Intense winter cooling of the surface water in the northern Okinawa Trough during the last glacial period

Masanobu Yamamoto¹,*; Midori Kishizaki¹; Tadamichi Oba¹; Hodaka Kawahata²

¹Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
²Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan

*Corresponding author: Tel.: +81-11-706-2379; fax: +81-11-706-4867
E-mail address: myama@ees.hokudai.ac.jp (M. Yamamoto)

Key words: thermocline temperature, TEX_{86}, MD98-2195, the East China Sea, Okinawa Trough, LGM, winter monsoon

Abstract
We generated a 42,000-year record of TEX_{86} (TEX_{86}^l and TEX_{86}^h) from core MD98-2195 to better understand changes in the hydrology of the East China Sea (ECS) in the last glacial period. The TEX_{86}-derived temperature showed an intense cooling in the last glacial period, whereas U_{3-7}^{K^-}-derived spring sea surface temperature (SST) and foraminiferal Mg/Ca-derived summer SST showed a much smaller-scale cooling. The difference between the TEX_{86}^- and Mg/Ca-derived temperatures was around 14°C from 19 to 16 ka and abruptly decreased to around 5°C from 16 to 13 ka. This suggests a strong winter cooling of the surface water during the last glacial period. TEX_{86}^-, U_{3-7}^{K^-}, and Mg/Ca-derived temperatures were lowest at 18 to 17 ka, implying that the formation of cold water was maximized during that period. These results show that the cold water mass developed in the northern Okinawa Trough during the last glacial and the Kuroshio branch did not fully enter the northern margin of the...
Okinawa Trough.

Key words: temperature, TEX$_{86}$, MD98-2195, the East China Sea, the last glacial period

1. Introduction

The East China Sea (ECS) is a marginal sea bounded by the Asian continent on its west, the island of Taiwan on its southwest, the Ryukyu Islands on its southeast, and Kyushu and the Korean Peninsula on its northeast and north, respectively (Fig. 1a). The hydrological evolution of the ECS and the surrounding areas since the last glacial period has been investigated using assemblages, $\delta^{18}$O, $\delta^{13}$C and Mg/Ca data from planktonic foraminifera (e.g., Ujiié et al., 1991, 2003; Jian et al., 1996, 2000; Li et al., 1997; Shieh et al., 1997; Ujiié and Ujiié, 1999, 2006; Xu and Oda, 1999; Li et al., 2001; Ijiri et al., 2005; Sun et al., 2005; Lin et al., 2006; Chang et al., 2008; Chen et al., 2010; Kubota et al., 2010), $U^{14}$C (e.g., Meng et al., 2002; Ijiri et al., 2005; Zhao et al., 2005; Zhou et al., 2007; Yu et al., 2008; Li et al., 2009; Wang et al., 2011), nannofossil assemblages (Ujiié et al., 1991; Ahagon et al., 1993), bulk biogenic, sulfur and lithogenic contents (Wahyudi and Minagawa, 1997; Kao et al., 2006a; Chang et al., 2009), mineralogy (Chen et al., 2011), the $\delta^{13}$C of benthic foraminifera (Wahyudi and Minagawa, 1997), and pollen from marine cores (Kawahata and Ohshima, 2004), and modeling (Kao et al., 2006b). The ECS is characterized by a large environmental contrast between the Holocene and the last glacial period. On the basis of nannofossil and planktonic foraminifera assemblages (Ujiié et al., 1991; Ahagon et al., 19993; Ujiié and Ujiié, 1999; Ujiié et al., 2003), it was suggested that the Kuroshio did not flow into the ECS because of a blockage caused by a topographic barrier between Taiwan and Yonaguni Island. In contrast, other studies have assumed that the inflow of the Kuroshio continued during the last glacial period (e.g., Xu and Oda, 1999; Kawahata and Ohshima, 2004; Ijiri et al., 2005; Sun et al., 2005; Kao et al., 2006b; Chen et al., 2010). The difference in SST between the last glacial
maximum (LGM) and the late Holocene was estimated to be 1 to 3°C in the central Okinawa Trough (Li et al., 2001; Sun et al., 2005; Zhao et al., 2005; Zhou et al., 2007; Chang et al., 2008; Chen et al., 2010) and 4 to 6°C in the northern Okinawa Trough (Xu and Oda, 1999; Ijiri et al., 2005; Kubota et al., 2010). The northern Okinawa Trough was more sensitive to climate changes than the central Okinawa Trough.

