Preparation and Reaction of Titania Particles Encapsulated in Hollow Silica Shells as an Efficient Photocatalyst for Stereoselective Synthesis of Pipecolinic Acid

Sheela Chandren1,2 and Bunsho Ohtani4*

1Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
2Asian Graduate School of Chemistry and Material Science (Graduate School of Engineering), Hokkaido University, Sapporo 060-8628, Japan

(Received <Month><Date>, <Year>; CL-<No>;
E-mail: ohtani@cat.hokudai.ac.jp)

Hollow core-shell particles of titania core and silica shell were synthesized by multistep process, and the core–shell particles showed improved stereoselectivity in the photocatalytic redox-combined synthesis of L-pipecolinic acid from L-lysine in an aqueous suspension without reducing the original activity of the bare titania core.

Photocatalytic reactions occurring on the surface of photoinitiated titania (TiO\textsubscript{2}) have garnered a wide interest due to their potential environmental applications.1,2 An example is photoinduced removal of chemical contaminants under atmospheric conditions, being attributed to the ability of TiO\textsubscript{2} photocatalyst to cleave chemical bonds nonselectively, i.e., mineralization. However, selective reactions of targeted chemicals are also possible. One of the most useful approaches for selective photocatalytic reaction is operation of a photocatalytic reaction under deoxygenated conditions where undesirable excessive oxidation through the radical chain reaction with oxygen (O\textsubscript{2}) is prohibited and thereby an alternative electron acceptor should be used.3,4 Another approach for the selective organic synthesis is utilization of photocatalysts of or in defined microstructures; TiO\textsubscript{2} particles or isolated titanium oxide species are distributed onto or into inorganic supports.5,6 According to previous works,7,8 one of the most widely used methods to provide the selectivity is encapsulation of TiO\textsubscript{2} particles into porous substances. However, the surface coverage of these substances causes decrease in intrinsic photocatalytic activity of the medial TiO\textsubscript{2}.

We have reported9,10 fabrication of a novel core-shell composite photocatalyst which consisted of commercially available TiO\textsubscript{2} particles incorporated in a hollow silica shell (SiO\textsubscript{2}/void/TiO\textsubscript{2}). The composite possesses size-selective properties in the photodecomposition of organic compounds; SiO\textsubscript{2}/void/TiO\textsubscript{2} showed photocatalytic activity for decomposition of small substrates retaining the activity of original bare TiO\textsubscript{2}, while negligible activity for polymers was observed, i.e., SiO\textsubscript{2}/void/TiO\textsubscript{2} exhibits molecular size selectivity. Recently, we attempted to use the SiO\textsubscript{2}/void/TiO\textsubscript{2} photocatalyst for the synthesis of L-pipecolinic acid (L-PCA), a useful intermediate material for various fine chemicals,11 and found another function of silica shell to improve stereoselectivity, instead of molecular-size selectivity and report here.

Preparation of SiO\textsubscript{2}/void/TiO\textsubscript{2} was performed by coating of TiO\textsubscript{2} with a carbon layer and a silica layer followed by heat treatment to remove the carbon layer,2 as shown schematically in Fig. 1(a) (For details, see SI). An SEM image of source TiO\textsubscript{2} core (Ishihara Sangyo ST-41) is shown in Fig. 1(b). An angular morphology of the sample was distinctly observed. The particle size was in the range of 100–300 nm. The TiO\textsubscript{2} powder was treated with 3-aminopropyltrimethoxysilane (APS) and the APS-modified TiO\textsubscript{2} was then subjected to hydrothermal reaction in an aqueous glucose at 180 °C for 6 h. The resulting polysaccharide (PS)-covered particles were recovered and heated at 600 °C under vacuum for 2 h. This resulted in the encapsulation of the particle aggregates with a thick uniform layer of carbon (C/TiO\textsubscript{2}). The thickness of layer was 30–80 nm. Then, C/TiO\textsubscript{2} was treated with n-(2-aminoethyl)-3-aminopropyltrimethoxysilane and then with tetraethyl orthosilicate and tetraethyl orthosilicate followed by heat treatment under vacuum at 600 °C to obtain TiO\textsubscript{2} particles covered with a carbon layer and a silica layer (SiO\textsubscript{2}/void/C/TiO\textsubscript{2}). Finally, the carbon layer was removed by calcinations at 600 °C for 2 h in air, thus successfully yielding TiO\textsubscript{2} encapsulated in a hollow silica shell (SiO\textsubscript{2}/void/TiO\textsubscript{2}). SEM images in transmission mode (Fig. 1(c)) showed the presence of void space of 3–10 nm in width between shell of around 9–10 nm in thickness and core TiO\textsubscript{2} particles for SiO\textsubscript{2}/void/TiO\textsubscript{2}. The presence of void space was also supported by the fact that specific surface area (BET method) of SiO\textsubscript{2}/void/TiO\textsubscript{2} (29 m2 g-1) was more than twice higher than that of the original TiO\textsubscript{2} (13 m2 g-1). As a reference, TiO\textsubscript{2} mechanically mixed with silica (meC-SiO\textsubscript{2}/TiO\textsubscript{2}) and TiO\textsubscript{2} directly coated with silica (dir-SiO\textsubscript{2}/TiO\textsubscript{2}) were also prepared, the latter of which was prepared according to the procedures by Graf et al.12 with slight modification (For details, see SI).

