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We elaborate on the cross-sectional deformation of carbon nanotubes embedded into a self-contracting host medium. The
continuum elastic approach is used to formulate the mechanical energy of both the embedded nanotubes and the self-contracting
outer medium with finite thickness. Our formula allows us to evaluate the critical radial pressure applied on the interface between
the embedded nanotube and the outer contracting medium as well as the deformation mode that arises immediately above the
critical pressure. An interesting mechanical implication of the embedding effect, that is, the power-law dependence of the critical
pressure on the elastic modulus of the medium, is deduced by the theoretical approach established.

1. Introduction

The salient structural feature of a carbon nanotube is its self-
repairing behaviour that arises under high-energy beam irra-
diation [1, 2]. When the kinetic energy transferred from the
incident beam to the constituent carbon atoms is sufficiently
large, the atoms are pushed away from the original equilib-
riumpositions, leaving vacancies in the host hexagonal lattice
[3, 4]. In typical solids, such irradiation-induced vacancies
survivewithout curing as time passes. However, this is not the
case in carbon nanotubes; the removal of carbon atoms from
the purely hexagonal lattice leads to a local reconstruction
that acts to maintain its coherent network structure with
cylindrical geometry. For this reason, carbon nanotubes are
often referred to as self-repairing (or self-healing) materials
[5–7].

This self-repairing nature provides beneficial effects for
manipulating the carbon nanotube morphology, especially
when combined with heat treatment. For instance, fine-
tuning of electron beam irradiation makes it possible to syn-
thesize multiwall carbon nanotubes (MWNTs) with reduced
interwall spacings [8]; the spontaneous shrinkage in the

radial direction is a result of the knock-on collision of carbon
atoms followed by annealing reconstruction of the vacancies.
This experimental finding implies that when the outermost
carbon walls of an MWNT are eroded selectively by irradia-
tion, the self-contraction of the outermost walls exerts high
pressure on the encapsulated, undamaged innermost walls
[9–11]. Application of high pressure may then trigger a novel
class of cross-sectional transformations of the inner walls
[12], similar to the case of pristine (irradiation-free) MWNTs
under hydrostatic pressure [13, 14]. Another class of radial
contraction has been observed in MWNTs synthesized in
the presence of nitrogen [15]. The yielded nanotubes showed
polygon-shaped cross-sections rather than ordinary circular
ones, a phenomenon that is partly attributed to the interwall
thermal contraction upon cooling, as verified numerically by
molecular dynamics simulations [16].

From a nanoengineering perspective, the tunability of
cross-sectional geometry may be useful for developing
nanofluidic [17–19] or nanoelectrochemical devices [20]
based on carbon nanotubes, because both utilize the hollow
cavity within the innermost tube. A very interesting issue
from an academic viewpoint is the effect of the core tube
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deformation on the physicochemical properties of interca-
lated molecules confined in the hollow cavity. It is indeed
known that various types of intercalated molecules can
fill the innermost hollow cavities of nanotubes [18] and
exhibit intriguing behaviours that are distinct from their
macroscopic counterparts [21–23]. These distinct behaviours
originate from the similarity between the intermolecular
spacings and the linear dimension of the nanoscale com-
partment.Therefore, cross-sectional deformation that breaks
cylindrical symmetry will provide a clue to improving the
performance of nanotube-based devices.

In this paper, we establish the continuum elastic approach
that describes the cross-sectional deformation of carbon nan-
otubes surrounded by a self-contracting host medium. The
mechanical energy of both the pressurized nanotubes and
the contracting medium with finite thickness are formulated
using thin-shell theory. The obtained formula allows us to
evaluate the critical radial pressure applied on the interface
between the inner nanotube and the outer medium. Our
numerical calculations have unveiled a power-law depen-
dence of the critical pressure on the elastic modulus of the
medium that is independent of the medium thickness.

2. Methodology

2.1. Relevant Energy Components. Figure 1 illustrates the self-
contraction process of MWNTs subjected to high-energetic
beam irradiation. Under irradiation, the induced beam kicks
off a portion of carbon atoms at outer walls, causing vacancies
followed by spontaneous shrinkage as marked by color in
Figure 1(b). Even during the outer-walls self-contraction, the
inner walls remain undamaged by irradiation, and thus they
tend to keep their initial tube radii. As a result, the contracting
outerwalls exert a high pressure, designated by𝑝, on the inner
undamaged walls (see Figure 1). A possible consequence of
the radiation-induced high-pressure application is a circum-
ferentially wrinkling structure, called radial corrugation [13],
in the inner undamaged walls embedded in the eroded
region, as examined later in an approximation based on the
thin-shell theory.