Xu and Oda (1999) discussed environmental changes in the northern Okinawa Trough during the last 36 kyr based on planktonic foraminiferan assemblages and oxygen isotopes of *Globigerina bulloides*. They recognized a period influenced by coastal water from 36 to 19.5 ka, a period influenced by coastal water and extremely low salinity from 19.5 to 10.5 ka, and a period of both high temperatures and high salinity after 10.5 ka controlled by modern open sea water related to the Kuroshio. Ijiri et al. (2005) further discussed changes in the northern Okinawa Trough hydrological conditions based on planktonic foraminiferan assemblages, the oxygen-carbon isotopes of *Globigerinoides ruber*, and $\Delta^{18}O_{U/^{37}K}$. They recognized a strong upwelling period from 42 to 24 ka, a period of cold and less saline water mass from 24 to 14 ka, a transitional period from cold to warm water masses from 14 to 8 ka, and the present-day warm Kuroshio condition after 8 ka. Both studies hypothesized that the Kuroshio entered in the Okinawa Trough but weakened during the LGM and the early stages of the last deglaciation in response to the expansion of the coastal water in the northern Okinawa Trough. It is, however, not clear what forcing caused the expansion of the coastal water.

In this study, we generated a record of TEX$_{86}$-derived temperatures from the core MD98-2195 taken in the northern Okinawa Trough during the last 42 kyr to better understand the hydrology of the northern Okinawa Trough in the last glacial period (Fig. 1a). These data, together with published data of $\Delta^{18}O_{U/^{37}K}$-derived SST from the same core (Ijiri et al., 2005) and planktonic foraminiferal Mg/Ca-derived SST data from the nearby KY07-04 PC-1 core (Kubota et al., 2010), provide surface and subsurface temperature records for the last 42 kyr that can be used to assess changes in the hydrology of the northern Okinawa Trough.
Although the Holocene record of TEX$_{86}$ at a nearby site is reported by Nakanishi et al. (submitted to Journal of Quaternary Science), this is the first report of the TEX$_{86}$ record that extends to the last glacial period in the ECS.

2. Modern oceanography of the study site

Today, the hydrology of the ECS is affected by changes in the strength of the Kuroshio and the East Asian monsoon. The Kuroshio is a western boundary current in the western North Pacific Ocean that transports warm, saline water northward and forms temperature and salinity gradients by mixing with cool, less saline water in the ECS (Ichikawa and Beardsley, 2002). Summer monsoon precipitation over south and central China provides freshwater discharge to the ECS, where a less saline surface layer develops. Winter monsoon winds cool and mix the water in the Yellow Sea (YS) and the western ECS, forming cold bottom water on the continental shelf in the ECS and YS (Uda, 1934; Ichikawa and Beardsley, 2002; Zhang et al., 2008). Under intense winter cooling, the YS and the ECS are well mixed in the upper 100 m. Because the thermal inertia of a water column on the shelf is linearly proportional to the bottom depth, which determines the cooling rate of the water column, the winter SST is lower in the shallower shelf than in the deeper shelf (Xie et al., 2002).

At the study site, warm, saline Kuroshio water meets the less saline Changjiang Diluted Water (CDW)/Yellow Sea Central Cold Water (YSCCW). The Kuroshio carries warm and saline water along the Ryukyu Islands. There is a clear boundary between the shelf water and warm Kuroshio water in winter (Fig. 1b). Temperature and salinity are nearly constant from surface to 100 meters depth at the study site. In summer, less-saline water originating from the CDW mixes with the sea-surface water, and a thermocline develops mainly due to radiative heating by insolation. As a result, the spatial temperature variation is small at the surface. At 50-m depth, the cold and less saline YSCCW spreads over the continental shelf. This water mass is formed in the YS in winter cooling, reaches to the northern Okinawa
Trough by southeastward advection and continues to exist from spring to fall (Uda, 1934; Ichikawa and Beardsley, 2002; Zhang et al., 2008).

