

HOKKAIDO UNIVERSITY

Title	Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides
Author(s)	Zhang, Huijie; Yamazaki, Tomohiko; Zhi, Chunyi; Hanagata, Nobutaka
Citation	Nanoscale, 4(20), 6343-6350 https://doi.org/10.1039/c2nr31189e
Issue Date	2012-10-21
Doc URL	http://hdl.handle.net/2115/53012
Rights	Nanoscale, 2012,4, 6343-6350 - Reproduced by permission of The Royal Society of Chemistry (RSC)
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supplementary_information.pdf (Supplementary information)

Supplementary Materials

Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides

Huijie Zhang^{a,b}, Tomohiko Yamazaki^{a,b}, Chunyi Zhi^b, and Nobutaka Hanagata^{a,b,c*}

^aGraduate School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo, 060-0812, Japan

^bBiomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^cNanotechnology Innovation Station, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^{*}To whom correspondence should be addressed. Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan; E-mail: HANAGATA.Nobutaka@nims.go.jp; Tel: +81-29-860-4774; Fax: +81-29-859-2475

Figure Legends

Supplementary Figure 1. Yield (output phages /input phages) against the rounds of panning. The phages with higher affinity for BNNS had been successfully concentrated in the phage pool.

Supplementary Figure 2. Amino acid frequencies in the BNNS-binding peptide sequence, as compared to the original phage library.

Supplementary Figure 3. Fluorescence microscopy images of the FITC-labeled peptides binding to BNNS. In the control group, the BNNS were incubated without peptides.

Supplementary Figure 4. Fluorescence emission spectra of BNNS, BP7 and BNNS/BP7 complex in TBS buffer.

Supplementary Figure 5. Cytotoxicity, cell uptake of the BNNS/BP7 complexs to HEK293XL-null and Hela cells. (a) Viabilities of 293XL-null and Hela cells measured by a water-soluble tetrazolium salt assay against BNNS and BNNS/BP7 complexes. Concentrations of the nanospheres: $0 \mu g/mL$ (Red), $25\mu g/mL$ (Cyan), $50\mu g/mL$ (Blue), $75\mu g/mL$ (Olive), $100\mu g/mL$ (Yellow). (b) Confocal microscopy images of HEK293XL-null and Hela cells after 24 h of incubation with BNNS/BP7 complexes. Data presented as mean \pm SD (n =5)

Supplementary Figure 6. Loading capacity of the BP7 mutants–CpG ODN conjugate on BNNS, denoted as μ g CpG ODNs loaded on 1 mg BNNS. M1 (BP7-Y8A) and M2 (BP7-L10A) are mutants of BP7 whose tyrosine (Y8) and leucine (L10) at eighth and tenth positions from N-terminal were replaced by alanine (A), respectively. Loading capacity of the BP7–CpG ODN conjugate on BNNS is shown in Fig. 6a. Data presented as mean \pm SD (n = 3).

Supplementary Figure 7. Zeta potentials of BNNS, BNNS/BP7, BNNS/CpG ODNs, BNNS/BP7-CpG ODNs complexs in TBS buffer (pH 7.4). Data presented as mean \pm SD (n =6)

Supplementary Figure 8. IFN- α induction from PBMCs stimulated by CpG ODNs. M1 (BP7-Y8A), M2 (BP7-L10A). The concentration of the BNNS was about 87µg/mL. PTO-2216 is positive control. Data presented as mean ± SD (n =3). The symbol # means not detectable (below detection limit).

Supplementary Figure 9. Cytokine induction from PBMCs stimulated by BP7 mutants–CpG ODN conjugate–loaded BNNS. (a) IL-6 production. (b) TNF- α production. Loaded BNNS (87 μ g/mL) was incubated with PBMCs for 8 h (TNF- α) and 24 h (IL-6) respectively, M1 (BP7-Y8A) and M2 (BP7-L10A) are mutants of BP7 whose tyrosine (Y8) and leucine (L10) at eighth and tenth positions from N-terminal were replaced by alanine (A), respectively. The levels of IL-6

and TNF- α induced by BNNS/BP7-CpG ODNs are shown in Fig. 7. Data are presented as mean \pm SD (n = 3).

Supplementary Figure 1. Yield (output phages /input phages) against the rounds of panning. The phages with higher affinity for BNNS had been successfully concentrated in the phage pool.

Supplementary Figure 2. Amino acid frequencies in the BNNS-binding peptide sequence, as compared to the original phage library.

BP1	BP2	BP3
BP4	BP5	BP6
BP7	BP8	Control

Supplementary Figure 3. Fluorescence microscopy images of the FITC-labeled peptides binding to BNNS. In the control group, the BNNS were incubated without peptides.

Supplementary Figure 4. Fluorescence emission spectra of BNNS, BP7 and BNNS/BP7 complex in TBS buffer.

Supplementary Figure 5. Cytotoxicity, cell uptake of the BNNS/BP7 complexs to HEK293XL-null and Hela cells. (a) Viabilities of HEK293XL-null and Hela cells measured by a water-soluble tetrazolium salt assay for BNNS and BNNS/BP7 complexes. Concentrations of the nanospheres: 0 μ g/mL (Red), 25 μ g/mL (Cyan), 50 μ g/mL (Blue), 75 μ g/mL (Olive), 100 μ g/mL (Yellow). (b) Confocal microscopy images of HEK293XL-null and Hela cells after 24 h of incubation with BNNS/BP7 complexes. Data presented as mean \pm SD (n =5).

Supplementary Figure 6. Loading capacity of the BP7 mutants–CpG ODN conjugate on BNNS, denoted as μ g CpG ODNs loaded on 1 mg BNNS. M1 (BP7-Y8A) and M2 (BP7-L10A) are mutants of BP7 whose tyrosine (Y8) and leucine (L10) at eighth and tenth positions from N-terminal were replaced by alanine (A), respectively. Loading capacity of the BP7–CpG ODN conjugate on BNNS is shown in Fig. 6a. Data presented as mean \pm SD (n = 3).

Supplementary Figure 7. Zeta potentials of BNNS, BNNS/BP7, BNNS/CpG ODNs, BNNS/BP7-CpG ODNs complexs in TBS buffer (pH 7.4). Data presented as mean \pm SD (n =6).

Supplementary Figure 8. IFN- α induction from PBMCs stimulated by CpG ODNs. M1 (BP7-Y8A) and M2 (BP7-L10A) are mutants of BP7 whose tyrosine (Y8) and leucine (L10) at eighth and tenth positions from N-terminal were replaced by alanine (A), respectively. The concentration of the BNNS was about 87µg/mL. PTO-2216 is positive control. Data presented as mean ± SD (n =3). The symbol # means not detectable (below detection limit).

Supplementary Figure 9. Cytokine induction from PBMCs stimulated by BP7 mutants–CpG ODN conjugate–loaded BNNS. (a) IL-6 production. (b) TNF- α production. Loaded BNNS (87 μ g/mL) was incubated with PBMCs for 8 h (TNF- α) and 24 h (IL-6) respectively, M1 (BP7-Y8A) and M2 (BP7-L10A) are mutants of BP7 whose tyrosine (Y8) and leucine (L10) at eighth and tenth positions from N-terminal were replaced by alanine (A), respectively. The levels of IL-6 and TNF- α induced by BNNS/BP7-CpG ODNs are shown in Fig. 7. Data are presented as mean \pm SD (n = 3).