The stable cross-sectional shape of the embedded tube
is obtained by minimizing its mechanical energy 𝑈 per unit
axial length [13] as

𝑈 = 𝑈
𝐷
+ 𝑈
𝐼
+ 𝑈
𝑚
+ Ω. (1)

The first term 𝑈
𝐷
= ∑
𝑁

𝑖=1
𝑈
(𝑖)

𝐷
with the definition

𝑈
(𝑖)

𝐷
=
𝑟
𝑖

2
(

𝐶

1 − ]2
∫

2𝜋

0

I
2

𝑖
𝑑𝜃 + 𝐷∫

2𝜋

0

B
2

𝑖
𝑑𝜃) (2)

represents the deformation energy of the embedded nan-
otubes. I

𝑖
and B

𝑖
are, respectively, in-plane and bending-

induced strains of the 𝑖th wall, and 𝜃 is the circumferential
coordinate. For (2), we supposed that each 𝑖th wall had a
radius 𝑟

𝑖
prior to cross-sectional deformation and that the

deformation caused a displacement x
𝑖
= (𝑢
𝑖
, V
𝑖
) of a volume

element of the 𝑖th wall at (𝑟
𝑖
, 𝜃) in the polar coordinate

(a) MWNT before irradiation

Pressure

(b) MWNT after irradiation

Figure 1: Schematics of the pressurized carbon nanotubes. (a)
A pristine MWNT prior to high-energy beam irradiation. (b)
An irradiated MWNT whose outermost carbon walls contract
radially because of the self-repairing property of the eroded region
(indicated in orange).

representation.The two strain termsI
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𝑖
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in terms of the displacement components by [14]
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where 𝜕
𝜃
= 𝜕/𝜕𝜃.

For quantitative discussions, the elastic coefficients𝐶 and
𝐷 need to be carefully determined. In conventional thin-shell
theory for macroscopic objects, 𝐶 and 𝐷 are related to the
Young’s modulus 𝐸 of the wall and its thickness ℎ as

𝐶 = 𝐸ℎ, 𝐷 =
𝐸ℎ
3

12 (1 − ]2)
for macroscopic shells. (4)

However, for carbon nanotubes, themacroscopic relations for
𝐶 and 𝐷 noted earlier fail because there is no unique way of
defining the thickness of the graphene wall [24]. Thus, the
values of 𝐶 and 𝐷 should be evaluated ab initio from direct
measurements or computations of carbon sheets, without
reference to the macroscopic relations. In actual calculations,
we substitute 𝐶 = 345 nN/nm, 𝐷 = 0.238 nN⋅nm for carbon
nanotubes, and ] = 0.149 from prior work [25] based on the
density functional theory.

The second term, 𝑈
𝐼

= ∑
𝑖,𝑗 = 𝑖±1

𝑈
(𝑖,𝑗)

𝐼
, in (1) accounts

for the van der Waals (vdW) interaction energy, which
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determines the equilibrium distance between adjacent con-
centric walls. Thus far, several continuum models for the
vdW interactions have been proposed. Expressions for the
wall-wall interaction proposed in [26] were based on the
surface integration of the vdW force and its derivative over
the cylindrical walls, while disregarding the vectorial nature
of the force. The significance of the vectorial nature of the
force was addressed in [27], where analytical expressions
for the wall-wall interaction were obtained by considering
only the component of the vdW force normal to the wall. In
accordance with the result of [27], we define the interaction
energy by

𝑈
(𝑖,𝑗)

𝐼
=
𝑐
𝑖𝑗
(𝑟
𝑖
+ 𝑟
𝑗
)

4
∫

2𝜋

0

(𝑢
𝑖
− 𝑢
𝑗
)
2

𝑑𝜃, (5)

where the coefficients 𝑐
𝑖𝑗
are derived through a harmonic ap-

proximation of the interwall force [28] associated with the
vdW intermolecular potential

𝑉 (𝑟) = 4𝛼 [(
𝛽

𝑟
)

12

− (
𝛽

𝑟
)

6

] (6)

with the definitions of 𝛼 = 2.39meV and 𝛽 = 0.3415 nm
the same as those in [29]. Equation (5) takes into account
correctly the normal-to-wall component of vdW forces, and
it is valid for infinitesimal deformation, which we address in
the present work.

The final term Ω in (1) is the negative of the work done
by 𝑝 during cross-sectional deformation; it can be written as
[13]

Ω = 𝑝∫

2𝜋

0
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𝑁
𝑢
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+
𝑢
2
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+ V2
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𝜃
𝑢
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V
𝑁

2
)𝑑𝜃.