The maximum SST near the core site is 28.3°C in August, and the minimum is 17.5°C in February (Fig. 2b; Japan Oceanographic Data Center; http://www.jodc.go.jp/index.html). SSS reaches a maximum value of 34.7 (practical salinity scale) in February and a minimum value of 33.2 in July when discharge from the Changjiang (Yangtze River) peaks.

3. Samples and methods

3.1. Study cores and age-depth model

During the IMAGES IV cruise in 1998, a 33.65-m-long giant piston core (MD98-2195) was collected from a water depth of 746 m on the northern slope of the Okinawa Trough at 31°38.33'N, 128°56.63'E (Fig. 1a). The sediment of MD98-2195 consists of olive-colored silty clay with sandy intervals at 15.28 to 15.30 m depth (Ijiri et al., 2005). Two ash layers, Kikai-Akahoya (K-Ah) and Aira-Tanzawa (AT), are intercalated at depths of 5.1 to 6.0 m and 21.8 to 22.9 m, respectively.

An age model in calendar years (Fig. 3; Ijiri et al., 2005) was created from the AMS $^{14}$C ages of fourteen samples of the planktonic foraminifera Neogloboquadrina dutertrei and/or Globigerina bulloides and two ash layers: K-Ah (7.3 ka; Kitagawa et al., 1995) and AT (25.9 ka; Kitagawa and van der Plicht, 1998). The calendar age was converted using the CALIB5.0 program and dataset Marine04 (Hughen et al., 2004), with local corrections for a surface-ocean reservoir age (delta-R) of 0 years.

A total of 71 samples were collected from core MD98-2195 between the core top and a depth of 33.63 m (0–42.0 ka).

3.2. Analytical methods

Glycerol dialkyl glycerol tetraethers (GDGTs) were analyzed following Yamamoto and
Polyak (2008). Lipids were extracted (3 x) from a freeze-dried sample using a DIONEX Accelerated Solvent Extractor ASE-200 at 100°C and 1000 psi for 10 min with 11 ml of CH₂Cl₂/CH₃OH (6:4) and then concentrated. The extract was separated into four fractions using column chromatography (SiO₂ with 5% distilled water; i.d., 5.5 mm; length, 45 mm): F1 (hydrocarbons), 3 ml hexane; F2 (aromatic hydrocarbons), 3 ml hexane–toluene (3:1); F3 (ketones), 4 ml toluene; F4 (polar compounds), 3 ml toluene–CH₃OH (3:1). An aliquot of F4 was dissolved in hexane-2-propanol (99:1) and filtered.

GDGTs in F4 were analyzed using high performance liquid chromatography-mass spectrometer (HPLC-MS) with an Agilent 1100 HPLC system connected to a Bruker Daltonics micrOTOF-HS time-of-flight mass spectrometer. Separation was conducted using a Prevail Cyano column (2.1 x 150 mm, 3μm; Alltech) maintained at 30°C following the method of Hopmans et al. (2000) and Schouten et al. (2007). Conditions were: flow rate 0.2 ml/min, isocratic with 99% hexane and 1% 2-propanol for the first 5 min followed by a linear gradient to 1.8% 2-propanol over 45 min. Detection was achieved using atmospheric pressure, positive ion chemical ionization-MS (APCI-MS). The spectrometer was run in full scan mode (m/z 500–1500). Compounds were identified by comparing mass spectra and retention times with those of GDGT standards (obtained from the main phospholipids of Thermoplasma acidophilum via acid hydrolysis) and those in the literature (Hopmans et al., 2000). Quantification was achieved by integrating the summed peak areas in the (M+H)+ and the isotopic (M+H+1)+ chromatograms. TEX₈₆ and TEX⁻⁸⁶ (applicable to warm water) were calculated from the concentrations of GDGT-1, GDGT-2, GDGT-3 and a regioisomer of crenarchaeol using the following expressions (Schouten et al., 2002; Kim et al., 2010):

\[
TEX_{86} = \frac{[GDGT-2]+[GDGT-3]+[Crenarchaeol regioisomer]}{[GDGT-1]+[GDGT-2]+[GDGT-3]+[Crenarchaeol regioisomer]}
\]

\[
TEX^{aw}_{86} = \log (TEX_{86})
\]
TEX$_{86}^L$, applicable in cooler water, was calculated from the concentrations of GDGT-1, GDGT-2 and GDGT-3 using the following expression (Kim et al., 2010):

\[
TEX_{86}^L = \log \left\{ \frac{[\text{GDGT}-2]}{([\text{GDGT}-1]+[\text{GDGT}-2]+[\text{GDGT}-3])} \right\}
\]

