisfies a scaling property that reduces the system to a canonical
one. We also give an energy and an enstrophy that vary with the evolution of α-point
vortices. In § 4, we describe the evolution of three α-point vortices under the same
condition as that for the self-similar triple collapse of the point vortices. We consider
the behaviour of the three α-point vortices as α→ 0, with which we observe how the
Hamiltonian energy, the energy and the enstrophy change in time in the limit. The
final section is summary and discussion.

2. A brief review on the point-vortex system
Let us introduce some of the known results on the point-vortex system, which

are required to describe the motion of α-point vortices in the following sections.
The reader can find more details and references in the book of Newton (2001).
Suppose that N point vortices with strengths Γm are located at xm(t)= (xm(t), ym(t)) for
m = 1, . . . ,N in the unbounded two-dimensional space R2. Then the evolution of the
point vortices is described by the following Hamiltonian dynamical system:

dxm

dt
= {xm,Hp} = − 1

2π

N∑
n6=m

Γn
ym − yn

l2
mn

,
dym

dt
= {ym,Hp} = 1

2π

N∑
n6=m

Γn
xm − xn

l2
mn

, (2.1)

for m= 1, . . . ,N, in which the Hamiltonian Hp is given by

Hp =− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn log |xm − xn|, (2.2)

and the Poisson bracket between two functions f and g is defined by

{f , g} =
N∑

m=1

1
Γm

(
∂f

∂xm

∂g

∂ym
− ∂g

∂xm

∂f

∂ym

)
. (2.3)

Identifying zm(t)= xm(t)+ iym(t) ∈ C, we rewrite (2.1) in the following complex form:

dz∗m
dt
= 1

2πi

N∑
n6=m

Γn

zm − zn
, (2.4)
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in which z∗ denotes the complex conjugate of z and i = √−1. Let us now define the
linear impulse L ∈ C and the angular momentum I ∈ R by

L= Q+ iP=
N∑

m=1

Γmzm, I =
N∑

m=1

Γm|zm |2 . (2.5)

Since {P2+Q2,H} = 0 and {I,H} = 0, they are invariant quantities. Moreover, we have
{P2 + Q2, I} = 0 and thus the point-vortex system (2.1) with N = 3 is integrable. It is
also integrable for N = 4 when the total vortex strength is zero, i.e. Γ ≡∑N

m=1Γm = 0,
because of {Q, I} = P, {P, I} = Q and {Q,P} = Γ .

It is sometimes convenient to consider the evolution of the distance lmn = |xm − xn|
between two point vortices at xm and xn. Its governing equation is given by

d
dt

l2
mn =

2
π

N∑
k 6=m6=n

ΓkσmnkAmnk

(
1
l2
nk

− 1
l2
km

)
, (2.6)

where σmnk and Amnk symbolize the arrangement and the area of the triangle formed by
the three point vortices at xm, xn and xk respectively. The arrangement σmnk is +1 if
the order of the indices m, n, k is counterclockwise, and it is −1 if they are clockwise.
The area Amnk is represented by

Amnk = 1
4

[
2
(
l2
mnl2

nk + l2
nkl

2
km + l2

kml2
mn

)− l4
mn − l4

nk − l4
km

]1/2
. (2.7)

Note that the invariant quantities are rewritten in terms of the distance:

Hp =− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn log lmn, M ≡
N∑

m=1

N∑
n=m+1

ΓmΓnl2
mn = Γ I − Q2 − P2. (2.8)

The energy generated by the evolution of the N point vortices was derived by
Novikov (1976). Since the vorticity field generated by the N point vortices at xm(t) for
m= 1, . . . ,N is represented by

ω(x, t)=
N∑

m=1

Γmδ(x− xm(t)), (2.9)

in the sense of distributions, its Fourier transform is given by

ω̂(ξ , t)= 1
2π

N∑
m=1

Γm exp[−iξ · xm(t)], (2.10)

which yields the magnitude of the spectrum,

|ω̂(ξ , t) |2 = 1
4π2

[
N∑

m=1

Γ 2
m + 2

N∑
m=1

N∑
n=m+1

ΓmΓn cos(ξ · (xm − xn))

]
. (2.11)

Let v̂(ξ , t) denote the Fourier transform of the velocity field v(x, t) induced by the
vorticity field (2.9). Then we obtain the total energy,

1
2

∫
R2
|v̂(ξ , t) |2 dξ = 1

2

∫ ∞
0

∫ π
−π
|v̂(ξ , t) |2 ξ dξ dθ =

∫ ∞
0
πξ
〈|v̂(ξ, t) |2〉 dξ, (2.12)
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in which ξ = |ξ | and 〈f (·)〉 = (1/2π) ∫ π−π f (θ) dθ denotes the average of the function
f (θ) with respect to the angle variable θ . Thus the energy density spectrum is
represented by

EN(ξ, t)= πξ〈|v̂(ξ, t)|2〉 = π
ξ
〈|ω̂(ξ, t)|2〉

= 1
4πξ

[
N∑

m=1

Γ 2
m + 2

N∑
m=1

N∑
n=m+1

ΓmΓnJ0(ξ lmn)

]
, (2.13)

in which J0(x) is a Bessel function. Hence, the total energy from a small scale
0< l� 1 to a large scale 1� L<∞ is given by∫ l−1

L−1
EN(ξ, t) dξ = 1

4π

N∑
m=1

Γ 2
m log

l

L
+ 1

2π

N∑
m=1

N∑
n=m+1

ΓmΓn

∫ l−1

L−1

J0(ξ lmn)

ξ
dξ

∼ 1
4π

N∑
m=1

Γ 2
m log

l

L
+ 1

2π

N∑
m=1

N∑
n=m+1

ΓmΓn log
LC1

lmn
, (2.14)

where C1 = 2e−γ , and γ is the Euler number.
Since the scales l and L are fixed, the first term of (2.14) is constant in time. Thus,

the non-constant part of the total energy, say Ep(t), is described by the second term,

Ep(t)≡− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn log lmn(t). (2.15)

This is equivalent to the Hamiltonian Hp of the point-vortex system, which is
conserved for solutions of (2.1).