(7)

Note that all three terms are functions of 𝑢
𝑖
(𝑝, 𝜃) and V

𝑖
(𝑝, 𝜃)

of the 𝑖th wall under 𝑝.
The remaining term,𝑈

𝑚
, in (1) is the elastic energy of the

erodedmedium surrounding the inner part of the nanotubes.
To derive it, we assume that the medium has finite thickness
of 𝑟
𝑚
− 𝑟
𝑁
, where 𝑟

𝑚
is the outmost radius of the cylinder-

shaped surrounding medium and 𝑟
𝑁

is the outmost tube
radius of the embedded nanotube. In addition, the medium
is assumed to be homogeneous and isotropic with Young’s
modulus 𝐸

𝑚
and Poisson’s ratio ]

𝑚
. The validity of the latter

assumption depends on the following two effects of irra-
diation on the mechanical stiffness of MWNTs. Irradiation
reduces the axial stiffness because it creates vacancies [30, 31],
and it simultaneously enhances the radial stiffness, owing to
the production of covalent bonding between adjacent walls
[32]. The possible value of 𝐸

𝑚
ranges from 100GPa (for

amorphous carbon) [33, 34] to much less. An explicit form
of 𝑈
𝑚
is presented in the next section.

2.2. Corrugation Mode Analysis. Our objectives are to deter-
mine (i) the optimal displacements 𝑢

𝑖
and V

𝑖
that minimize

𝑈 under a given value of 𝑝 and (ii) the critical pressure
𝑝
𝑐
above which the circular cross section of the embedded

nanotube is elastically deformed into a noncircular one.These
are accomplished by decomposing the displacement 𝑢

𝑖
(𝑝, 𝜃)

just after buckling as follows:

𝑢
𝑖
(𝑝, 𝜃) = 𝑢

(0)

𝑖
(𝑝) + 𝛿𝑢

𝑖 (𝜃). (8)

In (8), the term 𝑢
(0)

𝑖
(𝑝) ∝ 𝑝 describes a uniform radial con-

traction at 𝑝 < 𝑝
𝑐
, at which the cross section remains circular

and thus the displacement is independent of 𝜃. The other
term 𝛿𝑢

𝑖
(𝜃) describes a deformed (noncircular) cross-section

observed immediately above 𝑝
𝑐
. Note that the superscript

(0) attached to 𝑢(0)
𝑖
(𝑝) differentiates it from the 𝜃-dependent

displacement 𝑢
𝑖
(𝑝, 𝜃) observed at 𝑝 > 𝑝

𝑐
. As to V

𝑖
(𝑝, 𝜃), we

can write

V
𝑖
(𝑝, 𝜃) = 𝛿V

𝑖
(𝜃) , (9)

because no circumferential displacement arises at𝑝 < 𝑝
𝑐
(i.e.,

V(0)
𝑖
(𝑝) ≡ 0).
Applying the variation method to 𝑈 with respect to

𝑢
𝑖
and V

𝑖
, we obtain a system of 2𝑁 linear differential

equations with regard to 𝛿𝑢
𝑖
(𝜃) and 𝛿V

𝑖
(𝜃). To derive the 2𝑁

linear differential equations, quadratic or cubic terms in 𝛿𝑢
𝑖

and 𝛿V
𝑖
are omitted since we consider elastic deformation

with sufficiently small displacements. In addition, the terms
consisting only of 𝑢(0)

𝑖
and 𝑝 are also omitted; the sum of

such terms should be equal to zero since 𝑢(0)
𝑖

represents an
equilibrium circular cross-section under 𝑝. In fact, the func-
tion form of 𝑢(0)

𝑖
(𝑝) is determined by the fact that the sum

of those terms equals zero. The differential equations can be
solved using the Fourier series expansions

𝛿𝑢
𝑖 (𝜃) =

∞

∑

𝑛=1

𝛿𝜇
(𝑛)

𝑖
cos 𝑛𝜃, 𝛿V

𝑖 (𝜃) =

∞

∑

𝑛=1

𝛿]
(𝑛)

𝑖
sin 𝑛𝜃, (10)

wherein we took into account that 𝛿𝑢
𝑖
, 𝛿V
𝑖
, and their deriva-

tives are periodic in 𝜃. Substituting the expansions into the
differential equations results in the matrix equationMu = 0;
the vectoru consists of 𝛿𝜇(𝑛)

𝑖
and 𝛿](𝑛)

𝑖
with all possible 𝑖 and 𝑛,

and the matrixM involves one variable 𝑝 and other material
parameters. It should be noted that, due to the orthogonality
of cos 𝑛𝜃 and sin 𝑛𝜃, thematrixM can be expressed by a block
diagonal matrix of the form

M = M
𝑛=1

⊕M
𝑛=2

⊕ ⋅ ⋅ ⋅ . (11)

Here, M
𝑛=𝑘

for arbitrary integer 𝑘 is a 2𝑁 × 2𝑁 submatrix
that satisfiesM

𝑛=𝑘
u
𝑛=𝑘

= 0, whereu
𝑛=𝑘

is a 2𝑁-column vector
composed of 𝛿𝜇(𝑘)

𝑖
and 𝛿](𝑘)

𝑖
. As a result, the secular equation

det(M) = 0 is rewritten by

det (M
𝑛=1

) det (M
𝑛=2

) ⋅ ⋅ ⋅ = 0. (12)

Solving (12)with respect to𝑝, we obtain a sequence of discrete
values of 𝑝. Among these values, the minimum one serves
as the critical pressure 𝑝