Temperature was calculated according to the following equation based on a global core top calibration (Kim et al., 2010):

\[
T = 68.4 TEX_{86}^H + 38.6 \text{ (when } T > 15^\circ C) \\
T = 67.5 TEX_{86}^L + 46.9 \text{ (when } T < 15^\circ C)
\]

where \( T \) = temperature [°C]; The standard errors averaged 0.7°C.

4. Results

The temperatures calculated from TEX$_{86}^H$ were a maximum of 3°C lower than those from TEX$_{86}^L$ (Fig. 4). Kim et al. (2010) recommended that TEX$_{86}^H$, which includes the abundance of crenarchaeol regio-isomer, be used in tropical and subtropical regions (>15°C) and that TEX$_{86}^L$, which excludes the abundance of crenarchaeol regio-isomer, be used in polar and subpolar regions (<15°C) because crenarchaeol regio-isomer plays a more important role for temperature adaptation in subtropical than in subpolar oceans. Because TEX$_{86}^L$- and TEX$_{86}^H$-derived temperatures exceeded 15°C at 11.5 ka, we use TEX$_{86}^L$ from 42 ka to 11.5 ka and TEX$_{86}^H$ after 11.5 ka for further discussion in this study.

The TEX$_{86}$-derived temperature fluctuated around 15°C from 42 to 27 ka, decreased to 9°C from 27 to 18 ka, increased to 18°C from 18 to 13 ka, and gradually increased to 22°C from
13 ka to the present (Fig. 4). The TEX$^\text{H}_{86}$ and TEX$^\text{L}_{86}$-based temperatures at the core-top sample (surface sediment, 0–1 cm) of core PL-1 are 22.6°C and 22.8°C, respectively. These temperatures agreed with mean annual SST (22.4°C; Japan Oceanographic Data Center; available at http://www.jodc.go.jp/index.html), the SSTs in May and November or the temperature from June to November at depths of 50–70 m (Fig. 2).

Branched and isoprenoid tetraether (BIT) index values (Hopmans et al., 2004) ranged from 0.001 to 0.005 in the samples analyzed (Fig. 5), indicating a low contribution of terrestrial soil organic matter at the study site over the last 42 kyr. Weijers et al. (2006) noted that samples with high BIT values (> 0.4) may show anomalously high TEX$_{86}$-derived temperatures. This concern is, however, not relevant for the samples used in this study. BIT values showed double maxima at 39 ka and 15 ka (Fig. 5), indicating an enhanced input of soil organic matter.

5. Discussion

5.1. Glacial–interglacial contrast in water temperature

The temperatures estimated using TEX$_{86}$ differed from those obtained using U$^{K'}_{37}$ from the study core (Ijiri et al., 2005) and the Mg/Ca ratio of the planktonic foraminifera Globigerinoides ruber from the nearby KY07-04 PC-1 core (Kubota et al., 2010) (Fig. 4). The TEX$_{86}$-derived temperatures were approximately 21°C (TEX$^{\text{H}}_{86}$) in the late Holocene and 13°C (TEX$^{\text{L}}_{86}$) in the LGM, a 8°C difference (Fig. 4). In contrast, the Mg/Ca-derived temperatures were 26°C in the late Holocene and 22°C in the early deglaciation, a 4°C difference, and the U$^{K'}_{37}$-derived temperatures were 24°C in the late Holocene and 21°C in the LGM, a 3°C difference (Fig. 4).