In what follows, let us recall a special singular solution appearing in the integrable
motion of three point vortices with the following additional conditions:

1
Γ1
+ 1
Γ2
+ 1
Γ3
= 0, M = Γ1Γ2l2

12 + Γ2Γ3l2
23 + Γ3Γ1l2

31 = 0. (2.16)

Then, it is shown that three point vortices collide self-similarly at a point in finite
time unless their configuration is an equilibrium (Aref 1979; Novikov & Sedov
1979; Newton 2001). Kimura (1987) constructed the self-similar collapsing solution
by assuming that the orbits of the point vortices are expressed by zm(t) = λmf (t) for
m = 1, 2, 3, in which λm ∈ C are complex constants and f (t) = r(t) exp(iϑ(t)) is a
complex-valued function. Substituting the expression zm(t)= λmf (t) into (2.4), we have
the differential equation for f (t),

f ∗
df

dt
= C ≡A + iB, (2.17)

where C ∈ C and A ,B ∈ R, and the algebraic equation for λm is

λmC = i
2π

3∑
n6=m

Γn

λ∗m − λ∗n
. (2.18)

Equation (2.17) is further reduced to those for r(t) and ϑ(t) as follows:

d
dt

r2 = 2A ,
d
dt
ϑ = B

r2
. (2.19)
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When A = 0, the solutions are r(t)= 1 and ϑ(t)=Bt for the initial data r(0)= 1 and
ϑ(0) = 0, which correspond to a relative equilibrium rotating at the constant speed B.
On the other hand, for A 6= 0, when we consider the initial conditions

r

(
1

2A

)
= 1, ϑ

(
1

2A

)
= 0, (2.20)

the solution of the differential equation (2.17) is given by

r(t)=
√

2A t, ϑ(t)= B

2A
log(2A t). (2.21)

This indicates that, for A < 0, the motion of the three point vortices is defined for
t < 0 and they approach each other from infinity and collapse self-similarly at the
origin at t = 0, which we refer to as the triple collapse. On the other hand, for A > 0,
the point vortices emerge from the origin at t = 0 and expand self-similarly towards
infinity, which we call the triple expansion. The constants A and B are determined
by solving the algebraic equation (2.18) with respect to λm. Kimura (1987) also gave
the initial configurations of the three point vortices that satisfy (2.18) for which A
changes its sign. This proves the existence of the self-similar singular solutions.

3. The α-point-vortex (αPV) system
3.1. General formulations

Let us assume that the α-vorticity field q(x, t) is represented by N discrete δ-
functions, say α-point vortices, with strength Γn located at xn(t) = (xn(t), yn(t)) ∈ R2

for n= 1, . . . ,N,

q(x, t)=
N∑

n=1

Γnδ(x− xn(t)). (3.1)

The explicit representation of the kernel Kα(x) in (1.2) is provided by Holm et al.
(2006):

Kα(x)=− 1
2π
∇
⊥
[

log |x| + K0

( |x|
α2

)]
. (3.2)

Substituting (3.1) into u = Kα ∗ q and evaluating the velocity at x = xm(t), we derive
the equations for the α-point vortices.

dxm

dt
=− 1

2π

N∑
n6=m

Γn
ym − yn

l2
mn

BK

(
lmn

α

)
,

dym

dt
= 1

2π

N∑
n6=m

Γn
xm − xn

l2
mn

BK

(
lmn

α

)
, (3.3)

where lmn = |xm − xn| and BK(x)= 1− xK1(x). The function K1(x) is a modified Bessel
function of the second kind (Watson 2008). We call the system (3.3) the α-point-vortex
(αPV) system. Since BK(x)→ 1 owing to K1(x)→ e−x as x→∞, the αPV system
for α→ 0 is formally equivalent to the point-vortex system (2.1). On the other hand,
we have BK(x)→ 0 for x→ 0, since K1(x) ∼ 1/x as x→ 0. Thus the velocity field
vanishes when the distance between two α-point vortices tends to zero, which means
that the velocity field is regularized thanks to the function BK(lmn/α), in which the
function BK(x) is monotonically increasing for x> 0, since

d
dx

BK(x)=−K1(x)− x
d
dx

K1(x)= xK0(x) > 0. (3.4)
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This is a dispersive regularization of the point-vortex system. Note that a dissipative
regularized point-vortex model is proposed by Shashikanth (2010). It is important to
remember that the solution of the αPV system corresponds to a global weak solution
of the Euler-α equations for the initial data in the space of Radon measure on R2,
to which the vorticity field (3.1) belongs. Consequently, there exists no finite-time
collapse in the αPV system.

In the same spirit as Novikov’s derivation, we derive an energy that evolves with the
motion of α-point vortices. Since the α-vorticity is defined by q= (1−α21)∇⊥ ·u and
it is represented by (3.1), the energy density spectrum is given by

E(α)N (ξ, t)= πξ〈|û(ξ, t)|2〉 = π

(1+ α2ξ 2)
2
ξ
〈|q̂(ξ, t)|2〉

= 1

4π (1+ α2ξ 2)
2
ξ

[
N∑

m=1

Γ 2
m + 2

N∑
m=1

N∑
n=m+1

ΓmΓnJ0(ξ lmn)

]
. (3.5)

Hence, the total energy becomes∫ l−1

L−1
E(α)N (ξ, t) dξ = 1

4π

N∑
m=1

Γ 2
m

∫ l−1

L−1

dξ

(1+ α2ξ 2)
2
ξ

+ 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

∫ l−1

L−1

J0(ξ lmn)

(1+ α2ξ 2)
2
ξ

dξ. (3.6)

The integral in the second term is evaluated as follows:∫ l−1

L−1

J0(ξ lmn)

(1+ α2ξ 2)
2
ξ

dξ =
∫ l−1

L−1

J0(ξ lmn)

ξ
dξ −

∫ l−1

L−1

α2ξJ0(ξ lmn)

1+ α2ξ 2
dξ

−
∫ l−1

L−1

α2ξJ0(ξ lmn)

(1+ α2ξ 2)
2 dξ

∼ log
LC1

lmn
− K0

(
lmn

α

)
− lmn

2α
K1

(
lmn

α

)
, (3.7)

in which the following formulae in terms of Bessel functions are used (Watson 2008):∫ ∞
0

xJ0(ax)

1+ x2
dx= K0(a),∫ ∞

0

xν+1Jν(ax)

(1+ x2)
µ+1 dx= aµKν−µ(a)

2µΓ (µ+ 1)
, µ+ 3/2> ν >−1.