𝑐
that is associated with a specific

integer 𝑘. From the definition, the𝑝
𝑐
associatedwith a specific

𝑘 allows only 𝛿𝜇
𝑖
(𝑛 = 𝑘) and 𝛿]

𝑖
(𝑛 = 𝑘) be finite, but it

requires 𝛿𝜇
𝑖
(𝑛 ̸= 𝑘) ≡ 0 and 𝛿]

𝑖
(𝑛 ̸= 𝑘) ≡ 0. Immediately
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above 𝑝
𝑐
, therefore, the cross section of embedded nanotubes

becomes radially deformed as described by

𝑢
𝑖 (𝜃) = 𝑢

(0)

𝑖
(𝑝
𝑐
) + 𝛿𝜇

(𝑘)

𝑖
cos 𝑘𝜃, V

𝑖 (𝜃) = 𝛿]
(𝑘)

𝑖
sin 𝑘𝜃,

(13)

where the value of 𝑘 is uniquely determined by the one-to-
one relation between 𝑘 and 𝑝

𝑐
.

3. Mechanical Energy of the
Embedding Medium

3.1. Total Energy Cost. In polar coordinates, the radial and
circumferential components of normal stress in the medium
are denoted by 𝜎

𝑟
and 𝜎

𝜃
, respectively, and the shear stress is

denoted by 𝜏
𝑟𝜃
; all three quantities are functions of 𝑟 and 𝜃.

Then, 𝑈
𝑚
is determined by 𝜎

𝑟
and 𝜏
𝑟𝜃
at 𝑟 = 𝑟

𝑁
as

𝑈
𝑚
= 𝑈
(0)

𝑚
+ Δ𝑈
(𝑛)

𝑚
, (14)

𝑈
(0)

𝑚
=
𝑟
𝑁

2
∫

2𝜋
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𝜎
(0)

𝑟

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑁
𝑢
(0)

𝑁
𝑑𝜃, (15)

Δ𝑈
(𝑛)

𝑚
=
𝑟
𝑁

2
∫

2𝜋

0

(𝜎
(𝑛)

𝑟

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑁
𝛿𝑢
𝑁
+ 𝜏
(𝑛)

𝑟𝜃

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑁
𝛿V
𝑁
) 𝑑𝜃, (16)

where 𝛿𝑢
𝑁
and 𝛿V

𝑁
describe the corrugation amplitudes of

the outermost wall of the embedded nanotube; see (10). The
superscripts (0) and (𝑛) indicate the quantities corresponding
to uniform contraction and radial corrugation, respectively.
In other words, 𝑈(0)

𝑚
represents the energy required for uni-

form radial contraction of the surrounding medium keeping
in contact with the embedded nanotube, and Δ𝑈

𝑚
represents

the energy required for radial corrugation with mode index
𝑛.

3.2. Stress-Strain-Displacement Relation. The mechanics of
an elastic medium is governed by the stress function 𝜙, which
satisfies the so-called compatibility equation [35]

(𝜕
2

𝑟
+ 𝑟
−1
𝜕
𝑟
+ 𝑟
−2
𝜕
𝜃
)
2

𝜙 (𝑟, 𝜃) = 0, (17)

where 𝜕
𝑟
= 𝜕/𝜕𝑟 and 𝜕

𝜃
= 𝜕/𝜕𝜃. Once 𝜙 is obtained, we can

deduce the stress components as follows:

𝜎
𝑟
= (𝑟
−1
𝜕
𝑟
+ 𝑟
−2
𝜕
2

𝜃
) 𝜙, 𝜎

𝜃
= 𝜕
2

𝑟
𝜙,

𝜏
𝑟𝜃
= 𝜕
𝑟
(𝑟
−1
𝜕
𝜃
) 𝜙.

(18)

By definition, the strain components 𝜀
𝑟
, 𝜀
𝜃
, and 𝛾

𝑟𝜃
are given

by the matrix form

[

[

𝜀
𝑟

𝜀
𝜃

𝛾
𝑟𝜃

]

]

= G[

[

𝜎
𝑟

𝜎
𝜃

𝜏
𝑟𝜃

]

]

= [

[

𝜕
𝑟

0

𝑟
−1

𝑟
−1
𝜕
𝜃

𝑟
−1
𝜕
𝜃
𝜕
𝑟
− 𝑟
−1

]

]

[
𝑢

V
] , (19)

G =
1

𝐸
𝑚

[

[

1 − ]2
𝑚

−]
𝑚
(1 + ]

𝑚
) 0

−]
𝑚
(1 + ]

𝑚
) 1 − ]2

𝑚
0

0 0 2 (1 + ]
𝑚
)

]

]

, (20)

where 𝑢 = 𝑢(𝑟, 𝜃) and V = V(𝑟, 𝜃) are, respectively, the radial
and circumferential displacements of a volume element in the
elastic medium.