The Mg/Ca-derived temperature is assumed to indicate SST from May to August, based on the core-top value (Kubota et al., 2010) and seasonal variation in the sinking flux (Xu et al., 2005). The U$^{K'}_{37}$-derived temperature for the core-top sample of core PL-1 is 22.3°C. This...
temperature is similar to the mean annual SST (22.4°C; Japan Oceanographic Data Center; available at http://www.jodc.go.jp/index.html) and the SST in May and November at this site (Fig. 2). Analysis for particulate organic matter in May showed a maximal concentration of alkenones between depths of 5 and 20 m, and the $U_{37}^{K^\prime}$ values were consistent with the in situ water temperature (Nakanishi et al., submitted to Journal of Oceanography). A one-year time-series sediment trap experiment indicated that the sinking flux of *Emiliania huxleyi* was maximal from March to May (Tanaka et al., 2003). These observations suggest that the $U_{37}^{K^\prime}$ reflects the SST in spring.

The season and depth of GDGT production in the ECS are not clear. The $\text{TEX}^{H}_{86}$ and $\text{TEX}^{L}_{86}$-based temperatures (22.6°C an 22.8°C, respectively) at the core-top sample of core PL-1 agreed with mean annual SST, the SSTs in May and November, and the temperature from June to November at depths of 50–70 m (Fig. 2) $\text{TEX}_{86}$ is less likely to reflect the SST in a specific short period such as May or November for the following two reasons. First, analysis of GDGTs in particulate organic matter sampled during the spring bloom in May 2008 in the study area (Nakanishi et al., submitted) showed a low GDGT concentration and lower $\text{TEX}_{86}$-derived temperature than in situ temperature in the surface water column (< 20m), suggesting that $\text{TEX}_{86}$ did not reflect the SST in May at the study site. Second, a sediment-trap study in the western North Pacific showed nearly constant $\text{TEX}_{86}$ values in sinking particles, roughly corresponding to the mean annual SST throughout the entire year, although there was a large seasonal variation in SST, implying that GDGTs produced in different seasons were suspended and well mixed in the surface water (Yamamoto et al., 2012). These observations suggest that $\text{TEX}_{86}$ reflects the average temperature in multiple seasons rather than the temperature in a specific time interval. This property is different from that of $U_{37}^{K^\prime}$ and foraminiferal Mg/Ca, which reflects the temperature in the bloom and growing period (spring, and spring to summer in the ECS, respectively). Thus, the most likely interpretation is that $\text{TEX}_{86}$ reflects either mean annual SST or summer subsurface water.
temperature. Although TEX$_{86}$ is usually thought to reflect SST (Schouten et al., 2002; Kim et al., 2008; 2010), a sediment-trap study in the Santa Barbara Basin found that TEX$_{86}$ reflected subsurface rather than surface temperatures (Huguet et al., 2006b). The TEX$_{86}$ in tropical North Atlantic sediments was also assumed to reflect subsurface water temperature (Lopes dos Santos et al., 2010). Analysis of particulate organic matter collected in May 2008 in the northern Okinawa Trough showed a broad peak in GDGT concentrations at depths between 50 and 100 m and TEX$_{86}$ values consistent with local water temperature at those depths, which suggests in situ production of GDGTs in the 50–100 m depth interval (Nakanishi et al., submitted). This observation indicates possible production of GDGTs in the thermocline. TEX$_{86}$-derived temperatures from surface sediments from the southern ECS were 0–2°C lower than mean annual SSTs (Zhu et al., 2011), whereas those from the YS and the northern SCS were much lower than the mean annual SSTs and corresponded to winter SSTs or subsurface water temperatures (Kyun-Hoon Shin, unpublished data). Therefore, the possibility that TEX$_{86}$ reflects thermocline temperature cannot be ignored in the ECS.