 (3.8)

Removing the constant terms, we have the non-constant part of the energy E(α)(t) that
varies with the evolution of α-point vortices:

E(α)(t)=− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

[
log lmn(t)+ K0

(
lmn(t)

α

)
+ lmn(t)

2α
K1

(
lmn(t)

α

)]
. (3.9)

Another important quantity is the enstrophy, which is the L2 norm of the vorticity
field. Here, we define the part of the enstrophy that evolves with the motion of
α-point vortices in the sense of Novikov. Since q̂(ξ , t) = (1 + α2ξ 2)ω̂(ξ , t) owing
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to q= (1− α21)ω, the enstrophy density spectrum is described by

Z (α)
N (ξ, t)≡ πξ

(1+ α2ξ 2)
2 〈|q̂(ξ, t)|2〉

= ξ

4π (1+ α2ξ 2)
2

[
N∑

m=1

Γ 2
m + 2

N∑
m=1

N∑
n=m+1

ΓmΓnJ0(ξ lmn)

]
. (3.10)

Integrating it from the scale l to L, we have∫ l−1

L−1
Z (α)

N (ξ, t) dξ = 1
4π

N∑
m=1

Γ 2
m

∫ l−1

L−1

ξ

(1+ α2ξ 2)
2 dξ

+ 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

∫ l−1

L−1

ξJ0(ξ lmn)

(1+ α2ξ 2)
2 dξ. (3.11)

The second term is the non-constant part of the enstrophy, say Z (α)(t). On use of
(3.8), it is represented by

Z (α)(t)= 1
4πα2

N∑
m=1

N∑
n=m+1

lmn(t)

α
K1

(
lmn(t)

α

)
. (3.12)

3.2. Canonical system and integrability
Introducing the scaled variables Xm(t)= (Xm(t),Ym(t)) and Lmn(t) with

Xm(t)= 1
α

xm(α
2t), Ym(t)= 1

α
ym(α

2t), Lmn(t)= |Xm(t)− Xn(t)| = 1
α

lmn(α
2t), (3.13)

we have the equations for Xm(t):

dXm

dt
=− 1

2π

N∑
n6=m

Γn
Ym − Yn

L2
mn

BK(Lmn),
dYm

dt
= 1

2π

N∑
n6=m

Γn
Xm − Xn

L2
mn

BK(Lmn). (3.14)

Note that equations (3.14) are equivalent to (3.3) with α = 1. Since the solution of
(3.3) is recovered from Xm(t), Ym(t) and Lmn(t) by

xm(t)= αXm(t/α
2), ym(t)= αYm(t/α

2), lmn(t)= αLmn(t/α
2), (3.15)

(3.14) can be regarded as a canonical system for the αPV system.
We give some equivalent expressions to (3.14), which are used in the present paper.

The canonical system is a Hamiltonian dynamical system with the same Poisson
bracket as (2.3) and the Hamiltonian H = H0(t)+ H1(t), in which

H0(t)=− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn log Lmn(t),

H1(t)=− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓnK0 (Lmn(t)) .

 (3.16)

We note that the two terms H0 and H1 can exchange their values during the evolution
of the α-point vortices, although their total sum H remains constant for all time. The
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complex representation of (3.14) becomes

dZ∗m
dt
= 1

2πi

N∑
n6=m

Γn

Zm − Zn
BK(|Zm − Zn|), (3.17)

where Zm(t)= Xm(t)+ iYm(t). The equation for the distance Lmn is

d
dt

L2
mn =

2
π

N∑
k 6=m6=n

ΓkσmnkAmnk

(
1

L2
nk

BK(Lnk)− 1
L2

km

BK(Lkm)

)
, (3.18)

where σmnk and Amnk are the same as those defined in § 2.
Let us discuss the integrability of the canonical system as in Aref (1979) and

Newton (2001). The linear impulse L and the angular momentum I defined as in (2.5)
are again invariant quantities for the canonical system, since

dL

dt
=

N∑
m=1

Γm
dZm

dt
=−

N∑
m=1

Γm

N∑
n6=m

Γn

2πi
1

Z∗m − Z∗n
BK(|Zm − Zn|)

=−
N∑

m=1

N∑
n=m+1

ΓmΓn

2πi
1

Z∗m − Z∗n
BK(|Zm − Zn|)+

N∑
n=1

N∑
m=n+1

ΓmΓn

2πi
1

Z∗n − Z∗m
BK(|Zm − Zn|)

= 0, (3.19)

and

dI

dt
=− 1

2πi

(
N∑

m=1

N∑
n=m+1

ΓmΓnZ∗m
Z∗m − Z∗n

BK(|Zm − Zn|)−
N∑

n=1

N∑
m=n+1

ΓmΓnZ∗m
Z∗n − Z∗m

BK(|Zm − Zn|)
)

+ 1
2πi

(
N∑

m=1

N∑
n=m+1

ΓmΓnZm

Zm − Zn
BK(|Zm − Zn|)−

N∑
n=1

N∑
m=n+1

ΓmΓnZm

Zn − Zm
BK(|Zm − Zn|)

)

=− 1
2πi

N∑
m=1

N∑
n=m+1

ΓmΓnBK(|Zm − Zn|)+ 1
2πi

N∑
m=1

N∑
n=m+1

ΓmΓnBK(|Zm − Zn|)

= 0. (3.20)

Hence, M = Γ I − Q2 − P2 = ∑N
m=1

∑N
n=m+1ΓmΓnL2

mn is also conserved. Since the
definitions of L, I and the Poisson bracket are the same as those introduced in the
point-vortex system of § 2, we also have {P2 + Q2, I} = 0, {Q,P} = Γ , {Q, I} = P and
{P, I} = Q. Accordingly, the αPV system for N 6 3 is integrable for all values of Γm.
Furthermore, if the total strength of the vortices is zero, i.e. Γ = 0, it is integrable for
N = 4.

4. A three-α-vortex problem
4.1. Long-time evolution

We consider an integrable αPV system for N = 3 subject to the same additional
conditions as (2.16):

1
Γ1
+ 1
Γ2
+ 1
Γ3
= 0, (4.1)

M = Γ1Γ2L2
12 + Γ2Γ3L2

23 + Γ3Γ1L2
31 = 0. (4.2)
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The analytical techniques used here are the same as those used by Synge (1949), Aref
(1979) and Newton (2001), but there are some mathematical difficulties owing to the
presence of the regularization term BK(x) in the αPV system. The following analysis
will facilitate the construction of a singular weak solution of the Euler-α equations
by taking limit of α→ 0 rigorously in § 4.2. Owing to (4.1), we may assume that
Γ1 > Γ2 > 0 > Γ3 without loss of generality. Equation (3.18) for the distance Lmn is
explicitly written as

d
dt

L2
12 =

2
π
Γ3A

[
1

L2
23

BK(L23)− 1
L2

31

BK(L31)

]
, (4.3)

d
dt

L2
23 =

2
π
Γ1A

[
1

L2
31

BK(L31)− 1
L2

12

BK(L12)

]
, (4.4)

d
dt

L2
31 =

2
π
Γ2A

[
1

L2
12

BK(L12)− 1
L2

23

BK(L23)

]
, (4.5)

where A= σ123A123 = σ231A231 = σ312A312 denotes the signed area of the triangle formed
by the three α-point vortices. It is computed from Heron’s formula,

A2 = r(r − L12)(r − L23)(r − L31), r = 1
2(L12 + L23 + L31), (4.6)

and its magnitude |A| is expressed by

|A| = 1
4

[
2
(
L2

12L2
23 + L2

23L2
31 + L2

31L2
12

)− L4
12 − L4

23 − L4
31

]1/2
> 0, (4.7)

which is equivalent to (2.7). The signed area evolves according to the motion of the
three α-point vortices, whose governing equation is obtained by differentiating (4.6)
and plugging (4.3)–(4.5) into it:

dA

dt
= 1

4π

∑
Γ1L−1

23

[
L−2

31 BK(L31)− L−2
12 BK(L12)

]
×
[
(r − L23)(r − L31)(r − L12)+ r

∑
(r − L31)(r − L12)