Since platinum (Pt) depositions on the TiO\textsubscript{2} surface are required for the photocatalytic synthesis of L-PCA,13 all samples were platinized (2wt%) using two-step photodeposition method. First, a sample was suspended in water containing required amount of hydrogen hexachloroplatinate(IV) (H\textsubscript{2}PtCl\textsubscript{6}·6H\textsubscript{2}O) and irradiated by a 400-W mercury arc (Eiko-sha 400; ca. 25 mW cm-2 at 300–400 nm) for 1.5 h, and then irradiated for an additional 1.5 h in the presence of 50vol% methanol.

Figure 2 shows the time-course curves of hydrogen (H\textsubscript{2}) liberation from aqueous methanol solutions in the second step of the platinization. Almost linear increase in the amount of H\textsubscript{2} was observed after some induction period for all the samples except for dir-SiO\textsubscript{2}/TiO\textsubscript{2}, suggesting that reduction of platinum complex to metallic state, to induce methanol dehydrogenation, required 5–10 min irradiation. As shown in this figure, dir-SiO\textsubscript{2}/TiO\textsubscript{2} was almost inactive with negligible H\textsubscript{2} liberation possibly due to retardation of adsorption of substrates, methanol and H\textsubscript{2}PtCl\textsubscript{6}, participating
in the reaction onto the TiO₂ surface by the covering silica layer to result in practically no Pt deposition. The activity of SiO₂/void/TiO₂ was almost the same as that of bare TiO₂ despite the presence of silica shell and even higher than that of mec-SiO₂+TiO₂. SEM observation of the sample after the platinization process shown in Fig. 1(d) clearly indicating the deposition of fine Pt particles onto TiO₂ without any collapse of the silica shells. The similar finding was observed in our previous research and this can be attributed to the presence of pores in silica shell and void spaces between the shell and core TiO₂ particles. These structures led to efficient mass transfers through a silica shell to supply substrates that participate in this reaction to the naked active surface of the TiO₂ core.

For the photocatalytic reaction of redox-combined stereoselective synthesis of L-picolinolic acid (L-PCA) from L-lysine (L-Lys), a Pt-loaded photocatalyst (0.05 g as TiO₂) was suspended in an aqueous solution (5.0 cm³) containing L-Lys (100 μmol) and photoirradiated by a high-pressure mercury arc (Eiko-sha, 400 W) under argon (Ar) under magnetic stirring (1000 rpm). The photoirradiation was performed through a cylindrical Pyrex glass filter and a glass reaction tube (18 mm in diameter and 180 mm in length) so that light of wavelength >290 nm reached the suspension. The temperature of the suspension during photoirradiation was maintained at 25±0.5 °C by the use of a thermostated water bath. After irradiation for 2 h, a portion (0.2 cm³) of the gas phase of the sample was withdrawn with a syringe and subjected to gas chromatographic analysis (GC, Shimadzu GC-8A with an MS-5A column and a TCD detector) for H₂. The yield of enantiomers of PCA, as well as the amount of unreacted L-Lys, was measured by HPLC (Shimadzu LC-10A, equipped with a Daicel Chiral-Pak MA(+) column and an ultraviolet absorption detector).