Although it is not clear whether TEX$_{86}$ reflects the mean annual SST or the summer thermocline temperature, interpretation of TEX$_{86}$ variation is possible because both temperatures are determined by a common forcing, as discussed below. The site of this study is located east of the contact zone between the YSCCW/CDW and the KWS, and the southward migration of the YSCCW was detected by hydrographical measurements at the station west of Jeju Island (Zhang et al., 2008). A steep temperature gradient in the northern Okinawa Trough suggests the influence of the YACCW/CDW at the study site (Fig. 1b and c). In the modern summer at a depth of 50 m, the cold and relatively less saline YSCCW spreads over the continental shelf of the YS and the ECS (Fig. 1b). This water mass forms in the YS as a result of winter cooling and reaches the northern Okinawa Trough by advection, where it exists from spring until fall (Ichikawa and Beardsley, 2002; Zhang et al., 2008). Because the summer thermocline temperature is linked to winter SST, it is also a consequence
of winter cooling. Although it is not clear whether TEX$_{86}$ reflects the mean annual SST or the summer thermocline temperature, TEX$_{86}$ likely responds to the surface cooling of the YS and/or the ECS by the East Asian winter monsoon.

The difference between the TEX$_{86}$- and Mg/Ca-derived temperatures was around 14°C from 19 to 16 ka and abruptly decreased to around 5°C from 16 to 13 ka (Fig. 4). In the case that TEX$_{86}$ reflects the summer thermocline temperature, this change suggests that the summer thermocline was more developed in the last glacial period than in the Holocene. A steep gradient between surface and subsurface temperatures (24°C at 5 m, and 7°C at 50 m in July in the northern YS; Zhang et al., 2008) is currently observed in the YS in the summer.

In the case that TEX$_{86}$ reflects SST, it is suggested that the seasonal difference in SST was larger in the last glacial period than in the Holocene. A large seasonal SST difference (ca. 18°C at 5 m depth in the northern YS; Zhang et al., 2008) is currently observed in the YS as well. The modern YS is a potential analog of the northern Okinawa Trough in the LGM.

In the last glacial period, the continental shelf of the present ECS was largely exposed due to a low sea level stand (maximum 130 m), and the study site was located near the continent (Fig. 6). Because the thermal inertia of a water column on the shelf is linearly proportional to the bottom depth (Xie et al., 2002), winter monsoon winds could have efficiently formed a cold water mass near the study site in the LGM, whereas the surface water would have been warmed by insolation and by heat exchange with the atmosphere during spring and summer.

The northern Okinawa Trough was hydrologically characterized by a strong cooling of the surface water during the winter and a well-developed halocline during the summer (Xu and Oda, 1999; Ijiri et al., 2005). This resulted in the large difference between Mg/Ca-derived and TEX$_{86}$-derived temperatures in the northern Okinawa Trough.

5.2. Temperature changes during the last deglaciation

TEX$_{86}$, U$^{13}$C, and planktonic foraminiferal Mg/Ca data showed similar variation in
estimated temperature for the study site (Fig. 4), despite differences in the amplitudes of variation. The temperatures gradually decreased from 42 to 18 ka, were lowest at 18 to 17 ka, and abruptly increased from 17 to 13 ka, centered at 14.5 ka (Fig. 4). This pattern was also common in the central Okinawa Trough (Li et al., 2001; Zhao et al., 2005; Sun et al., 2005; Zhou et al., 2007; Chang et al., 2008; Chen et al., 2010). At the study site, winter SST and the summer temperature at the thermocline are governed by the mixing of the cold shelf water (CDW and/or YSCCW) and Kuroshio water. Decreased TEX$_{86}$ at 17–18 ka is thus attributable either to the intensification of the Kuroshio or to shrinkage of the CDW and the YSCCW. A weakening of the Kuroshio jet during the last deglaciation was suggested based on a SST record from offshore central Japan (Yamamoto et al., 2005; Yamamoto, 2009). This correspondence suggests that the weakening of the Kuroshio is the first possible factor affecting the TEX$_{86}$ in the northern Okinawa Trough.

In addition, a similar pattern was observed in the TEX$_{86}$ record from the northern South China Sea (Shintani et al., 2011). The paleotemperature difference between the northern South China Sea and the Sulu Sea suggested that the East Asian winter monsoon gradually intensified after 21 ka, maximized at 12 ka, and weakened toward the late Holocene (Shintani et al., 2008). The paleotemperature gradient between the western and eastern margins of the South China Sea suggested that the East Asian winter monsoon gradually intensified after 21 ka, maximized during the Oldest Dryas and Younger Dryas periods, and weakened towards the late Holocene (Huang et al., 2011). Changes in the TEX$_{86}$-derived temperatures at the study site are roughly consistent with changes in the East Asian winter monsoon inferred from paleotemperature records from the South China Sea. Because the South China Sea does not suffer a direct influence of Kuroshio variation, the intensity of the East Asian winter monsoon is the second factor affecting TEX$_{86}$ in the study site.