The general solution of (17) is given by

𝜙 (𝑟, 𝜃) =

∞

∑

𝑛=0

𝜙
𝑛 (𝑟, 𝜃) =

∞

∑

𝑛=0

[𝑓
𝑛 (𝑟) cos 𝑛𝜃 + 𝑔

𝑛 (𝑟) sin 𝑛𝜃] .

(21)

The zeroth component𝜙
0
represents a uniform contraction of

the circular cross section, thus corresponding to the energy
𝑈
(0)

𝑚
that we have introduced in (15). The first one, 𝜙

1
,

implies a rigid-body translation, which is irrelevant to our
consideration. Other components, 𝜙

𝑛
for 𝑛 ≥ 2, describe

radial corrugations with mode index 𝑛, thus providing the
energy Δ𝑈(𝑛)

𝑚
given by (16). In the following, we set [36]

𝑓
0
= 𝑎
0
log 𝑟 + 𝑐

0
𝑟
2
,

𝑓
𝑛
= 𝑎
𝑛
𝑟
−𝑛

+ 𝑏
𝑛
𝑟
2−𝑛

+ 𝑐
𝑛
𝑟
2+𝑛

+ 𝑑
𝑛
𝑟
𝑛
, (𝑛 ≥ 2)

(22)

in order to obtain physically relevant solutions of 𝜎
𝑟
, 𝜎
𝜃
, and

𝜏
𝑟𝜃
that decay with increasing 𝑟.Without loss of generality, we

set 𝑔
𝑛
≡ 0 in (21) according to our assumption of cosine-type

radial displacement 𝛿𝑢
𝑖
(𝜃); see (10). We emphasize that the

hypothesized solution forms of 𝑓
0
and 𝑓

𝑛≥2
differ from those

in our earlier work [12]; in the present study, we introduce the
positive power terms of 𝑟 in (22) to take into account correctly
the boundary condition at 𝑟 = 𝑟

𝑚
, whereas these terms were

omitted in [12].

3.3. Energy Cost under Uniform Contraction. We now eval-
uate the explicit form of the energy 𝑈

(0)

𝑚
. It results from

the uniform contraction of the medium described by the 𝑟-
dependent medium displacement 𝑢(0)(𝑟). The elastic nature
of the embedding medium assures that

𝜎
(0)

𝑟
(𝑟) = 𝜅 (𝑟) 𝑢

(0)
(𝑟) (23)

with the 𝑟-dependent stiffness coefficient 𝜅(𝑟). In addition,
complete contact at the interface of the medium and the
embedded nanotube implies

𝑢
(0)

(𝑟
𝑁
) = 𝑢
(0)

𝑁
. (24)

Hence, the previous expression of 𝑈(0)
𝑚
, given in (15), can be

rewritten as

𝑈
(0)

𝑚
=
𝜅
0

2
∫

2𝜋

0

{𝑢
(0)

𝑁
}
2

𝑟
𝑁
𝑑𝜃 with 𝜅

0
≡ 𝜅 (𝑟

𝑁
) . (25)

The remaining task is, therefore, to represent 𝜅
0
in terms of

already-known material parameters such as 𝐸
𝑚
, ]
𝑚
, 𝑟
𝑚
, and

𝑟
𝑁
.
To accomplish this task, we consider a specific solution of

(17) that has the form 𝜙 = 𝜙
0
, and then we substitute it back

into (18) to obtain

𝜎
(0)

𝑟
= 𝑎
0
𝑟
−2

+ 2𝑐
0
, 𝜎

(0)

𝜃
= −𝑎
0
𝑟
−2

+ 2𝑐
0
, (26)
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and 𝜏
(0)

𝑟𝜃
= 0. The coefficients 𝑎

0
and 𝑐
0
are determined by

imposing the boundary conditions of 𝜎(0)
𝑟

at 𝑟 = 𝑟
𝑁
and 𝑟 =

𝑟
𝑚
as follows:

𝑎
0
𝑟
−2

𝑁
+ 2𝑐
0
= 𝑝, 𝑎

0
𝑟
−2

𝑚
+ 2𝑐
0
= 0. (27)

Eliminating 𝑎
0
and 𝑐
0
from (27), we have

𝜎
(0)

𝑟
(𝑟) =

𝑟
2

𝑁
𝑝

𝑟2
𝑚
− 𝑟2
𝑁

(
𝑟
2

𝑚

𝑟2
− 1) ,

𝜎
(0)

𝜃
(𝑟) =

−𝑟
2

𝑁
𝑝

𝑟2
𝑚
− 𝑟2
𝑁

(
𝑟
2

𝑚

𝑟2
+ 1) .