]
− r

2π

∑
Γ1L−1

23

[
L−2

31 BK(L31)− L−2
12 BK(L12)

]
(r − L31)(r − L12), (4.8)

in which
∑

denotes the summation over cyclic permutation of indices, for instance∑
L12 = L12 + L23 + L31. Equations (4.3)–(4.5) and (4.8) define a four-dimensional

dynamical system for (L12,L23,L31,A). Since M is invariant, it is further reduced to
the two-dimensional system for L23 and L31. Thus we first determine the range where
the variables (L23,L31) can exist. It follows from (4.1) and (4.2) that

L2
12 =−

Γ3

Γ1
L2

23 −
Γ3

Γ2
L2

31 =
Γ1 + kΓ2

Γ1 + Γ2
L2

31. (4.9)

Let us write L2
23/L

2
31 = k. Then (4.7) is equivalent to

k2 + 1+
(
Γ1 + kΓ2

Γ1 + Γ2

)2

− 2k − 2
Γ1 + kΓ2

Γ1 + Γ2
− 2k

Γ1 + kΓ2

Γ1 + Γ2
6 0, (4.10)

which yields the quadratic inequality for k,

f (k)≡ Γ 2
1 k2 − 2(2Γ 2

1 + 3Γ1Γ2 + 2Γ 2
2 )k + Γ 2

2 6 0. (4.11)
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Since the determinant of the equation f (k)= 0 is 4(Γ 2
1 +2Γ1Γ2+Γ 2

2 )(Γ
2

1 +Γ1Γ2+Γ 2
2 ) >

0, there are two real solutions of f (k) = 0, say k1 and k2. Furthermore, owing
to f (0) = Γ 2

2 > 0 and f (1) = −3 (Γ1 + Γ2)
2 < 0, we have 0 < k1 < 1 < k2. Hence,

|A|> 0 is equivalent to k1 6 L2
23/L

2
31 6 k2, in which (L23,L31) can exist.

Next, we investigate equilibria of (4.3)–(4.5) and (4.8). It follows from (4.3)–(4.5)
that dL2

23/dt = dL2
31/dt = dL2

12/dt = 0 is satisfied if L12 = L23 = L31 or A = 0. If
L12 = L23 = L31 then dA/dt = 0. Thus equilateral triangles are equilibria. On the
other hand, for A = 0, we can show that dA/dt 6= 0 as follows. Since the collinear
configurations correspond to A = 0, the ratio between L23 and L31 satisfies either
L2

23/L
2
31 = k1 or k2. First we consider the case when L2

23/L
2
31 = k1 < 1. Then, it follows

from (4.9) that the ratios are given by

L23

L31
=
√

k1 ≡ γ1 < 1,
L12

L31
=
√
Γ1 + k1Γ2

Γ1 + Γ2
≡ γ2 < 1,

L12

L23
=
√

Γ1 + k1Γ2

k1Γ1 + k1Γ2
= γ2

γ1
> 1,

 (4.12)

which indicate L23 < L12 < L31. Moreover, since the configuration of the three α-point
vortices is collinear, we have L12 + L23 = L31 and thus γ1 + γ2 = 1. Since k1 is the
solution of f (k1)= 0, the constants γ1 and γ2 are explicitly represented by

γ1 = 1
Γ1
(Γ1 + Γ2 −

√
R), γ2 = 1− γ1 = 1

Γ1
(
√

R − Γ2), (4.13)

in which R = Γ 2
1 + Γ1Γ2 + Γ 2

2 . Then we have r = L31 = L12 + L23, r − L12 = L23,
r − L23 = L12 and r − L31 = 0. Substituting these relations into (4.8), we have

dA

dt
= 1

4π
L31L23L31

∑
Γ1L−1

23

[
L−2

31 BK(L31)− L−2
12 BK(L12)

]
− 1

2π
L31L23L31Γ2L−1

31

[
L−2

12 BK(L12)− L−2
23 BK(L23)

]
= 1

4π

[
Γ1

(
L12

L31
BK(L31)− L31

L12
BK(L12)

)
+ Γ2

(
L12

L23
BK(L23)− L23

L12
BK(L12)

)
+ Γ3

(
L31

L23
BK(L23)− L23

L31
BK(L31)

)]
= 1

4π

[
Γ1

(
γ2BK(L31)− 1

γ2
BK(γ2L31)

)
+ Γ2

(
γ2

γ1
BK(γ1L31)− γ1

γ2
BK(γ2L31)

)
− Γ1Γ2

Γ1 + Γ2

(
1
γ1

BK(γ1L31)− γ1BK(L31)

)]
= 1

4π

[
Γ1

√
R

Γ1 + Γ2
(BK(L31)− BK(γ2L31))+ Γ2

√
R

Γ1 + Γ2
(BK(γ1L31)− BK(γ2L31))

]

≡ 1
4π

g(L31). (4.14)

We need to confirm that g(x) 6= 0 for x > 0. Owing to the invariance of (4.3)–(4.5)
with respect to the transformation (Γ1, Γ2, Γ3, t) 7→ (Γ1/Γ2, 1, Γ3/Γ2, Γ2t), it is
sufficient to check it for Γ1 > 1 and Γ2 = 1. The function g(x) is negative for x > 0 as
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FIGURE 1. Graphs of the function g(x) for various Γ1 > 1, which show dA/dt = g(x) < 0
for x< 0.

we see in figure 1. Hence, we have dA/dt 6= 0. We can similarly show the same result
when the ratio satisfies L2

23/L
2
31 = k2. Therefore, the equilibria for the canonical system

(4.3)–(4.5) and (4.8) with the conditions (4.1) and (4.2) are equilateral triangles.
Since the canonical system is integrable for N = 3, the evolution of the three α-point

vortices is described by the contour lines of the Hamiltonian (3.16). As in Newton
(2001), with the variables

b1 = L2
23

Γ1
, b2 = L2

31

Γ2
, b3 = L2

12

Γ3
, (4.15)

each term of the Hamiltonian is expressed by

H0 =−Γ1Γ2Γ3

4π

[
1
Γ1

log
Γ1b1

Γ3b3
+ 1
Γ2

log
Γ2b2

Γ3b3

]
, (4.16)

H1 = −Γ1Γ2Γ3

4π

[
2
Γ1
(K0(

√
Γ1b1)− K0(

√
Γ3b3))

+ 2
Γ2
(K0(

√
Γ2b2)− K0(

√
Γ3b3))

]
. (4.17)