In contrast to the South China Sea, the TEX$_{86}$ record from the study site did not show a significant cooling in the Younger Dryas period. The formation of cold water in winter is
generally more active in shallow shelf areas than in deeper areas. The source area of the cooled water shifted westward far from the study site due to marine transgression during the Younger Dryas period and the TEX$_{86}$-derived temperature became insensitive to changes in the intensity of the East Asian winter monsoon. The Younger Dryas cooling thus did not decrease TEX$_{86}$ significantly in the study site. The formation of cold water gradually intensified from 42 to 18 ka due to both a low sea level stand and a stronger winter monsoon, maximized at 18 to 17 ka, abruptly weakened from 17 to 13 ka due to a marine transgression, and then gradually weakened afterwards. Therefore, we suggest that the formation of cold water in the northern Okinawa Trough was regulated by a combination of the intensity of the Kuroshio, the intensity of the East Asian winter monsoon and the proximity of the coast.

5.3. Oceanographic linkage with the Sea of Japan

The northern Okinawa Trough is the source region of the Tsushima Warm Current that flows in the Sea of Japan (Fig. 1b and c). The Sea of Japan was semi-isolated, well stratified and anoxic from 24 to 18 ka, resulting in the deposition of a thick dark layer (Oba et al., 1991; Tada et al., 1999). Oba et al. (1991) suggested that Huanghe (Yellow River) flowed into the Sea of Japan, forming less saline surface water. Tada et al. (1999) assumed that the freshwater inputs of the Changjiang and Huanghe rivers formed less saline water in the paleo-ECS that flowed into the Sea of Japan.

Today, the Kuroshio branch current west of Kyushu (KBCWK) passes through the western flank of the northern Okinawa Trough (Fig. 1b and c; Ichikawa and Beardsley, 2002) and becomes the Tsushima Warm Current by mixing with the ECS water. Xu and Oda (1999) demonstrated that the less saline and low temperature species *Globigerina quinqueloba* frequently occurred from 19.5 to 10.5 ka in the northern Okinawa Trough. Ijiri et al. (2005) subsequently showed the presence of a cold and less saline water mass in the northern Okinawa Trough from 24 to 14 ka, based on high abundance of *Neogloboquadrina pachyderma*, *Neogloboquadrina incompta*, and *Globigerina quinqueloba*. They further
indicated the freshwater influence on the surface water during this period based on the $\delta^{18}$O of planktonic foraminifera. Our study demonstrates the development of a cold water mass in the northern Okinawa Trough during the LGM (Fig. 6). These results suggest that the KBCWK did not fully enter the northern Okinawa Trough. Because the KBCWK weakened, the inflow of saline water into the Sea of Japan decreased, resulting in the development of a halocline in the Sea of Japan during the LGM.

6. Conclusions

The $\text{TEX}_{86}$-derived temperature showed intense cooling in the last glacial period, whereas $\text{U}^{K^+}_{\text{37}}$-derived spring sea surface temperature (SST) and Mg/Ca-derived summer SST showed much smaller-scale cooling. In the last glacial period, the hydrology of the northern Okinawa Trough was characterized by strong cooling of the surface water in winter and the development of cold subsurface water during summer.

$\text{TEX}_{86}$, $\text{U}^{K^+}_{\text{37}}$, and planktonic foraminiferal Mg/Ca-derived temperatures gradually decreased from 42 to 18 ka, were lowest at 18 to 17 ka, abruptly increased from 17 to 13 ka centered at 14.5 ka, reflecting changes in cold water formation in the northern Okinawa Trough.

During the LGM, the development of a cold-water mass in the northern Okinawa Trough could have prevented the saline Kuroshio water from flowing into the northern Okinawa Trough and the Sea of Japan, resulting in the development of a halocline in the Sea of Japan during the LGM.