(28)

The obtained 𝜎(0)
𝑟
(𝑟) and 𝜎(0)

𝜃
(𝑟) lead to the displacements

𝑢
(0)

(𝑟) = −
1 + ]
𝑚

𝐸
𝑚

⋅
𝑟
2

𝑁
𝑝

𝑟2
𝑚
− 𝑟2
𝑁

[(1 − 2]
𝑚
) 𝑟 +

𝑟
2

𝑚

𝑟
] (29)

and V(0)(𝑟) = 0 at the medium region (𝑟
𝑁

< 𝑟 < 𝑟
𝑚
),

as confirmed by (19). By comparing (23), (28), and (29), we
conclude that

𝜅
0
= −

𝐸
𝑚

(1 + ]
𝑚
)
⋅ (

𝑟
2

𝑚

𝑟2
𝑁

− 1) ⋅ [(1 − 2]
𝑚
)𝑟
𝑁
+
𝑟
2

𝑚

𝑟
𝑁

]

−1

. (30)

3.4. Energy Cost under Radial Corrugation. Next, we consider
the energy Δ𝑈

(𝑛)

𝑚
(𝑛 ≥ 2) that corresponds to the radial

corrugation of the 𝑛th order. A similar procedure to the case
of 𝑛 = 0 yields

𝜎
(𝑛)

𝑟
(𝑟, 𝜃)

= {−𝑛 (𝑛 + 1) 𝑎𝑛𝑟
−2

− (𝑛 − 1) (𝑛 + 2) 𝑏𝑛} 𝑟
−𝑛 cos 𝑛𝜃

+ {−𝑛 (𝑛 − 1) 𝑑𝑛𝑟
−2

− (𝑛 + 1) (𝑛 − 2) 𝑐𝑛} 𝑟
𝑛 cos 𝑛𝜃,

𝜎
(𝑛)

𝜃
(𝑟, 𝜃)

= {𝑛 (𝑛 + 1) 𝑎𝑛𝑟
−2

+ (𝑛 − 1) (𝑛 − 2) 𝑏𝑛} 𝑟
−𝑛 cos 𝑛𝜃

+ {𝑛 (𝑛 − 1) 𝑑𝑛𝑟
−2

+ (𝑛 + 1) (𝑛 + 2) 𝑐𝑛} 𝑟
𝑛 cos 𝑛𝜃,

𝜏
(𝑛)

𝑟𝜃
(𝑟, 𝜃)

= {𝑛 (𝑛 + 1) 𝑎𝑛𝑟
−2

+ 𝑛 (𝑛 − 1) 𝑏𝑛} 𝑟
−𝑛 sin 𝑛𝜃

− {𝑛 (𝑛 − 1) 𝑑𝑛𝑟
−2

+ 𝑛 (𝑛 + 1) 𝑐𝑛} 𝑟
𝑛 sin 𝑛𝜃,

(31)

leading to the results

𝑢
(𝑛)

(𝑟, 𝜃) =
(1 + ]

𝑚
)

𝐸
𝑚

(𝑛𝑎
𝑛
𝑟
−2

+ 𝜉
+
𝑏
𝑛
) 𝑟
1−𝑛 cos 𝑛𝜃

−
(1 + ]

𝑚
)

𝐸
𝑚

(𝑛𝑑
𝑛
𝑟
−2

+ 𝜉
−
𝑐
𝑛
) 𝑟
1+𝑛 cos 𝑛𝜃,

(32)

V
(𝑛)

(𝑟, 𝜃) =
(1 + ]

𝑚
)

𝐸
𝑚

(𝑛𝑎
𝑛
𝑟
−2

+ 𝜂
−
𝑏
𝑛
) 𝑟
1−𝑛 sin 𝑛𝜃

+
(1 + ]

𝑚
)

𝐸
𝑚

(𝑛𝑑
𝑛
𝑟
−2

+ 𝜂
+
𝑐
𝑛
) 𝑟
1+𝑛 sin 𝑛𝜃,

(33)

with 𝜉
±
= 𝑛 ± 2(1 − 2]

𝑚
) and 𝜂

±
= 𝑛 ± 4(1 − ]

𝑚
). Of the

four coefficients 𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
, and 𝑑

𝑛
involved in the previous

equations, two of them are eliminated by considering the
boundary conditions 𝜎(𝑛)

𝑟
(𝑟
𝑁
, 𝜃) ≡ 0 and 𝜏(𝑛)

𝑟𝜃
(𝑟
𝑁
, 𝜃) ≡ 0.

Owing to the complete contact condition, we have

𝑢
(𝑛)

(𝑟
𝑁
, 𝜃) = 𝛿𝜇

(𝑛)

𝑁
cos 𝑛𝜃, V

(𝑛)
(𝑟
𝑁
, 𝜃) = 𝛿]

(𝑛)

𝑁
sin 𝑛𝜃.

(34)

Besides, the elastic nature of the medium at the contact
interface implies the relations

𝜎
(𝑛)

𝑟

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑁
= [𝜅
1
𝛿𝜇
(𝑛)

𝑁
+ 𝜅
2
𝛿]
(𝑛)

𝑁
] cos 𝑛𝜃,

𝜏
(𝑛)

𝑟𝜃

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑁
= [𝜅
2
𝛿𝜇
(𝑛)

𝑁
+ 𝜅
1
𝛿]
(𝑛)

𝑁
] sin 𝑛𝜃.