The evolution of the three α-point vortices is observed by plotting the contour lines of
the Hamiltonian in the two-dimensional (b1, b2)-plane, since we have b1 + b2 + b3 = 0
owing to (4.2). The wedge-shaped region, k1 6 L2

23/L
2
31 = Γ1b1/Γ2b2 6 k2, is called

the physical region. Each point on the boundary of the physical region corresponds
to a collinear configuration, while those on the continuous line Γ1b1/Γ2b2 = 1 are
equilateral triangles, which are equilibria. There are no equilibria in the region
k1 6 Γ1b1/Γ2b2 < 1 and 1 < Γ1b1/Γ2b2 6 k2. Figure 2 shows the contour plots of the
Hamiltonian for (a) Γ1 = 1 and (b) Γ1 = 2 with Γ2 = 1. The only line connecting to
the origin is Γ1b1/Γ2b2 = 1 that represents the equilateral triangles Γ1b1 = Γ2b2 = Γ3b3.
Since a point in the physical region represents two configurations of the three α-point
vortices with opposite arrangements σ123, say (L12,L23,L31,A) and (L12,L23,L31,−A),
the physical region can be regarded as two-sided. That is to say, the configurations
of A > 0 are on the front side, while those of A < 0 are on the back side. The two
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(b)(a) b2

0 b1

b2

0 b1

FIGURE 2. Contour plots of the Hamiltonian in the (b1, b2)-plane for (a) Γ1 = 1 and
(b) Γ1 = 2. The strength Γ2 = 1 can be fixed owing to the temporal scale invariance of
the system with respect to t 7→ Γ2t.

sides are connected at the boundary of the physical region. Therefore, the evolution
of the α-point vortices moving along a contour line on one side of the physical
region reaches the boundary, at which their configuration becomes collinear, and then
it moves back along the same contour line on the other side. Since all contour lines
in figure 2 are joined at the boundary of the physical region, we may choose the
collinear configuration as initial data, i.e. A(0)= 0, without loss of generality. Then we
can show that Lmn(t) = Lmn(−t) and A(t) = −A(−t) for t > 0 as follows. Suppose that
Lmn(t)= Lmn(−t) and A(t)=−A(−t), then we have

d
dt
(L2

mn(t)− L2
mn(−t))= 2

π
Γk(A(t)+ A(−t))

[
1

L2
nk

BK(Lnk)− 1
L2

km

BK(Lkm)

]
= 0, (4.18)

d
dt
(A(t)+ A(−t))= 0, (4.19)

which proves the claim because A(0)= 0.
The above observations indicate that the evolution of the three α-point vortices as

t→±∞ is characterized by the behaviour of the contour lines of the Hamiltonian as
b1→∞, which is described here. Let us first note that b2 6= 0 owing to b1 6= 0. Then
we show that b2→∞ as b1→∞. Suppose that b2→ b <∞, then it follows from
b1 + b2 + b3 = 0 that b3→−∞. While the second term H1 of the Hamiltonian remains
bounded, it follows from

Γ3b3 = Γ1Γ2

Γ1 + Γ2
(b1 + b2) (4.20)

that the first term H0 becomes

H0 =−Γ1Γ2Γ3

4π

[
1
Γ1

log
Γ1 + Γ2

Γ2(1+ b2/b1)
+ 1
Γ2

log
(Γ1 + Γ2)b2/b1

Γ1(1+ b2/b1)

]
→∞, (4.21)

as b1→∞ and b2→ b <∞. This contradicts the conservation of the Hamiltonian.
Thus we have b2→∞. Next we assume that b2/b1→∞ as b1→∞. Then the first
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term in (4.21) tends to −∞, which is again a contradiction. Consequently, b2/b1

converges to a finite non-zero constant, which means that the contour lines of
the Hamiltonian approach the line L2

23/L
2
31 = Γ1b1/Γ2b2 = const. asymptotically as

b1, b2→∞. Hence, the evolution of the α-point vortices acquires self-similarity as
t→±∞. At the same time, since b1→∞ and b2→∞ yield Lmn→∞, equations
(4.3)–(4.5) tend to those for the point-vortex system (2.6) owing to BK(x)→ 1 as
x→∞. Moreover, the second term H1 tends to zero owing to K0(x)→ 0 as x→∞.
Thus we have the convergence of the first term

lim
t→±∞

H0(Lmn(t))= H. (4.22)

Therefore, as t → ±∞, the evolution of the three α-point vortices converges
asymptotically to the self-similar triple expansion of the three point vortices described
in § 2. In other words, owing to (2.21) and Lmn(t) = Lmn(−t), there exists a constant
C∞ > 0 such that the distance Lmn(t) converges asymptotically as

Lmn(t)→ C∞
√|t|, t→±∞. (4.23)

Finally we show a numerical solution of (3.14) to confirm the theoretical results. We
choose an initial collinear configuration satisfying L23/L31 = γ1 and L31 = L23 + L12,
which is given by

(X1(0),Y1(0))= (−0.5, 0.0), (X2(0),Y2(0))= (0.5− γ1, 0.0),
(X3(0),Y3(0))= (0.5, 0.0).

}
(4.24)

As the numerical scheme, we use an implicit fourth-order symplectic Runge–Kutta
method (Leimkuhler & Reich 2005) with the time step size 1t = 0.001, since we
need an accurate numerical solution for longer time to investigate the behaviour of
the solution as α → 0 in the next section. Thanks to the symplectic scheme, the
maximum error of the Hamiltonian is less than 1.0 × 10−12 up to the time t = 105,
which is tolerable. The solution in the negative time direction is recovered according
to Lmn(t)= Lmn(−t) and A(t)=−A(−t).

Figure 3 shows the orbits of the three α-point vortices from t = 0 to t =
900. Starting from the collinear configuration, the α-point vortices rotate in the
counterclockwise direction with increasing relative distances. The evolution of the
distances Lmn(t) between the α-point vortices for t > 0 is shown in figure 4(a),
which indicates that they grow asymptotically as

√
t for large t. On the other hand,

figure 4(b) shows that the evolution of the ratios L23/L31(t) and L12/L31(t) is almost
constant for large |t|, which means that the evolution of the α-point vortices acquires
self-similarity. The ratios change greatly for small |t| and have their minima at t = 0
when the α-point vortices reach the collinear configuration. Hence, the numerical
solution demonstrates that the three α-point vortices approach asymptotically the self-
similar triple expansion as t→±∞.