Table 1 summarizes the results for the synthesis of L-PCA from L-Lys by 2-h photoirradiation using various platinized TiO₂ photocatalysts. Photoirradiation of the TiO₂ photocatalysts suspended in an aqueous solution of L-Lys under Ar led to the formation of PCA, as reported previously. Complete consumption of L-Lys was achieved using TiO₂ and also mec-SiO₂+TiO₂. These photocatalysts showed very similar results in terms of selectivity (S₇PCₐ), optical purity (OP₇PCₐ) and the rate of PCA formation (R₇PCₐ), suggesting that the mechanical mixing of silica with TiO₂ does not give any effect on this reaction as only the TiO₂ part was responsible for the photocatalytic reaction. As expected, dir-SiO₂/TiO₂ showed poor photocatalytic activity to convert only 14% of L-Lys, thus proving that direct coverage of the TiO₂ surface with silica hinders the activity of the TiO₂ by prohibiting Pt deposition as well as L-Lys adsorption onto the bare TiO₂ surface. The SiO₂/void/TiO₂ particles prepared with 0.5 h of silylation period showed the performance almost the same as that of bare TiO₂. Although the selectivity was slightly lower than that of bare TiO₂, SiO₂/void/TiO₂ exhibited the highest OP₇PCₐ 13% more than that of platinized bare TiO₂, among all the samples. In order to further prove the effectiveness of the hollow core–shell structure, SiO₂/void/TiO₂ with thicker layer of silica shell were also prepared, by extending the silylation period (1.5 h and 3.0 h). The thickness of the silica layer was increased to 14–32 nm and 28–45 nm, respectively, from 9–10 nm for SiO₂/void/TiO₂. While SiO₂/void/TiO₂ exhibited the best performance among the tested samples, it seemed that the photocatalytic performance (conversion, S₇PCₐ, OP₇PCₐ and R₇PCₐ) was almost independent of the silica shell thickness. This suggests that the silica shell behaves as highly porous optically transparent penetration-free layer which
surrounds the TiO₂ core and that this swollen sponge-like silica layer controls the stereoselectivity of the reaction.

It has been proposed that PCA formation from L-Lys proceeds through redox-combined mechanism shown in Scheme 1. One of the amino groups in L-Lys is oxidized by positive holes (h⁺) to imines, which are then hydrolyzed to an aldehyde or keto acid by ε and α-amino group oxidation, respectively, and then cyclic Schiff base (CSB) intermediates formed by intramolecular condensation are reduced by photoexcited electrons (e⁻) to yield PCA. According to this mechanism, OPPCA is regulated by (1) selectivity in the position in the first oxidation process and (2) difference in efficiency in the following second process of conversion of from imine into PCA between ε and α-routes; SPCA corresponds to the average efficiency of the second process. On the assumption of same efficiency in the second process for α and ε-routes, OPPCA shows proportion of the ε-route, since ε and α-routes yield L and racemic PCA, respectively. A possible reason for improved OPPCA with almost the same SPCA, by the use of SiO₂/void/TiO₂ is increase in the proportion of ε-route, presumably due to acidic property of silica.

It has been observed that operation of the reaction at lower pH improved OPPCA and decreased RPCA when platinized (bare) TiO₂ particles were used as a photocatalyst. Since ε-amino group is protonated to be ammonium group (–NH₃⁺), compensating negative charge of carboxylate and leaving α-amino group in neutral form under the conditions employed in this study, preferential oxidation of ε-amino group cannot be expected with ordinary photocatalyst particles. Possible acidic microenvironment of the core TiO₂ surface induced by silica shell might lead to protonation of α-amino group to result in the retardation of α-route due to higher (more anodic) oxidation potential of ammonium form of amino groups. As reported previously, blocking of ε-amino group by carbamoyl derivatization not to be protonated and thereby preferential protonation of α-amino group in Lys led to the production of optically pure L-PCA. Preliminary study on acid properties of samples by ammonia TPD (Belsorp, Bel Japan) suggested the presence of small amount of weak acid sites (desorption at 150–300°C; ca. 1μmol g⁻¹ in total) presumably due to the SiO₂ layer. Measurements of the L-PCA adsorption and acid properties through ammonia TPD and zeta-potential analysis are under study.

In conclusion, the present hollow core–shell structured photocatalyst provides the improved OPPCA keeping the SPCA and RPCA without addition of any chemicals, such as an acid or a buffer solution, which must be separated in the post reaction procedure. Though improved OPPCA was still not so high (70%), this enables purification of L-PCA by recrystallization. It is expected that modification of silica with more acidic functional groups and/or choice of appropriate thickness of void space between core and shell improve the performance of photocatalysts for stereoselective synthesis of L-PCA, and study along this line is now in progress.

Acknowledgments

The authors thank Professors Wataru Ueda and Toru Murayama (Hokkaido University) for their help in ammonia TPD analysis. Professor Shigeru Ikeda (Osaka University) is gratefully acknowledged for his advice on sample preparation.

References and Notes

19. L-Lysine hydrochloride was used and equimolar amount of sodium hydrochloride was added to neutralize the acid.