(35)

From (35), the stiffness coefficients are given by

𝜅
1
=

𝜎
(𝑛)

𝑟
|
𝑟=𝑟𝑁,𝛿𝜇

(𝑛)

𝑁
=1,𝛿]

(𝑛)

𝑁
=0

cos 𝑛𝜃
, 𝜅

2
=

𝜎
(𝑛)

𝑟
|
𝑟=𝑟𝑁,𝛿𝜇

(𝑛)

𝑁
=0,𝛿]

(𝑛)

𝑁
=1

cos 𝑛𝜃
.

(36)

Note that a set of two normalization conditions of

{𝛿𝜇
(𝑛)

𝑁
= 1, 𝛿]

(𝑛)

𝑁
= 0} , {𝛿𝜇

(𝑛)

𝑁
= 0, 𝛿]

(𝑛)

𝑁
= 1} , (37)

which is indicated by (36), allows us to describe the two
remaining undetermined coefficients, from among 𝑎

𝑛
, 𝑏
𝑛
, 𝑐
𝑛
,

and 𝑑
𝑛
, in terms of materials parameters such as 𝐸

𝑚
, ]
𝑚
,

and 𝑟
𝑚
; see the statement immediately below (33). Hence, 𝜅

1

and 𝜅
2
derived as mentioned are those expressed by already-

known parameters, though the explicit forms are not shown
here to save space. Eventually, we obtainΔ𝑈(𝑛)

𝑚
by substituting

the results into (16).

4. Results and Discussions

Figure 2 shows the critical pressure 𝑝
𝑐
required for the

cross-sectional deformation of embedded carbon nanotubes.
Different types of curves in the plots (dashed, dashed-dotted,
and solid) correspond to different values of Young’s modulus
ratio 𝐸

𝑚
/𝐸, where 𝐸 = 1TPa is assumed to be the nanotube’s

modulus. We found that, independent of the 𝐸
𝑚
/𝐸 value, the

𝑝
𝑐
curves are upward convex as functions of the medium



6 Journal of Nanomaterials

1 2 3 4 5
𝑟𝑚/𝑟1

0

0.1

0.2

0.3

0.4 SWNT

Cr
iti

ca
l p

re
ss

ur
e𝑝

𝑐
(G

Pa
)

(a)

1 2 3 4 5
𝑟𝑚/𝑟1

0

0.5

1

1.5

2 SWNT

Cr
iti

ca
l p

re
ss

ur
e𝑝

𝑐
(G

Pa
)

(b)

1 2 3 4 5
𝑟𝑚/𝑟1

0

2

4

6

8

10 SWNT

Cr
iti

ca
l p

re
ss

ur
e𝑝

𝑐
(G

Pa
)

(c)

1 2 3 4 5
𝑟𝑚/𝑟10

0

0.1

0.2

0.3

0.4 10-walled NT

Cr
iti

ca
l p

re
ss

ur
e𝑝

𝑐
(G

Pa
)

(d)

1 2 3 4 5
𝑟𝑚/𝑟10

0

0.5

1

1.5

2 10-walled NT

Cr
iti

ca
l p

re
ss

ur
e𝑝

𝑐
(G

Pa
)

(e)

1 2 3 4 5
𝑟𝑚/𝑟10

0

2

4

6

8

10 10-walled NT

Cr
iti

ca
l p

re
ss

ur
e𝑝

𝑐
(G

Pa
)

(f)

Figure 2: Critical pressure 𝑝
𝑐
for cross-sectional deformation of embedded carbon nanotubes. Monotonic increases with 𝑟

𝑚
/𝑟
𝑁
, the ratio

between the radii of the medium (𝑟
𝑚
) and the outermost tube (𝑟

𝑁
), are observed regardless of the Young’s modulus ratio 𝐸

𝑚
/𝐸 between the

elastic medium (𝐸
𝑚
) and the carbon nanotubes (𝐸): 𝐸

𝑚
/𝐸 = 10

−3 (dashed curves), 𝐸
𝑚
/𝐸 = 10

−2 (dash-dotted curves), and 𝐸
𝑚
/𝐸 = 10

−1

(solid curve).

radius 𝑟
𝑚
in units of 𝑟

𝑁
.The growth of 𝑝

𝑐
is rapid for 𝑟

𝑚
/𝑟
𝑁
<

2, and then, it saturates for larger 𝑟
𝑚
/𝑟
𝑁
. The rapid growth in

𝑝
𝑐
indicates a “hardening effect” caused by the surrounding

medium, that is, an enhancement in the radial stiffness of
the embedded nanotube by encapsulation. This hardening
effect disappears with a further increase in 𝑟