4.2. Instantaneous energy and enstrophy variations via triple collapse

With the evolution of the three α-point vortices given in the previous section, we
observe how the Hamiltonian energy, the energy E(α) and the enstrophy Z (α) converge
as α tends to zero. The α→ 0 limit of the evolution of the three α-point vortices is
derived with the scaling property (3.15). Let us note that for fixed t 6= 0, |t|/α2→∞
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FIGURE 3. Orbits of the three α-point vortices from t = 0 to 900 starting from the collinear
initial configuration (4.24).
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FIGURE 4. (a) Log–log plot of the evolution of the distances L12(t), L23(t) and L31(t) between
the three α-point vortices for 0 < t 6 10 000. (b) Evolution of their ratios L23/L31(t) and
L12/L31(t) for −10 000 6 t 6 10 000.

as α→ 0. Then it follows from the asymptotic behaviour (4.23) that we have

lmn(t)= αLmn

( t

α2

)
−→ C∞α

√|t|
α
= C∞

√|t|, α→ 0, (4.25)

which indicates that the evolution of the three α-point vortices tends to the self-
similar triple collapse for t < 0 and the self-similar triple expansion for t > 0. The
convergence is clearly observed in figure 5, in which log–log plots of αL31(t/α2) for
various α are shown for (a) Γ1 = 1 and Γ2 = 1 and (b) Γ1 = 5 and Γ2 = 1.

In the point-vortex system, the energy Ep is equivalent to the Hamiltonian energy Hp,
but the energy E(α) is different from the Hamiltonian energy for the αPV system. Thus
we need to consider the convergence of the two energies for α→ 0 separately. The
Hamiltonian energy Hp of the point-vortex system is no longer a conserved quantity
for the αPV system, but it is computed from the solution of the canonical system



204 T. Sakajo

(b)(a)

10–4

10–6

10–2

102

100

10–4

10–6

10–2

102

100

Time Time
10–210–610–10 106102 10–210–610–10 106102

FIGURE 5. Log–log plots of αL31(t/α2) for various α; (a) Γ1 = 1 and Γ2 = 1 and (b) Γ1 = 5
and Γ2 = 1, which show the convergence to

√
t as α→ 0.

with (3.16) and (4.1):

H(α)
p (t)=− 1

2π

3∑
m=1

3∑
n=m+1

ΓmΓn log lmn(t)=− 1
2π

3∑
m=1

3∑
n=m+1

ΓmΓn logαLmn

( t

α2

)
=− 1

2π

3∑
m=1

3∑
n=m+1

ΓmΓn log Lmn

( t

α2

)
= H0

( t

α2

)
= H − H1

( t

α2

)

= H + 1
2π

3∑
m=1

3∑
n=m+1

ΓmΓnK0

(
Lmn

( t

α2

))
. (4.26)

For t 6= 0, since Lmn(t/α2)→∞ as α→ 0, we have H1(t/α2)→ 0. Thus we have the
convergence of the Hamiltonian energy:

lim
α→0

H(α)
p (t)−→ H for t 6= 0. (4.27)

On the other hand, it follows from H(α)
p (α2t) = H − H1(t) that H(α)

p (α2t) for any t
converges to H(α)

p (0). Hence, it is localized in the neighbourhood of t = 0 as α tends
to zero. Because of the localization, the variation of the Hamiltonian energy at t = 0 is
defined by

lim
α→0

H(α)
p (0)− H = 1

2π

3∑
m=1

3∑
n=m+1

ΓmΓnK0(Lmn(0))=−H1(0). (4.28)

Figure 6(a) shows the evolution of H(α)
p (t) for various α computed from the numerical

solution for Γ1 = Γ2 = 1. This indicates that, in the limit of α→ 0, the Hamiltonian
energy is conserved during the triple collapse for t < 0 and the triple expansion for
t > 0, while it jumps instantly at the critical time t = 0. The magnitude of the energy
variation H1(0) is determined by the initial collinear configuration. Figure 7(a) shows
log plots of H1(0) for the collinear configurations along the boundary of the physical
region when Γ1 = Γ2 = 1. Since they are positive, the Hamiltonian energy always
jumps discontinuously in the negative direction at the critical time.



Energy and enstrophy variations via triple collapse 205

Time

(× 10–2) (× 10–3)

–1

–2

–3

–4

–5

–6

0

–1500 –1000 –500 0  500 1000 1500
–4.5

–4.0

–3.5

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0
(b)(a)

Time
–1500 –1000 –500 0  500 1000 1500

FIGURE 6. Evolution of (a) the Hamiltonian energy H(α)
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various α. The vortex strengths are Γ1 = Γ2 = 1. As α tends to zero, they are localized in the
neighbourhood of t = 0, whereas they converge to the same constant for t 6= 0. They illustrate
that the Hamiltonian energy and the energy jump discontinuously at time t = 0 in the limit.
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2
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configurations. The vortex strengths are Γ1 = 1 and Γ2 = 1.

The energy E(α) is computed from the distance Lmn(t) as follows:

E(α)(α2t)=− 1
2π

3∑
m=1

3∑
n=m+1

ΓmΓn

[
log

lmn(α
2t)

α
+ K0

(
lmn(α

2t)

α

)
+ lmn(α

2t)

2α
K1

(
lmn(α

2t)

α

)]
=− 1

2π

3∑
m=1

3∑
n=m+1

ΓmΓn

[
log Lmn(t)+ K0 (Lmn(t))+ 1

2 Lmn(t)K1 (Lmn(t))
]

= H − 1
4π

3∑
m=1

3∑
n=m+1

ΓmΓnLmn(t)K1 (Lmn(t)) . (4.29)
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FIGURE 8. Evolution of (a) the Hamiltonian energy H(α)
p (t) and (b) E(α)(t) for various α.

The vortex strengths are Γ1 = 5 and Γ2 = 1. The Hamiltonian energy and the energy jump
discontinuously at the critical time t = 0 in the limit.

Hence, we have for τ = α2t

E(α)(τ )= H − 1
4π

3∑
m=1

3∑
n=m+1

ΓmΓnLmn

( τ
α2

)
K1

(
Lmn

( τ
α2

))
≡ H + HK

( τ
α2

)
. (4.30)

The energy E(α)(τ ) is localized at τ = 0 in a similar manner to the Hamiltonian energy,
the variation of which is defined by

lim
α→0

E(α)(0)− H =− 1
4π

3∑
m=1

3∑
n=m+1

ΓmΓnLmn(0)K1 (Lmn(0))= HK(0). (4.31)

The evolution of E(α)(τ ) for various α with Γ1 = Γ2 = 1 is shown in figure 6(b), which
clearly demonstrates the instantaneous finite energy surge at the critical time. This
phenomenon occurs because the filtering effect of the α-regularization gets stronger
as the α-point vortices tend to collapse, i.e. when they become infinitely close. The
energy variation HK(0) is also computed from the initial collinear configuration, which
is always positive for the collinear configurations along the boundary of the physical
region as shown in figure 7(b). The discontinuous jumps in the Hamiltonian energy
and the energy E(α) variations at the critical time are also observed for the other vortex
strengths. See figure 8 for Γ1 = 5 and Γ2 = 1.