Acknowledgements. We thank late Luejiang Wang (Hokkaido University) for providing MD98-2195 samples. Thanks also go to Tatsufumi Okino, Masao Minagawa, Noriko Edasawa, Keiko Ohnishi, and Youichi Tanimoto (Hokkaido University) for help with analysis and discussion. Akira Ijiri (JAMSTEC) and Yoshimi Kubota (University of Tokyo) kindly provided the electric data of the $\text{U}^{K^+}_{\text{37}}$ in MD98-2195 core and the Mg/Ca ratio in LY07-04
PC-1 core, respectively. We also thank Min-Te Chen and two anonymous reviewers for their constructive comments. We appreciate Prof. Chi-Yue Huang for his contributions to the studies on East China Sea paleoceanography. This study was supported by a grant-in-aid for Scientific Research (A) the Japan Society for the Promotion of Science, No. 19204051 (to MY).

References


Analysis of intact tetraether lipids in archaeal cell material and sediments by high 
performance liquid chromatography/atmospheric pressure chemical ionization mass 

Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, 
S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and 

Huang, E., Tian, J., Steinke, S., 2011. Millennial-scale dynamics of the winter cold tongue in 
the southern South China Sea over the past 26 ka and the East Asian winter monsoon. 
Quaternary Research 75, 196–204.

Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, P.J., 
Plicht, J., Weyhenmeyer, C.E., 2004. MARINE04 marine radiocarbon age calibration, 0 – 

surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies 
(TEX86 and U37). Paleoceanography 21, PA300S.


Paleoenvironmental changes in the northern area of the East China Sea during the past 

Japan Oceanographic Data Center (JODC) 1906–2003. Oceanographic data, monthly 
Hydrographic Association, Tokyo, Japan.


Shintani, T., Yamamoto, M., Chen, M.-T., 2008. Slow warming of the northern South China Sea during the last deglaciation. Terrestrial, Atmospheric and Oceanic Sciences, 19, 341–346.


Tada, R., Irino, T., Koizumi, I., 1999. Land-ocean linkage over orbital and millennial
timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography 14, 236–247.


Zhao, M., Huang, C.-Y., Wei, K.-Y., 2005. A 28,000 year U$^{14}$ sea surface temperature record
of ODP Site 1202B, the southern Okinawa Trough. TAO 16, 45–56.


Fig. 1. (a) MD98-2195 core location, (b and c) the distribution of seasonal mean winter and summer temperatures at 50 m depth, and the surface water circulation pattern in the East China Sea and the Yellow Sea (Kondo, 1985). KSW = Kuroshio Water. CDW = Changjiang Diluted Water. CCW = Chinese Coastal Water. YSCCW = Yellow Sea Central Cold Water. KBCWK = Kuroshio branch current west of Kyushu. TSWC = Tsushima Warm Current.

Fig. 2. Seasonal and monthly mean water temperatures at different depths at the study site (Japan Oceanographic Data Center; http://www.jodc.go.jp/index.html). “J” to “D” denote the months from January to December. After Nakanishi et al., submitted to Journal of Quaternary Science.

Fig. 3. Age depth model of core MD98-2195 (Ijiri et al., 2005).

Fig. 4. Variations in TEX$_{86^+}$, TEX$_{86-}$, and TEX$_{86}^{L}$-derived thermocline temperature, $U_{37}^{K'}$, derived SST (Ijiri et al., 2005), and Globigerinoides ruber Mg/Ca-derived SST (Kubota et al., 2010) for the last 42 kyr from core MD98-2195. H0 = the Younger Dryas period, H1 = the Oldest Dryas period. H2 = Heinrich event 2. H3 = Heinrich event 3. H4 = Heinrich event 4.

Fig. 5. Variation in branched and isoprenoid tetraethers (BIT) index for the last 42 kyr from core MD98-2195.

Fig. 6. Schematic map showing the distributions of coastline and shallow shelf area in the East China Sea at 15 ka. The sea level was 100 m lower than the present. The cold water was presumably formed near the study site and expanded to the northern Okinawa Trough.
Fig. 1. Temperature (°C)

Fig. 2

Fig. 3.
Fig. 4.

Fig. 5.
Winter monsoon winds

Formation of cold water

Expansion of cold water

Kuroshio