𝑚
/𝑟
𝑁
; the results

imply that the surrounding medium with thickness 𝑟
𝑚
> 5𝑟
𝑁

no longer enhances the hardening effect and thus can be
identified as a medium with infinitely large thickness (𝑟

𝑚
→

∞), which is the case considered in our earlier work [12].
Figure 3 provides the index of radial deformation modes

observed immediately above 𝑝
𝑐
. Successive transformation

of deformation modes with increasing medium thickness
𝑟
𝑚

was confirmed, as a result of the fact that the energy
required to deform the surrounding medium needed to be
responsible for determining the stable corrugation pattern
of the embedded nanotube. Again, we found that the mode
variation disappears for 𝑟

𝑚
/𝑟
𝑁

> 3, and a larger value of 𝑛
arises for a higher modulus ratio 𝐸

𝑚
/𝐸. The nonmonotonic

variance in the corrugation mode 𝑛 observed within 1 <

𝑟
𝑚
/𝑟
𝑁

< 2 is what can be clarified for the first time by the

present work; it is applicable to the condition 𝑟
𝑚
∼ 𝑟
𝑁
, which

lay beyond the scope of our earlier work [12].
Figure 4 shows the 𝑝

𝑐
dependence on the modulus ratio

(𝐸
𝑚
/𝐸), where the radius ratio 𝛼 ≡ 𝑟

𝑚
/𝑟
𝑁
is fixed to be 𝛼 =

1.1 or 5.0. For every choice of 𝛼 and𝑁, the 𝑝
𝑐
curves in this

plot obey a power law represented by

𝑝
𝑐
∝ (

𝐸
𝑚

𝐸
)

𝛽

with 𝛽 ≃
2

3
. (38)

We have confirmed that the power-law behaviour holds for
any values of 𝛼 and 𝑁 within the ranges of 1.1 < 𝛼 < 5

and 1 < 𝑁 < 10, respectively. Recall here that, for 𝛼 > 5,
𝑝
𝑐
becomes almost constant even with increasing 𝛼. These

facts lead to the conjecture that the power law described by
(38) is universal to all embedded nanotubes, at least under
the numerical conditions that we have addressed. The power
law of 𝑝

𝑐
represented by (38) is an interesting manifestation

of the embedding effect of nanotubes into an elastic medium.
It is worthy to note that the two-third power law of 𝑝

𝑐
has

been also proposed for the buckling ofmacroscopic “tunnels”
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Figure 3: Mode index 𝑛 of the radial corrugation observed in the embedded nanotubes. The modulus ratio is set to 𝐸
𝑚
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Figure 4: Double logarithm plot of the critical pressure 𝑝
𝑐
as a

function of the Young’s modulus ratio 𝐸
𝑚
/𝐸 between the elastic

medium (𝐸
𝑚
) and the nanotubes (𝐸). The parameter 𝛼 ≡ 𝑟

𝑚
/𝑟
𝑁

represents the ratio of the medium radius 𝑟
𝑚
to the outermost tube

radius 𝑟
𝑁
, where𝑁 = 1 for single-walled nanotubes and𝑁 = 10 for

MWNTs. For all the parameter values chosen, the two-third power
law of 𝑝

𝑐
given by (38) is observed.

embedded in an infinite soft ground [36]. The radial collapse
of tunnel liners, which is one of the major civil engineering
disasters, was analysed to reveal a closed form of 𝑝

𝑐
; several

approximations led to the conclusion of a power-law of 𝑝
𝑐

similar to (38), though an infinitely large medium and only
the case of one cylindrical shell (i.e.,𝑁 = 1) are hypothesized.
In this context, our results suggest that the approximation
theory proposed for macroscopic tunnels [36] is valid for
nanoscopic cylinders, even though they consist of more than
one concentric walls.

The previous discussion may pose a further question:
does the power law of 𝑝

𝑐
hold true for macroscopic counter-

parts of “many”-walled nanotubes? In fact,macroscaled pipe-
in-pipe structures (i.e., a pipe inserted inside another pipe)
are known to be an efficient design solution for subsea-pipe-
line developments in deep water [37, 38], wherein buckling
resistance to large amounts of external hydrostatic pressure is
a key structural design requirement. Addressing these prob-
lems is expected to shed light on the development ofmultiple-
cylindrical structures from multidisciplinary viewpoints and
will be considered in our future work.

5. Conclusion

We have demonstrated a continuum elastic approach that
describes the cross-sectional deformation of carbon nan-
otubes surrounded by a self-contracting host medium. The
approach enables quantitative discussions of the critical pres-
sure for radial corrugation and the stable corrugation mode
of the nanotube surrounded by the contracting medium.
Numerical calculations based on the established theory
revealed the power-law dependence of the critical pressure on
the elastic modulus of the medium, which is independent of
the medium thickness. Further studies are expected to shed
light on other mechanical properties of embedded nanotubes
and to suggest applications based on their unique cross-
sectional deformations.
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