The energy dissipation rate D (α)
E (τ ) is obtained by differentiating (4.30):

D (α)
E (τ )=− 1

4πα2

3∑
m=1

3∑
n=m+1

ΓmΓn
dLmn

dτ

( τ
α2

)
×
[

K1

(
Lmn

( τ
α2

))
+ Lmn

( τ
α2

) d
dx

K1

(
Lmn

( τ
α2

))]
= 1

4πα2

3∑
m=1

3∑
n=m+1

ΓmΓn
dLmn

dτ

( τ
α2

)
Lmn

( τ
α2

)
K0

(
Lmn

( τ
α2

))
≡ 1
α2

F
( τ
α2

)
, (4.32)
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in which the function F(τ ) is defined by

F(τ )= 1
4π

3∑
m=1

3∑
n=m+1

ΓmΓn
dLmn

dτ
(τ )Lmn(τ )K0(Lmn(τ )). (4.33)

Figure 9(a) shows the graph of the function F(τ ) computed from the numerical
solution for Γ1 = Γ2 = 1. As we observe in figure 9(b), this profile of the function
F(τ ) is similar to those for the other values of Γ1 = 2.5, 5, 7.5 and 10 with fixed
Γ2 = 1. The convergence of the energy dissipation rate for the case Γ1 = Γ2 = 1 is
shown in figure 10(a). For τ 6= 0, the dissipation rate converges to zero as α→ 0,
while it is localized in the neighbourhood of τ = 0 and its maximum and minimum
diverge as α→ 0. In order to see the convergence more closely, we show a log–log
plot of the energy dissipation rate for τ > 0 in figure 10(b), which indicates that the
energy dissipation rate is localized in the neighbourhood of τ = 0 with keeping the
profile of the function F(τ ) unchanged, and its maximum diverges like 1/τ . The limit
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of the energy dissipation rate is no longer a function, since it diverges at τ = 0. In
fact, we can show the convergence to the zero energy dissipation rate in the sense of
distributions regardless of the vortex strengths as follows. Since the function F(τ ) is
odd, namely F(τ ) + F(−τ) = 0 as we see in figure 9, we have, for any compactly
supported smooth function ϕ(τ),

〈D(α)
E , ϕ〉 =

∫ ∞
−∞

1
α2

F
( τ
α2

)
ϕ(τ) dτ

=
∫ ∞
−∞

F(s)ϕ(α2s) ds−→ ϕ(0)
∫ ∞
−∞

F(s) ds= 0, (4.34)

as α→ 0. Hence we have

lim
α→0

D (α)
E = 0, (4.35)

in the sense of distributions. This does not contradict the existence of the
discontinuous jump in the energy E(α) variation, since the magnitude of the jump
at the critical time is finite, which is negligible in the distributional sense.

In the rest of this section, we examine the enstrophy variation. Owing to (3.15), the
non-constant part of the enstrophy (3.12) is rewritten by

Z (α)(α2t)= 1
4πα2

3∑
m=1

3∑
n=m+1

ΓnΓmLmn(t)K1 (Lmn(t)) . (4.36)

Hence, for τ = α2t, we have

Z (α)(τ )= 1
4πα2

3∑
m=1

3∑
n=m+1

ΓmΓnLmn

( τ
α2

)
K1

(
Lmn

( τ
α2

))
=− 1

α2
HK

( τ
α2

)
. (4.37)

Note that HK(τ ) is the same function that represents the magnitude of the energy
variation in (4.30). The limit of Z (α)(τ ) is no longer a function, since it tends to zero
for τ 6= 0, while it diverges at τ = 0. Thus we consider the convergence of Z (α) in the
sense of distributions. For any compactly supported smooth function ϕ(τ), we have

〈Z (α), ϕ〉 = −
∫ ∞
−∞

1
α2

HK

( τ
α2

)
ϕ(τ) dτ

=−
∫ ∞
−∞

HK(s)ϕ(α
2s) ds−→−z0ϕ(0), (4.38)

as α→ 0, where

z0 =
∫ ∞
−∞

HK(s) ds. (4.39)

Hence, we have

lim
α→0

Z (α) =−z0δ, (4.40)

in the sense of distributions. Note that z0 is positive and finite, since the function HK(t)
is always positive and rapidly decreasing as we see in figure 11. Consequently, the
limit of the enstrophy variation is the δ measure with the negative mass of −z0. In
other words, it follows from (4.40) that we have the convergence of the total enstrophy
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FIGURE 11. Plots of the function HK(τ ) computed from the numerical solution for various
Γ1 = 1, 2.5, 5, 7.5 and 10 and Γ2 = 1.

variation, ∫ T

−∞
Z (α)(τ ) dτ →−z0H (T), (4.41)

in which H (T) represents the Heaviside function. Hence, the total variation of the
enstrophy is zero until the collapsing time T = 0 and it drops to −z0 beyond the
critical time, which indicates that the enstrophy dissipates via the self-similar triple
collapse.

4.3. Robustness of the enstrophy dissipation via the self-similar triple collapse
In order to examine whether the singular self-similar orbit with the enstrophy
dissipation is obtained without the conditions (4.1) and (4.2), we examine the
numerical evolution of the three α-point vortices when the condition (4.2) is not
satisfied. That is to say, we solve the canonical equation (3.14) numerically with the
following conditions:

1
Γ1
+ 1
Γ2
+ 1
Γ3
= 0, M = Γ1Γ2L2

12 + Γ2Γ3L2
23 + Γ3Γ1L2

31 = εM 6= 0. (4.42)

The vortex strengths are Γ1 = Γ2 = 1. The isosceles configuration of the three α-
point vortices satisfying M = εM and L23(0) = L31(0) = 1 is chosen as the initial
data. Figure 12(a) shows the evolution of the distances L12(t), L23(t) and L31(t)
for εM = 0.03, which indicates that the distances behave asymptotically as

√
t for

t→∞. Similarly, we can also confirm that they grow asymptotically like
√|t| for

t→ −∞. On the other hand, the evolution of the ratios L23/L31(t) and L12/L31(t)
for εM = 0.03 is plotted in figure 12(b), which shows that the ratios tend to some
constants for t→±∞. Therefore, with the same argument as in § 4.2, the evolution
of the three α-point vortices converges to the self-similar triple collapse for t < 0
and to the self-similar triple expansion for t > 0 as α → 0. Let us note that the
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FIGURE 13. Plots of the functions (a) F(τ ) and (b) HK(τ ) computed from the numerical
solutions of the canonical equations for εM = 0.03, 0.06 and 0.09. The vortex strengths are
Γ1 = Γ2 = 1.

convergence to the singular self-similar orbit is also observed for a range of εM > 0.
In order to see the variations of the energy dissipation rate and the enstrophy along
the singular self-similar orbit, we plot the functions F(τ ) and HK(τ ) for εM = 0.03,
0.06 and 0.09 in figures 13(a) and 13(b) respectively. Since the function F(τ ) is
odd, we have limα→0 D (α)

E = 0 in the sense of distributions. On the other hand, the
function HK(τ ) > 0 is even and rapidly decreasing, and thus we have the convergence
of the enstrophy variation, limα→0 Z (α) = −z0δ with some z0 > 0, in the sense of
distributions similarly to § 4.2.

The evolution of the three α-point vortices becomes different when εM is negative.
Figures 14(a) and 14(b) show the evolution of the distances between the α-point
vortices and their ratios for εM = −0.03 respectively. The vortex strengths and the
initial configurations are the same as those considered above. Since the evolution of
the three α-point vortices is periodic, there exists a constant CL such that |Lmn(t)|< CL.
Hence, it follows from (3.15) that |lmn(t)| = |αLmn(t/α2)| 6 CL|α| −→ 0 as α→ 0.
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Hence, the three α-point vortices converge to a point in the limit of α→ 0, which is
not the convergence to the singular self-similar orbit. The convergence to a point is
observed for εM < 0.

These numerical examples illustrate that the convergence to the singular self-similar
orbit with the enstrophy dissipation is observed for a certain range of εM > 0. Hence,
neither of the conditions (4.1) and (4.2) is required to obtain the singular self-similar
orbit with the enstrophy dissipation. This also suggests a clear difference between
the point-vortex system and the α→ 0 limit of the αPV system, since both of the
conditions are necessary to obtain the self-similar triple collapse and expansion in the
point-vortex system (Newton 2001).

5. Summary and discussion
We have constructed a singular weak solution of the two-dimensional Euler

equations by considering the α-point-vortex system, whose evolution corresponds to a
unique global weak solution of the two-dimensional Euler-α equations in the sense of
distributions. We have obtained some basic results for the αPV system for general N,
which are summarized as follows.

(a) The energy E(α)(t) generated by the evolution of the α-point vortices is
represented by (3.9), which is different from the Hamiltonian energy of the αPV
system.

(b) The αPV system (3.3) is reduced to the canonical Hamiltonian dynamical system
(3.14) owing to the scaling property (3.15), which enables us to investigate the
behaviour of the solution of the αPV system as α tends to zero.

(c) The αPV system has the same integrability as the point-vortex system. In
particular, it is integrable for N = 3.

We have then investigated the solution of the canonical equation for the integrable
case N = 3 subject to the additional conditions (4.1) and (4.2). While these conditions
allow the emergence of the self-similar triple collapse in the point-vortex system, no
collapse occurs in the αPV system. We prove that the equilateral triangles are the
only equilibria. By plotting the contour plots of the Hamiltonian, we show that the
evolution of the three α-point vortices for the initial collinear configuration approaches
asymptotically the self-similar triple expansion as t→±∞.
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We have finally examined the evolution of the three α-point vortices, the
Hamiltonian energy H(α)

p (t), the energy E(α)(t) and the enstrophy Z (α)(t) as α→ 0.

(a) As α→ 0, the evolution of the three α-point vortices for the collinear initial
configuration tends to the triple collapse for t < 0 and the triple expansion for
t > 0, which means that the two singular self-similar evolutions in the point-vortex
system are connected at the critical time t = 0 as the α→ 0 limit solution of the
αPV system.

(b) In the limit of α→ 0, the Hamiltonian energy H(α)
p (t) and the energy E(α)(t)

jump discontinuously at the critical time. The limit of the energy dissipation rate
D (α)

E (t) is no longer a function, but we prove that limα→0 D (α)
E → 0 in the sense

of distributions, which indicates that the energy dissipation does not occur via the
triple collapse.

(c) As α→ 0, the enstrophy Z (α) converges to −z0δ in the sense of distributions.
Since the mass of the δ measure −z0 is negative, the enstrophy dissipates in a
sense such that the total enstrophy is reduced by −z0 via the collapse of the three
α-point vortices.

(d) The convergence to the singular self-similar orbit with the enstrophy dissipation
is obtained in the limit of α→ 0, even if the conditions (4.1) and (4.2) are not
satisfied simultaneously.

The present study indicates that the self-similar triple collapse is a robust
mechanism of enstrophy dissipation in the sense that it is observed continuously for a
certain range of the parameter region. On the other hand, in spite of its significance,
we only consider the evolution of the three α-point vortices and thus we are unable to
draw definite conclusions on the relation between the singular self-similar orbit with
enstrophy dissipation and two-dimensional turbulence. Hence, further scrutiny of the
αPV system is required to understand the relation. In what follows, we address some
possible future problems suggested by the present study. The notable features of the
singular evolution presented here are the integrability and the self-similarity, but their
significance is unclear. Therefore, it would be interesting to examine if the enstrophy
dissipation occurs for the self-similar evolution of more than three α-point vortices
in the limit of α→ 0. Furthermore, it would be possible to obtain a chaotic solution
with enstrophy dissipation when the self-similar orbit is perturbed, since the αPV
system for N > 4 is generally non-integrable as shown in § 3.2. The existence of such
a chaotic evolution and its connection with two-dimensional turbulence need to be
investigated. Of course, we are unable to rule out the possibility that non-self-similar
evolutions of the αPV system dissipate the enstrophy as α tends to zero. Constructing
such non-self-similar dissipative evolutions of many α-point vortices is another future
problem.

Let us finally make some mathematical remarks. The evolution of the three α-point
vortices loses its regularity as α→ 0 in the sense that the enstrophy varies via the
self-similar triple collapse. The enstrophy dissipation occurs after an infinitely long
time, since we suppose that the three α-point vortices collapse at t = 0 and the
scaled time tc/α

2→−∞ as α→ 0 for arbitrary fixed time tc < 0. On the other hand,
rigorously speaking, we need to see how the limit singular solution corresponds to
a weak solution of the two-dimensional Euler equations mathematically, which gives
rise to the following questions: Suppose that u(α) be a global weak solution of the
Euler-α equations in the space of Radon measure on R2. Then can we regard the limit
u(0) = limα→0 u(α) as a weak solution of the two-dimensional Euler equations? If so, in
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what mathematical sense is it justified? These questions have been partially answered
by Bardos, Linshiz & Titi (2010). They have shown that the global weak solution
for vortex-sheet initial data with fixed sign, which is an example of the vorticity
distribution in the space of Radon measure on R2, converges to a vortex-sheet weak
solution of the two-dimensional Euler equations as α→ 0. However, considering the
convergence for the initial vorticity field of discrete δ-functions is not a straightforward
problem, since the two-dimensional Euler-α equations admit a unique global weak
solution, whereas the two-dimensional Euler equations have no weak solution for such
initial vorticity data.
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applications to continuum theories. Adv. Maths 137, 1–81.

HOLM, D. D., MARSDEN, J. E. & RATIU, T. S. 1998 Euler–Poincaré models of ideal fluids with
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